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ABSTRACT

Weighted utility logit model assumes a preference structure that is compatible with
weighted utility, a class of generalizations of expected utility. This weighted utility logit model
distinguishes between two types of uncertainty: uncertainty due to modeler's imperfect
information and measurement errors, which are accounted by the traditional error term of the
logit model, and the inherent uncertainty in the choice situation, when the decision maker
knows only the distribution of travel times.

The traditional mean value utility model, where travel time is presented as a sure
attribute of an alternative, is a special case of both expected utility and weighted utility model,
with a risk parameter «=0. It is shown that one cannot derive the general form of weighted
utility model from the general form of expected utility.

The weighted utility logit model is estimated for a continuous, normally distributed
uncertain variable, and an uncertain variable with a discrete distribution. The parameter
restrictions for risk aversion and first order dominance are specified for the uncertain variable
with a discrete distribution. Both weighted utility logit models and the traditional mean value
utility logit model are evaluated in a Monte Carlo simulation. The weighted utility models
accurately identify correct parameter values in a wide range of plausible risk parameter (o)
values, including the neighborhood of zero. If a true weighted utility model is misspecified
and estimated as a traditional mean value model, the results are biased.
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Introduction

Uncertainty affects choice. This fact has been acknowledged by transportation
researchers’, but the explicit incorporation of that fact in demand models has been incidental |
and ad hoc. In this paper I suggest applying weighted utility theory to incorporate the
uncertainty of travel time explicitly in é logit choice model. |

I start by reviewing earlier approaches to unreliable travel time in transportation demand
models. After discussing some of the shortcomings of those approaches I review the weighted
utility theory and the added flexibility it brings to behavioral assumptions. I operationalize two
weighted utility models and derive the implications of monotonicity and risk aversion on
parameter vﬂues. In the end I test the weighted utility models and a benchmark linear utility
model in a Monte Carlo simulation with a range of plausible parameter values for the weight

parameter.

Earlier approaches to unreliable travel time

Travel time reliability is often characterized by the variance of travel time distribution.
However, due to the expense of data collection or other reasons, the practice has been to
measure the travel time only a few times and estimate the mean travel time from these

measurements. The estimate (‘engineering time') has then been used as if it were a sure attribute

'A British research team found that value of reliability in public transportation, measured as keeping to the
scheduled services, was consistently high. They also conducted a survey on private transportation, which indicated
40% higher values for time savings when driving in congested driving conditions. Congested conditions was taken
as a proxy for unreliable arrival time (The MVA consultancy et al., 1987).
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of the mode in the choice model.- Another practice has been to ask the traveler how long the trip
took and use this estimate as a sure attribute of the used transportation mode. It has also been a
standard treatment to use a utility function which is linear in parameters, if not in characteristics.

It is possible to justify these practices by assuming that the linear function is a local
approximation on a non-linear relationship and that as long as the model is used to predict
outcomes of only minor adjustments of independent variables, this approximation would give
reasonably accurate estimates. This line of thinking may be invalid. McCord and Villoria (1986)
test linearity of utility functions of 12 individuals from Stated Preference data. They present the
subjects' comparisons of unspecified travel modes with only two attributes: travel time and
monetary costs. The stated preferences are used to form an individual three dimensional utility
surface for each participant. None of these individuals can be classified as exhibiting a linear
utility function even in small changes of time and cost and six are classified as
exhibiting systematic deviations from linearity (p. 24). Moreover, across-subject consistency of
the form of utility function is absent: all the twelve utility surfaces exhibit monotonicity, but not
a clear pattern of convexity or concavity.

If one assumes that the true utility function is linear in characteristics, then focusing only
on the mean of characteristics is appropriate. But for a risk averse decision maker a certainty
equivalent of an uncertain alternative is always smaller than the expected outcome of that
alternative, making the true utility function concave. If the true utility function is concave,
treating the mean of a random variable as a sure variable répresents a too high value for that
characteristic and will lead to underestimation of the parameter assigned to that characteristic.

This deficiency can be overcome by transforming the original variables and making the utility



function linear in these transformed parameters. Gaudry and Wills (1978) estimate parameters
of Box-Tukey and Box-Cox transformations jointly with parameters of explanatory variables.
Their results give more plausible signs and elasticities for the parameters of explanatory
variables, specially when contrasted with the standard additive logit model.

Winston (1981) approaches the problem of uncertain freight transit times by taking a
Taylor-series expansion of an unspecified general utility function. The expansion is taken
around the means of the uncertain attributes. This becomes an expected utility expression when
he takes the expectation of it. The first terms of the series is the utility of the mean value of the
attribute as if it were certain, and the second term disappears. The third term is second
derivative of the utility function divided by two and multiplied by the variance of the uncertain

attribute. He ignores the higher order terms. The expected utility expression becomes

EU[z] = by + by py + blzof toe b opt bzzof e T bypy bzzoﬁ

where z = 1,...,Z denotes the uncertain attributes.

Winston uses a random parameters specification, where each shipment receiver is
assigned individual parameter value representing his "unobserved deviations from mean attitude
toward risk or mean tastes" (p.987) for each random attribute. He uses only the means of
random attributes, and aggregates the higher order terms together with the unobserved utility
term into a new error term. He then divides the new error term into a random-parameter
component and an iid error term so that the coefficient for the utility of the mean value of a

attribute contains the effect of a mean attitude towards risk in that attribute.



In the empirical part Winston estimates transit mode choices for 12 commodity groups.
The parameters for freight charges, mean and standard deviation of transit time, and reliability
were treated as random. Reliability is defined as the ratio of standard deviation of transit time to
the mean of transit time. This leads to a specification where he uses two reliability measures: the
standard deviation and the ratio of the standard deviation to the mean. Using two measures of
one effect in a regression is likely to result in estimated parameters which depend on each other
and are unreliable.

The results suggest multicollinearity: in all but one industry either standard deviation of
transit time or the ratio of standard deviation to mean has a positive sign. Thesé results indicate
that shippers prefer randomness in transit times. Of the 12 commodity groups 9 have opposite
signs in standard deviation and the ratio, and the remaining three have statistically insignificant
parameters and in addition two of those have positive signs for both unreliability measures.

Senna (1991) uses an exponential utility function. He uses an exponential utility function

U=azP

and manipulates it into.an expected utility expression of travel time t:

I 5o
EQU) = ¢E(P) = a([ECH)] + [0 )] .

Senna uses Stated Preference data to estimate an additive utility function with the

derived expression for uncertain travel time and a certain monetary cost. His estimation results



in =0.7, which implies risk prone preferences (as he indicates any <1 value would). He also
notes that the R? is only 0.092. He suspects that the results are poor due to subjects's inability to
trade off time and money. Another experiment where the subjects trade off unreliability of travel
time to mean travel time gives =0.2. Since this result is counterintuitive, Senna proposes
further study in the area.

Senna (1994) uses the same model to estimate separate models for commuters and non-
commuters, with fixed and flexible arrival times. He reports that commuters with fixed arrival
times have $=0.5, but all non-commuters and commuters with flexible arrival times have $=1.4.
He apparently uses a sequential estimation where the time parameter (8) is estimated first and
then inserted in a model trading off the time measure against monetary cost. These models still
have a moderately low R?s, 0.059-0.148.

Another way to approximate the expected non-linear utility is to take a polynomial

approximation of an unspecified function. The approximation is:

U(t) = b, - bt - byt* - R

where R denotes the residual higher order terms. Ignoring the higher order terms this

transforms to expected utility:

EU[t] = b, - b,E[1] - b,E[12].

Since

E[f) =y, E[f1=0 -u



the utility expression can be written

EU[1] = by = by, = by(0] = i),

These expected utility expressions have unpleasant characteristics. In Senna's form both
parameters (a,B)‘ affect the squared mean and variance proportionally. This is unwelcome,
because one can easily come up with example situations where the importance of mean and
variance do not vary proportionally. Actually, it would be an interesting empirical result, but it

is better to estimate it than assume it. Proportionality also requires that the mean and variance
have to have thé same sign. This is acceptable in transponation, where both the travel time and
its variance are seen as costs (or negative outcomes), but the utility expression is not flexible
enough for positive outcomes. The interpretation of estimated parameters is unclear.

The polynomial approximation has the fault that all approximations have: one cannot be
sure about the magnitude of the omitted higher order terms. The parameters are more
‘separated, but not fully: both b, and b, determine the response to changes in the mean, but b,
doubles as a risk ;lttitﬁde parameter. This creates ambiguity about the interpretation of the
estimated parameters. In the following chapters I present an application of weighted utility that

has totally separated parameters.



Weighted Utility

Another way to approach unreliability is to use a more general form of utility function
than expected utility. One generalization of expected utility is weighted utility, which will be
used in this paper. Decision theory literature cites the Allais paradox as an example of behavior
which violates expected utility: a decision maker prefers an alternative T where he gets a smaller
but sure prize to an alternative A where he would either get a larger prize, same prize as in T, or
- with a small probability - will get nothing. However, if both prizes are made less likely by
combining the alternatives T and A with equal positive probability to get nothing, the decision
makers quite often prefer the mixture of A and the worst outcome. This behavior violates the
independence axiom of expected utility.

One analogy in a transportation context is travel time in mode choice: A decision maker
considers a reliable but slow mode T (eg. train) to be certain to take him to his destination in 20
minutes. He compares this to the alternative mode A (eg. auto), which takes normally 15

" minutes, but which has a positive probability of a traffic jam to delay the arrival time to either 20
minutes or 50 minutes. When both car and train alternatives are worsened to a probability
mixture of the worst optcome (50 minutes) and the original alternatives, expected utility requires
the decision maker to prefer the mixture with the previously preferred alternative. Weighted
utility theory allows him to prefer either one and behave as if he would scale the probabilities

differently in these two situations.



The situation can be represented in a convex hull of three probability measures p, q, and
I. )
H({p,q.,r}) ={Ap + Ayg + A,r : 4,20, XA =1}

When it is illustrated barycentrically, each point in the hull corresponds to a point in a
equilateral triangle with the probability measures as vertices. In this example each of the three
measures is a degenerate distribution with only one sure outcome: 15 minutes, 20 minutes and
50 minutes. When the perpendicular distance from each side to its opposite vertex is 1,
k1p+lzq+kzr is the point with perpendicular distances A, A,, and A, from sides gr, pr, and pq,
respectively.

- When the indifference curves are drawn in this space, weighted utility requires the
indifference curves to be linear and intersect in a common point, outside the triangle. Expected
utility is a special case of weighted utility where the probabilities are 'weighted' by a constant for
all outcomes, and the common intersection point is at infinity, which makes the indifference lines
parallel. This is demonstrated in Figure L.

The train alternative is represented by point T, where the travel time is 20 minutes for
sure. The auto alfernétive is represented by point A, which is close to outcome 15 minutes, but
shows some probability for outcomes 20 minutes and 50 minutes. When the decision maker
compares the auto and train alternatives, she prefers the train, which is shown in both expected
utility and weighted utility cases by the indifference curves intersecting point T, but above point
A. When both of these alternatives are worsened at same rate to a probability mixture A'= ¢A

+ (1-0)(50 minutes) and T'= T + (1-a)(50 minutes), the decision maker behaving according to
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expected utility has to prefer T’ to A’, while the decision maker behaving according to weighted
utility can prefer A’ to T".

Weighted utility behavior cannot be derived from expected utility by transforming the
independent variables. The demonstration in 3-outcome space is presented in Appendix A.

Chew ( 1982)' proved the more general case.

Figure 1. Allais paradox presented in the context of travel time for Expected Utility and

Weighted Utility

20 min

15 min 50 min 15 min 50 min

Expected utility Weighted utility

Axiomatically weighted utility deviates from expected utility by loosening the

independence axiom. Von Neumann and Morgenstern axiomatized expected utility through
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preference order > on P, where P is a nonempty set of probability measures p,q,...(which in the
previous example would correspond to the travel time probability distributions of train and
auto). The set of probability measures P is defined on a Boolean algebra € of subsets of X, the
set of outcomes. This means that for each peP, p(A)20 for every Ac€, p(AuB)=p(A)+p(B)
whenever A and B are disjoint events in €, and p=1 on the universal event X in €, and that € is
defined to be closed under complementation and finite unions. P is assumed convex, which
guarantees that convex combinations of probability measures p and q are in P. Under thése

assumptions expected utility is axiomatized:

Al. Order: > on P is asymmetric and negatively transitive.
A2. Independence: p » q = Ap + (1-A)r » Aq + (1-A)r, for O<A<l.
A3. Continuity: {p » q,q > r} = (ap + (1-a)r > q and q > Bp + (1-P)r for some e and B in

(0,1).

Weighted utility preserves axioms Al and A3, but replaces the Independence axiom by
two others: a weak independence axiom and a convexity axiom.

B1. Weak Independence: p ~ q = for every O < e < 1 there is a 0 < B < 1 such that for everyr €

P, ap + (1-o)r ~ Bq + (1-B)r.

B2. Convexity: ForO< A < 1,
{p>q.p=r}=p>Aig+ (-2,

{q>p,r=p}=21q+ (1-A)x > p.
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Weighted utility was ﬁrét -axiomatized by Chew and MacCrimmon in 1979, and further
axiomatic work has been continued by Chew (1982, 1983), Fishburn (1981, 1983) and
Nakamura (1984, 1985). The axioms of weighted utility have been tested in empirical
laboratory experiments by Chew and Waller (1986), Camerer (1989) and Conlisk (1989).?

However, I do not know of any application of weighted utility in transportation economics.

The Mode Choice Model

I present a model which maintains the additivity of the systematic utility in attributes, but
introduces weighted utility to one attribute. In particular, the utility function contains a
weighted utility functionai of one attribute, the travel time, while it is linear in the other, cost of
the trip. The approach can be generalized to more than one attribute’.

The model is a binomial logit model which describes a mode, route, or any choice
situation, where the decision maker has to decide betweeﬁ two mutually exclusive alternatives.
In the simplest fom both of the alternatives are described by only two characteristics: travel
time and monetafy cost of the trip. Travel time is uncertain: the decision maker has some
previous experience of the same trip or he knows the travel time distribution parameters. The
monetary cost is known for sure. The model contains two types of randomness: randomness

due to modeler's imperfect information about the attributes affecting choice and measurement

*See Fishburn (1988) for more thorough discussion of the weighted utility.

>Before generalizing the model the separability of different attributes has to be solved by assuming a more
general functional form. This complicates the derivation of the derivatives of the likelihood function.
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error, which are captured by the traditional error term of the logit model, and the randomness
inherent in the choice alternatives, modeled as the distribution of travel times. This specification
is one step towards a more realistic description of a choice situation and enables a less limited
estimation of the decision maker's attitude towards risk. In situations where the decision maker
has some previous experience, this approach has potential use as a learning model where the
traveler updates his set of observations as his experience of the mode accumulates. It provides a
way to model public's response path to chﬁnges in traffic information or implementation of

transportation policies.

Discrete Distribution of Travel Times

Weighted utility function for travel time can be written

_ ZP(l‘,-)W(l,-) U(t,)

V({p(ti), i=1,..,01) = Sp(r )yw(z)

Where
p(t;) = the probability that the trip will last t; minutes
w(t;) = the weight the decision maker places on t,

u(t;) = the utility of a sure t.
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The weighted utility function reduces to expected utility expression when the weight
function is constant. One can follow the tradition of logit models and use an additive utility
function, which is separable in attributes. For uncertain travel time t and certain monetary cost ¢

the utility function is:

| P UG

V. = -
=k b P Yp(r)yw(t,) 2

1 * C

In order to derive an empirical médel, one has to make an additional gssumption about
the form of the weight function. The weighted utility theory requires that the weight function
has to be always positive to insure that the transformed probabilities are positive*. To simplify
the estimation, a one parameter function and range of the whole positive real line is preferred.
Therefore I chose an exponential: w(t;) = exp(at,). If =0, the function gets a value one
throughout the domain. This would reduce the weighted utility expression to expected utility.
If >0, the travele;r emphasizes the potential of longer travel times. And if <0, he behaves as if

he would consider the shorter travel times as "more likely" than what their probability is. |

Continuous Distribution of Travel Times

The form I have discussed up till now applies to the case of discrete outcomes. It applies
to a situation when there is a finite number of observations of the travel time and the travel time

distribution is not known. If the distribution is known or assumed known, through a large

* Fishburn (1988) p. 62
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amount of measurements or on theoretical grounds, the discrete form can be replaced with a

continuous form: an integral over the domain of the density function f(t) of travel times.

ff(t)W(t)U(l‘)d(t)
[f(r)w(r)d(r)

VIf(n] =

If one assumes that the travel time has a normal distribution and that the weight function
is exponential, the utility functional reduces to a linear function of mean and variance of the |
travel time®. This is remarkable because it justifies the inclusion of travel time variance as a fully
separate explanatory variable. It also shows the special assumptions one has to make in order to
justify the previously ad hoc variables.

Assumptions:

t~N(u,0%)

1l
|
S

Uu(n) x4

w(t) = exp(a * t)

The utility functional in the continuous case can be written

*I am grateful to Scott Richman for helping me with this derivation.
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ft * exp(ot) * exp(_(t;f)z)dt

V(-) = b, - b, 270 207 - b, xc
L fexp(at) * exp(——(:%)-)dt
27O 20°

The common term of the two integrals can be manipulated as follows

(t ~ #)2)

exp(az) * exp( -
202

- t* + 2ut + 200%t - ,uz)
20°

exp(

(b r @0 | ol r ad) - i
20° 20°

exp(- {2
The second term does not depend on t and can be placed in front of the integral.
Because the second term appears in both the numerator and denominator, it cancels out and the

utility functional becomes

ft * exp( - (t - (p z aoz))~)dt
V() = b, - b, S b, xc
few( - L= LT
>

which further reduces to
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V() = b, - b, (p + ac?) —‘b2 * C

Note that the only case when the person maximizes regular expected utility in this
formulation is with risk neutrality when =0, and the expression reduces to the traditional
additive utility function without the variance term. This applies only when one uses the additive
utility function, the exponential weight function, and only one variable has a non-degenerate
normal distribution. When several variables have probability distributions the joint density
function will have cross terms of different standard deviations which may not vanish. For
praétical applications the assumption of normally distributed travel times is rather restrictive:
usually the travel times follow a skewed distribution much like a log-normal distribution.

The mdifference curves of expected utility and weighted utility look very different in
mean - variance coordinates. Consider the earlier discussed expected utility model with risk

aversion from a polynomial approximation:

EU[1] = b, - by, - by(0; - u).

Ignore the constant term (and the monetary cost). The expression can be made

comparable to weighted utility by rewriting it:

K =by-bp - ab(c® - )

where K represents an arbitrary level of utility. To derive the slope of an indifference curve,

solve first for variance:
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and for the inverse of the slope:

Ezfi+2#
du o

This sets the "minimum" of the expected utility indifference curve at p=1/2c.. Note that

it is not dependent on b, or the level of utility K.

Now consider the weighted utility.

K= -bu - boad’

The variance equals

R K +bp
b o
And the inverse of the slope of the indifference curve is
g _ L
ou o -

Weighted utility has straight indifference curves in mean - variance space. When u=0,
the indifference curves have the same slope, but the expected utility indifference curves start to
curve to a parabola when p differs from zefo. The indifference curves of both expected and
weighted utility are depicted in Figures 2-4 for a-values 0.03, 0.06, and 0.1 respectively. The

pictures are drawn to compare utility levels which coincide at ¢ *=0, and cover the space
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practical applications are concerned with. A curve for p=30~ limits the area to distributions that
are not likely to have negative travel times.

Comparing the three pictures one can see differences between expected and weighted
utility: when ¢ is close to zero, the expected utility indifference curves are straighter and both
expected utility and weighted utility curves become more vertical and the angle between the
curves is small. As the o gets larger, the discrepancy between the indifference curves increases.
Also, when the mean of travel time grows, the slopes of expected utility indifference curves
change whereas the straight slope of weighted utility indifference curves remains constant.

When the models are estimated, the parameters «, b, and b, will not have the same value
for expected and weighted utility. The p* term has a direct effect on the parameter for variance
and consequently shifts also the other parameters. Graphically this means that the tangency
point between the indifference curves shifts from p=0. This has to be kept in mind when the

parameters of empirical models are interpreted.
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Figure 3.

Indifference curves
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Figure 4.

Indifference curves

alpha=0.1

700

600

500

400

300

Variance, minutes (sqr)

200

100

3
X
3 r
N ¥ ¥
Y 5
\s %\' E; o
Y A
% 3 ;
g 3 pras
i =
‘ ¥ E =
\ | e
| . A | T
s ¢ ¥ 3 1
R RO o \ ! : !

30

40 50

Mean travel time, minutes

—s— WU,30

—— mean=3*std

60

—=— EU,45

21



22

Parameter restrictions implied by-risk aversion and monotonicity

It is customary to require that a utility function exhibits risk aversion and monotonicity.
I will discuss the implications of these requirements on the parameter values for the
discontinuous model.

In the model the utility of time outcomes is U(t) = - b;t and the weight function is
w(t) = exp(at). Risk aversion is defined to mean that the utility of the expected outcome is

preferred to the utility of the gamble®:

v( ro+ tz) S w(t)p,t, + w(tz)(l—pl)IZ'
2 w(r)p, + w(t,)(1-p))

The left side simplifies to:

L+ ) t,
— 2 )Y % (- b)) * (m—=
V(1+I2)=W( 2 et 2 )=_b*(t1_+£2_),
2 wt, + 1) : 2

2

And the inequality can be written out:

o+ 1
- b, * ( ! 5 =) [w(t)p, + w(t,)(1 - p))]

> [(W(t)p,t, = wt)(1 = p)g] = (- b))

SThis is a simplification of the definition that a risk averse person prefers less variation to more, other things
held constant.
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If t, < t,, this leads to a risk aversion requirement w(t,) < w(t,), which sets the parameter
requirement &.>0.

Monotonicity of utility function in outcomes’ generalizes into requirement that the utility
functional exhibits first order stochastic dominance (FSD). FSD states that if an alternative A
gives a better outcome in each state of the world than alternative B, A is preferred to B. An
other way to state FSD is to say that if outcomes are ordered from worst to best, p FSD q if the
cumulative distribution function of p is below the cdf of q throughout the outcome space. This
means that p has higher probabilities for better outcomes than‘q. FSD is analogous to positive

marginal utility or negative marginal cost. In this model the first order dominance is written

oXpw(t) U(t)IZw(t,)p,
i k

<0,
31,

v 2piU(ti) e mg V[{p(t), i=1,.101]

Using the quotient rule of derivatives this condition can be written out

1

2 a _ i
Tw(t)p, [é_z,.(p"w(’f) ur) - Vip()i ati(fpkW(fk))] <0
k .

The summation term is always positive. Substituting U(t,) = - b,t; and w(t,) = exp(at,),

the expression reduces to

7Monotonicity in regular utlity function requires that more of a good thing is preferred to less of a good thing.
Thus the utility function has to be either constant or increasing in all parts of its domain. It cannot have downward
"bumps'.
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= [p(exp(at) * o = (- byz) + (- b)) = exp(at))
- VI{p(z)}] = p, = exp(ar) = a] <0

= p, * exp(ar)[ - abyt, - b - V[{p(1)}le] < 0

Which further reduces to

a(- bt, - VI{p()}) < b,

The range for outcomes t; can be set to arbitrary [LLL] and thus the range for V[{p(t)}] is

[-b,L, -b,l]. This leads to four corner conditions:

1) IFV[{p(t)}]=-bLandt=1 a(-bl+b,L)<b,or

a<25
2) EV[{pt)}]=- BIL and t;=L, a(-L +L) <1, which is always true.
3) If V[{p(t)}] =- bland t,=1, a(-1+l) <1, which is always true.
4) I V[{pt)}] = -bland t;=L, «(-L +]) < 1, which is true if &>0, i.e. if the functional
exhibits risk aversion. |

The first condition is the most likely to be violated. If the travel time has a normal
distribution with an infinite range of outcomes, the decision maker violates monotonicity if she is

risk averse (¢ is a positive number). Of course the assumption of normal distribution is

restricted by the fact that travel times are always positive. Furthermore, with actual data one
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can always find the boundary observations. On the other hand, it is also plausible that people

are not monotonic in the whole range of outcomes.

Simulations

I studied three model specifications. All three models were binomial logit mode choice
models, where the attributes affecting the choice were travel time, monetary cost, and a mode
specific constant for one of the modes. The monetary cost was assumed known in advance for
the decision maker, but the travel time was uncertain. The three specifications differed by their
treatment of travel time.

In the benchmark model the choice was modeled to depend on the mean value of travel
times. This reflects the common practice of first estirriating the travel time and then using the
estimated travel time in an additive utility function as a sure and known characteristic of the
alternative. The second specification assumed that the decision maker knows that the travel
times are distribut:ed normally and that he also knows the mean and variance of that distribution.
The third specification used ten discrete observations from that normal distribution, selected so
that there was 10% of the probability mass between each observation. The decision maker has
knowledge or experience of these 10 observations, and he treats the distribution as if these
observations would form the whole discrete travel time distribution. Note that as the number of
discrete observations increases, the assumption of decision maker’s travel time information
approaches the information the decision maker has in the second model with continuously

distributed time.
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Each model used the same travel time and cost data in five estimations, where the sample
sizes were 100, 200, 500, 1000, and 4000. The monetary cost was drawn from a uniform
distribution from the interval [4,5]. The travel time means were drawn from a uniform
distribution from the interval [18, 20], and the standard deviations of travel times were d;awn
from a uniform distribution from the interval [0,2]. The choices were created according to the
postulated decision rules and parameter values ¢=0.15, by=0.5, b,=1.5, and b,=2. The data
creation procedure and parameter values and are arbitrary. They. were chosen to create é
situation where the predicted probabilities would not be 0, 1 or half. Only the value of & was
set intentionally low. This was chosen to reflect small deviations from expected utility, which is
the most plausible case for weighted utility. It is also the hardest to identify in the casé where
the true data is produced by weighted utility behavior. The critical value for FSD violation in
the discrete time observations weighted utility model is ¢<=0.1 (using the fact that the
observations are within two staﬁdard deviations from the mean). Thus the true behavior is
assumed to viélate FSD.

'Given the f:hoices, the models were estimﬁted to retrieve the parameters. The estimation
results are in tables 1-3. 1 have indicated with two stars the estimates within one standard
deviation from the true value, with one star the estimates within two standard deviations, and
with a minus sign those that cannot be distinguished from zero on statistical grounds. These
results are only indicative, because the simulations have to be repeated several times in order to
get meaningful statistics for the parameters.

I experimented with different initial values and discovered that the likelihood surface is

not smoothly curved. With a starting point far from the true values the procedure does not
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converge, as one or more partial derivatives gets a value of infinity. However, in the cases I
studied further, the value of likelihood-function was worse in this region than at the true
parameter values.

A few observations can be made. The continuous time weighted utility (CWU) and
discrete time observations weighted utility (DWU) are asymptotically same. Therefore, when
the true model is either one of the weighted utility models, one would assume that the estimated
parameters should be close to each other. This is true for the parameters by, b,, and b,, in the
two upper sections of tables 1 and 2. But the weight parameter seems to be sensitiveto
misspecification: misspecifying the model to be CWU when it is DWU produces downward
biased estimates of ¢, whereas misspecifying the model to be DWU when it is CWU biases the
weight parameter upwards. Randomness of the data can still be a larger factor in determining
the bias than the misspecification, offsetting the result back to the true value. In the four cases
studied this seems particularly true in the case of misspecified CWU estimation.

The lowest sections of tables 1 and 2 display the estimation results when the model is
estimated as mean value utility, the common practice in planning models. The bias does not
have any particular pattern in smaller sample sizes, but with sample sizes 1000 and 4000 all the
estimated parameters are downward biased when compared to the correct model specification.
In these large samples the law of large numbers overcomes the effect of random data and the
small systematic effect of misspecification starts to show. When the weight parameter is in

effect restricted to zero, this restriction forces the other parameters to adjust downwards®.

$See Appendix B for fuller discussion of bias mechanism.
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In the top and middle parts of Table 3 the choice is based on mean value, but the
estimated models assume weighted utility. Both WU models consistently estimate the risk
attitude parameter to be statistically zero and replicate the other parameters from the correct
model specification.

In order to get statistics about the estimated parameters I did a Monte Car}o simulation.
I created the random data set and ran the models 50 times, starting at point [1,1,1,1]. The size
of each data set was 1000, since that seemed to be the smallest data set to give plausible
estimates. The data creating parameters and parameters of the choice model were unchanged,
except for a. The true value of & was changed from 0.15 to 0.5. This higher value of ¢ creates
clear differences between the models, but it is less plausible as it assumes very risk averse
behavior to the extent of grossly violating first order dominance.

| The usual number of iterations was around 20. If the model did not converge soon after
 that, it was highly likely that one of the derivatives had reached a value of infinity. If that
happens, the process goes to an infinite loop and terminates only when the maximum number of
iterations is reached. I would interrupt the procedure at 50 iterations. Tables 4-6 contain data
from the 50 estimations of each model.

The simulation shows that the discontinuous time weighted utility is hardest to estimate
rehably when o deviafes significantly from zero and the behavior doesn't exhibit first order
dominance.

In table 4 the parameters are nicely retrieved in the case of continuous time weighted
utility, and the rather small standard deviations show that the results are statistically sigﬁiﬁcant.

However, when the model] is misspecified as discontinuous time weighted utility, the risk
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parameter o is estimated to be totally out of range. The other parameters don't seem to suffer
from the misspecification very much. The mean value utility estimates show a clear downward
bias. This results from the fact that the risk parameter o was in effect restricted to equal zero
and the other parameters scale down to maintain their relative magnitudes.

Table 5 repeats the unreliable results for the risk parameter «. The other variables
maintain their accuracy, and the mean value model exhibits the downward bias again. In table 6,
where the true model is mean value, and o therefore truly equals zero, all models give accurate
parameter values. This indicates that the use of weighted utility models will not distort the mean
value utility model estimations when the true model is mean value utility.

Next the models were tested in the original, more likely situation, where a=0. 15 and only
slightly violates FSD. Tables 7-9 show the Monte Carlo statistics. Discrete time weighted
utility model has still two convergence failures. All estimates are within one standard deviation
of the true parameter values, except when a continuous weighted utility model is misspecified as
discontinuous weighted utility. A smaller true « is accurateiy estimated when the model is
correctly speciﬁeq as continuous or discrete weighted utility model. Also the mean value utility
model continues go exhibit the true value of «.

I wanted to see whether the model could distinguish the weighted utility behavior that
complies with FSD and risk aversion. For the continuous time weighted utility model, where the
support of the probability measure is the real line, any «>0 always violates FSD. But it is
possible to find the non-violating range of a for discontinuous weighted utility. In the
discontinuous time mode] considered here the border observations represent points of a normal

distribution where 5% of probability mass belongs to the tails, so a range of two standard
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deviations on both sides of the mean ensures FSD. This sets the parameter requirement at 0 < &
<0.1. .

First I estimated the models with a true value of @=0.06. The results are in tables 10-12.
The parameters except ¢ in all threeb models are so close to their counterparts that it is
impossible to statistically distinguish between them, and « is estimated correctly. The
misspecified mean value utility parameter estimates still show a slight downward bias. The
important result is: when true ¢=0.06 and in the non-violating range of FSD, it can be estimated
accurately to be significantly different from zero.

Tables 13-15 show estimation results when ¢=0.03. Even though the standard

deviations for « are so big that & cannot be distinguished from zero on statistical grounds, the

correct mean for ¢ is estimated quite accurately.

Conclusions

This paper is a first attempt to apply weighted utility theory to a transportation choice
model. It explicitly madels in the choice between uncertain alternatives allowing the decision
maker weight the probabilities of possible outcomes. The greater flexibility of the model also
allows for some types of preference reversals that violate expected utility assumptions.
The paper also shows one set of assumptions one has to make to theoretically justify the ad hoc
practice of adding variance of the uncertain characteristic as an additional variable to the mean

value utility function.
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The Monte Carlo simulations show that the weighted utility model is possible to estimate
from a set of discrete data points or assuming a continuous, normally distributed uncertain
attribute. The estimated model _retriev_es the true parameter values of a correctly specified utility
function, whether it is a mean value or a weighted utility. It also shows that if the utility is
misspecified as mean value utility, but in fact is weighted utility, the estimated parameters are
downward biased, but their ratios stay true. This is something the practitioners should make a
note of, since there is a tendency to assume that the value of time derived from transportation
demand models includes a ‘premium’ for the uncértainty of travel time. At least when the true
utility is weighted utility, this is not the case.

In generai, these results have to be qualified to the extent that we do not knpw whether
the true behavior can be characterized by weighted utility any better than expected utility. In
this application the travel time is a monotonic ‘bad’, less of it is always better. It is outside the
scope of this paper to discuss when one should use the competing theories using aspiration

points and the assumption that time could be modeled as any other storable resource.
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Table 1. Estimation results of three model specifications when the choice is based on continuous time weighted utility,
and the true parameter values are ¢#=0.15, b,=0.5, b,=1.5, and b,=2.

values

Model Sample size o b b b, ‘
Continuous 100 0.0896™ 0.3716™ 2.2231°. 2.7624™
time (0.0615) (0.2789) (0.4702) (0.8162)
weighted . - .
utility 200 0.1436 0.3843 1.6337 2.8171°
(0.0598) (0.1811) (0.2735) (0.5874)
c 500 0.1085° 0.5662 1.5264" 1.8847"
orrect (0.0386) (0.1111) (0.1674) (0.2992)
Model
Specification 1000 0.1481 0.4509™ 1.5236™ 1.6332°
(0.0273) (0.0776) (0.1161) (0.2039)
4000 0.1589" 0.5100™ 1.4580™ 2.0993"
(0.0139) (0.0395) (0.0575) (0.1058)
Discrete 100 0.1023™ 0.3716™ 2.2232° 2.7623™
time (0.0731) (0.2790) (0.4703) (0.8162)
weighted . . . .
wtility 200 0.1687 0.3842 1.6334 2.8170
(0.0730) (0.1811) (0.2723) (0.5873)
500 0.1253" 0.5662" 1.5263" 1.8847"
(0.0457) (0.1111) (0.1672) (0.2992)
1000 0.1740™ 0.4509™ 1.5239™ 1.6330°
(0.0337) (0.0776) (0.1157) (0.2039)
4000 0.1882 0.5101" 1.4581" 2.0991"
(0.0181) (0.0395) (0.0575) (0.1058)
Mean 100 0.4205™ 2.1886" 2.7646™
value (0.2736) (0.4629) (0.8078)
utility : .
200 _ 0.3709 1.6503™ 2.6023"
(0.1771) (0.2710) (0.5515)
500 0.5803" 1.5320™ 1.8624™
(0.1101) (0.1657) (0.2945)
1000 0.4399™ 1.5069™ 1.5927
(0.0760) (0.1140) (0.1994)
4000 0.4915™ 1.4157° 2.02117
(0.0385) (0.0560) (0.1031)
True parameter 0.15 0.5 1.5 2
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Table 2. Estimation results of three model specifications when the choice is based on discrete time weighted utility,
and the true parameter values are ¢=0.15, b;=0.5, b,=1.5, and b,=2.

Model Sample size « b, b, b,
m
Continuous 100 0.0896™ 0.3716™ 2.2231" 2.7624™
time (0.0615) (0.2789) (0.4702) (0.8162)
weighted . . . .
wiility 200 0.1417 0.3540" 1.6315 2.8896
(0.0598) (0.1808) (0.2735) (0.5919)
500 0.1015" 0.5682™ 1.5286™ 1.9527"
(0.0385) (0.1113) (0.1678) (0.3017)
1000 0.1271 0.4273" 1.5397™ 1.6856"
(0.0265) (0.0774) (0.1165) (0.2047)
4000 0.1334" 0.5296™ 1.4878" 2.0770™
| (0.0134) (0.0395) (0.0579) (0.1057)
ml
Discrete 100 0.1023™ 0.3716™ 2.2232° 2.7623™
time (0.0731) (0.2790) (0.4703) (0.8162)
weighted - - - .
wtility 200 0.1662 0.3539™ 1.6313 2.8895
(0.0726) (0.1808) (0.2722) (0.5918)
500 0.1169™ 0.5681"" 1.5285™ 1.9527™
(0.0453) (0.1113) (0.1676) (0.3017)
Correct
Model 1000 0.1476™ 04273 1.5399" 1.6854"
Specification (0.0317) (0.0774) (0.1162) (0.2047)
4000 0.1356™ 0.5297™ 1.4879™ 2.0770™
(0.0163) (0.0395) (0.0579) (0.1057)
Mean 100 0.4205™ 2.1886" 2.7646™
value (0.2736) (0.4629) (0.8078)
utility ! . N .
200 _ 0.3414™ 1.6479" 2.6754
(0.1770) (0.2710) (0.5559)
500 0.5819™ 1.5357 1.9325™
: (0.1104) (0.1663) (0.2973)
1000 0.4203" 1.5310™ 1.6565"
(0.0762) (0.1150) (0.2012)
4000 0.5153" 1.4577" 2.0209"
(0.0388) (0.0568) (0.0474)

True parameter
values

0.15

0.5




Table 3. Estimation results of three mode} specifications when the choice is based on mean value utility, and the true
parameter values are =0, by=0.5, b,=1.5, and b,=2.
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Model Sample size -oc b, b b, |
Continuous 100 0.0557" 0.3834"™" 1.9992° 27191
time (0.0653) (0.2702) (0.4340) (0.7955)
weighted . - . .
utility 200 -0.0088™" 0.4521 1.7073 3.1564
(0.0524) (0.1834) (0.2838) (0.6031)
500 -0.0372" 0.5615™ 1.4865 1.9292"
(0.0371) (0.1097) (0.1640) (0.2942)
1000 0.0010™ 0.4436™ 1.4359™ 1.6943"
(0.0263) (0.0757) (0.1120) (0.2002)
4000 -0.0061"" 0.5011™ 1.5314™ 2.1527"
(0.0123) (0.0392) (0.0584) (0.1062)
1]
Discrete 100 0.0630™ 0.3835™ 1.9993° 2.7191°
time (0.0748) (0.2702) (0.4340) (0.7955)
weighted - - - .
utility 200 -0.0099™ 0.4521 1.7073 3.1564
(0.0580) (0.1834) (0.2838) (0.6030)
500 -0.0420™ 0.5615™ 1.4865 1.9292"
(0.0415) (0.1097) (0.1640) (0.2942)
1000 0.0012™ 0.4436™ 1.4359™ 1.6943
(0.0288) (0.0757) (0.1119) (0.2002)
4000 -0.0069™ 0.5011" 1.5314"™ 2.1527°
(0.0138) (0.0392) (0.0584) (0.1062) ‘
Mean 100 0.4102™ 1.9963" 27337
value (0.4331) (0.4331) (0.7933)
utility 7 - - -
200 _ 0.4521 1.7017" 3.1641
(0.1834) (0.2813) (0.6023)
Correct 500 0.5520™ 1.4707" 1.9182"
) ) 294
Model (0.1091) (0.1627) (0.2940)
Specification 1000 0.4437" 14362 1.6945°
(0.0756) (0.1118) (0.2002)
4000 0.5010™ 1.5305™ 2.1521°
(0.0392) (0.0583) (0.1061)
True 0 0.5 1.5 2
parameter
values
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Table 4. Estimation results from Monte Carlo simulations when choice is based on continuous time weighted utility.
Sample size = 1000. Numbers in parenthesis are the standard deviations of estimates.

[LModel I @ b b b, |
Continuous time weighted 0.5058™ 0.4983™ 1.5006™ 1.9193™
utility, N=50 (0.0447) (0.0566) (0.1300) (0.2336)
Discontinuous time 0.9309 0.4895™ 1.7021° 1.8823™
weighted utility, N=50 (0.0009) (0.0574) (0.1265) (0.2283)
Mean value utility, N=50 0.3535 1.0577 1.3495

L (0.0566) (0.1030) (0.1679)

| True parameter values II 0.5 0.5 1.5 2

Table 5. Estimation results from Monte Carlo simulations when choice is based on discontinuous time weighted
utility. Sample size = 1000. Numbers in parenthesis are the standard deviations of estimates.

| Model I o b b, b,
Continuous time weighted 0.3315 0.4912™ 1.4962™ 1.8914™
utility, N=50 (0.0361) (0.0640) (0.1158) (0.2383)
Discontinuous time 1.8644 0.4824™ 1.4890° 1.8596™
weighted utility, N=31 (1.6219) (0.0632) (0.1122) (0.2451)
Mean value utility, N=50 0.4139° 1.2528 1.5811

(0.0656) (0.1030) (0.1977)
True parameter values ll 0.5 0.5 1.5 2

Table 6. Estimation results from Monte Carlo simulations when choice is based on mean value utility. Sample size =
1000. Numbers in parenthesis are the standard deviations of estimates.

I Model | o b b b,
|

Continuous time weighted 0.0060™ 0.4888™ 1.5015™ 1.9262"
utility, N=50 (0.0245) (0.0616) (0.1077) (0.1905)
Discontinuous time 0.0068™ 0.4888™ 1.50157 1.9262"
weighted utility, N=50 (0.0265) (0.0616) (0.1077) (0.1905)
Mean value utility, N=50 0.4882™ 1.4999™ 1.9235™

(0.0616) (0.1082) (0.1895)
True parameter values II 0 0.5 1.5 2




Table 7. Estimation results from Monte Carlo simulations when choice is based on continuous time welghted utility.
Sample size = 1000. Numbers in parenthesis are the standard deviations of estimates.

=
Model l o

Continuous time weighted 10.1573" 0.4939™ 1.5099™ 1.9618"
utility, N=50 (0.0265) (0.0663) (0.1030) (0.1929)
Discontinuous time 0.1864" 0.4879™ 1.5131° 1.9609™
weighted utility, N=50 (0.0346) (0.0608) (0.0108) (0.1934)
Mean value utility, N=50 0.4718 1.4397" 1.8699"

: (0.0656) (0.0995) (0.1934)
True parameter values II 0.15 05 1.5 2

Table 8. Estimation results from Monte Carlo simulations when choice is based on discontinuous time weighted
utility. Sample size = 1000. Numbers in parenthesis are the standard deviations of estimates.

Model l o b, b, b, |
Continuous time weighted 0.1372" 0.4924™ 1.5119™ 1.9615™
utility, N=50 (0.0245) (0.0648) (0.1058) (0.1952)
Discontinuous time 0.1604™ 0.4861" 1.5143™ 1.9596™
weighted utility, N=50 (0.0316) (0.0583) (0.1072) (0.1987)
Mean value utility, N=50 0.4755™ 1.4570 1.8892™
(0.0640) (0.1039) (0.1924)
True parameter values II__O 15 05 1.5 2
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Table 9. Estimation re;éults from Monte Carlo simulations when choice is based on mean value utility. Sample size =

1000. Numbers in parenthesis are the standard deviations of estimates.

| Model l o b b, b,
Continuous time weighted 0.0072™ 0.4963™ 1.5037 1.9472™
utility, N=50 (0.0245) (0.0640) (0.1100) (0.1889)
Discontinuous time 0.0081™ 0.4963™ 1.5037 1.9472™
weighted utility, N=50 (0.0283) (0.0640) (0.1100) (0.1889)
Mean value utility, N=50 0.4954™ 1.5016™ 1.9448™

(0.0632) (0.1100) (0.1873)
True parameter values II 0 0.5 1.5 2
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Table 10. Estimation results from Monte Carlo simulations when choice is based on continuous time weighted utility.
Sample size = 1000. Numbers in parenthesis are the standard deviations of estimates.

| Model I o

b,

Continuous time weighted 0.0693" 0.4986™ 1.5142™ 1.9625™
utility, N=50 (0.0253) (0.0656) (0.1034) (0.1994)
Discontinuous time 0.0791™ 0.4986™ 1.5142™ 1.9625™
weighted utility, N=50 (0.0293) (0.0656) (0.1034) (0.1994)
Mean value utility, N=50 0.4934™ 1.4980™ 1.9401™
L (0.0649) (0.1029) (0.1969)
=True parameter values ll 0.06 0.5 1.5 2

Table 11. Estimation results from Monte Carlo simulations when choice is based on discontinuous time weighted
utility. Sample size = 1000. Numbers in parenthesis are the standard deviations of estimates.

| Model l o b, b, b,
Continuous time weighted 0.0625™ 0.4985™ 1.5116™ 1.9574™
utility, N=50 (0.0244) (0.0667) (0.1028) (0.1983)
Discontinuous time 0.0712™ 0.4985™ 1.5116™ 1.9574™
weighted utility, N=31 (0.0282) (0.0667) (0.1028) (0.1983)
Mean value utility, N=50 0.4942™ 1.4981™ 1.9392™

(L (0.0656) (0.1030) (0.1958)
True parameter values II 0.06 0.5 1.5 2

Table 12. Estimation results from Monte Carlo simulations when choice is based on mean value utility. Sample size =
1000. Numbers in parenthesis are the standard deviations of estimates.

-~

I Model l o

Continuous time weighted 0.0072™ 0.4963™ 1.5037™ 1.94717
utility, N=50 (0.0251) (0.0637) (0.1100) (0.1889)
Discontinuous time 0.0082™ 0.4963™ 1.5037™ 1.9472
weighted utility, N=50 (0.0285) (0.0637) (0.1100) (0.1889)
Mean value utility, N=50 0.4954™ 1.5016™ 1.9448™

(0.0632) (0.1102) (0.1872)
True parameter values WI 0 0.5 1.5 2
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Table 13. Estimation results from Monte.Carlo simulations when choice is based on continuous time weighted utility.

Sample size = 1000. Numbers in parenthesis are the standard deviations of estimates.

Model I o

b,

b,

True parameter values

Continuous time weighted 0.0380™ 0.4951™ 1.5053" 1.948™
utility, N=50 (0.0240) (0.0662) (0.1091) (0.2042)
Discontinuous time 0.0430™ 0.4951™ 1.5053™ 1.9478™
weighted utility, N=50 (0.0273) (0.0662) (0.1091) (0.2042)
Mean value utility, N=50 0.4932™ 1.4991™ 1.9395™
(0.0655) (0.1093) (0.2015)
“ 0.03 0.5 5 2

11—

Table 14. Estimation results from Monte Carlo simulations when choice is based on discontinuous time weighted
utility. Sample size = 1000. Numbers in parenthesis are the standard deviations of estimates.

l Model I o b, b b, |
Continuous time weighted 0.0345™ 0.4952™ 1.5014" 1.9484™
utility, N=50 (0.0241) (0.0655) (0.1108) (0.2016)
Discontinuous time 0.03917™ 0.4952™ 1.5014™ 1.9484™
weighted utility, N=31 (0.0274) (0.0655) (0.1108) (0.2016)
Mean value utility, N=50 0.4935™ 1.4960™ 1.9412™
(0.0648) (0.1110) (0.1991)
True parameter values |L0.03 05 1.5 2

Table 15. Estimation results from Monte Carlo simulations when choice is based on mean value utility. Sample size =

1000. Numbers in parenthesis are the standard deviations of estimates.

| Model | o b b, b,
|

Continuous time weighted 0.0072" 0.4963™ 1.5037" 1.94717
utility, N=50 (0.0251) (0.0637) (0.1100) (0.1889)
Discontinuous time 0.0081™ 0.4963™ 1.5037" 1.9472"
weighted utility, N=50 (0.0285) (0.0637) (0.1100) (0.1889)
Mean value utility, N=50 0.4954™ 1.5016™ 1.9448™

(0.0632) (0.1102) (0.1872)
True paraﬁeter values II 0 0.5 1.5 2
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APPENDIX A

Demonstration that indifference curves are parallel in probability space Expected Utility

To demonstrate that the behaviouré characterized by weighted utility and expected utility
are different one has to show that the indifference curves in probability space are different. If
this is true, transforming the utility expressions of individual outcomes will not compensate for
the difference.

The independence axiom of expected utility requires parallel straight indifference curves
in probability space, where as the corresponding axioms in weighted utility require them to be
straight lines originating from one common point outside the probability simplex.

Now, let the utilities of probability measures h, g, and r be U(h), U(q), and U(r). In
expected utility framework the functional form of the utility function U has to be linear in
probability i.e. U(ph + (1-p)q) = pU(h) + (1-p)U(q).

Consider two arbitrary utility levels K and K'. If the indifference curves are not parallel,
they will have to intersect at some point. To demonstrate that they don't, lets write the expected
utility expressions for K, K' and the technical constraint that probabilities of all possible

outcomes have to add pp to one.

phUh+quq+prUr =K
phUh+quq+prUr = K'

Pn *Pq +p =1
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In matrix form

- - - - o

Uo Uy U | | Pa K

U, U, U || p|=] K

1 1 1]/ p 1
—
A

The first matrix A is clearly singular and therefore not invertible. This shows that there
exists no solution to the problem and indifference curves are parallel.

The first matrix A is clearly singular and therefore not invertible. This shows that there
exists no solution to the problem and indifference curves are parallel.

Now, let's consider similar situation with a weighted utility functions:

p,w, U, + PquUq + pDW

r r-r

p hwh *p q)/vq *p rWr

= ph(UhWh - Kwh)'+ pq(Uqu B KW‘Z) " pr(Urwr - Kwr) =0

which is simplified with a change of terms into:

= ph(sh B Kwh) + pq(Sq - qu) + P,(S, - KW,.) = 0

The matrix form is now
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— 9 r - -

sy-Kwy, s,-Kw, s-Kw, Pnl - |0

sp-K'wy s-Kw, s-Kw [ [p,|=]0

And the solution to p, is

», - |4, (K - K/)(wrsq - w,s)

4] (K - K (W,S, = WS, * WS, “W,5, + WS, = W)
This shows that p, does not depend on utility levels K and K, but only on utilities of individual
outcomes Uy, U, and U,, and their weights w;, w,, and w,. Because the solution point p; for
two arbitrary utility levels does not depend on the utility levels, all indifference lines have to
meet in the same point. This shows that one cannot transform the independent variables in the

expected utility expression and get the same behavior as in weighted utility. -

-

-
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APPENDIX B
Lee (1982) studied bias in multinomial logit models due to omitted dichotomous

variables. He concludes that as long as the omitted explaining variables z are independent of

included variables x, conditional on the response variable y, the coefficient bl of x will not be

biased. However, the constant term b0 will be biased.

When the response variable y, included explaining variable x and omitted explaining

variable z are not independent, the coefficients will be biased.

Lee presents a multinomial logistic probability model

lnP(y=z]x,z) = +xa, +2zP +...+z B, i=1,..,L
P(y - O‘X,Z) iy i 17 MV,

where z,,...,zy, are dichotomous variables and

P(z =jlx) = Fi(x) Jj=1,..M
is the (unspecified) probability function of z conditional on x.

It follows that
P(z = j|x.y) -
1 =J N =1,...
n1"(2 =0]x,y) 0 le‘f v T yLBLj j=l...M
where
L
F(x) 1+ Zexp(oci0 + xail)
J(0) = In—L— + In(——= )

F (x
of 1+ Zexp(ocl.0 +xa, +B)

i=1
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Since x and z are not independent conditional on y, J j(x) are not constant functions for at

least some j. The bias for omitted variables will be

In P(y = llx) - a,‘ + xai _ GI.(.X)
P(y = 0|x) ! v
where
M
1+Eeprj(x)
G.(x) = In( Il ).

1+ Zexp(J,(x) + B,)
j=1 ’

If the functions G(x) are not constants, and the misspecified model omits the G,(x)

functions, both the coefficient of x and the constant term will be affected.

Lee is able to derive more specific results by further restricting the included variable to

be discrete. In that case

P(z=jlxy) _§ .
=0, +x0, + .. +Xx.0,
- P(Z = O]x’y) Jo 17, K=jg
9By e By

Now the misspecified model is



where
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IHM = . +xla, + ...+ X
P(y = 0]x) ‘o i

M
1+Z:exp(6j0 + xléj] + o xKBJ.K)

- In J=1
(— )
1 +j‘=£,1exp(6j0 rxd et X6 + Bij)
= O O i=1,....L

o=@ - G(k) + G(0)
- = - Gk + G(0) k=1,....,K
with
M
1+ Zexpéjo
G,(0) = In - J=1
- 1+Xexp(d, + B,)
. je1 Jo j
k=1,....K

M
1+Zexp(6j0 + 6jk)

G,(k) = In s
1+ Zexp(ﬁjo + 611- +B,)

Jj=1
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When the omitted variable‘ z 1s dichotomous, 1.e. M=1, and the included variable x is

discrete, the coefficient o of x, in the misspecified model will be

i) biased upward if either 3, > 0 and 9, > 0, or B, < 0 and 6, <0,

ii) biased downward if either B,>0and 3, <0, or B;<0and J, >0,

iii) unaffected if either 3, = 0 or §, = 0.

For the models estimated in this paper the true model is one of the weighted utility

models when « is not equal to zero. Both of the models represent same behavior, but it is easier

to consider the continuous time model:

Vv

b, - b(p + @d®) - byc

b, + by - bao® - b,c

In the misspecification « is restricted to equal zero and the travel time variance term is

omitted. Howeve;, the variance is continuous in [0,4], and therefore the results do not apply

directly. But because of the signs of the variables in regression

0 =8, +du +0,c+ Py
) =) =)

we can expect the estimated coefficients to be biased downwards.
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On the same theme, Yatchew and Griliches (1985) derived a bias formula for omitted

variables in a probit model:

3 by + B3,

B2a; + o

y

5 - b, + B3,

B0, + o

y

by, = The true parameter of included variables in the correctly specified model
=  The true parameter of the omitted variable
8o, = Parameters from a regression where the omitted variable is regressed on the included
variables and the choice variable
0,”= Variance of the error term when the omitted variable is regressed on the included and
choice var}ables

0= Variance of the error term of the true model

The authors elaborate: “The impact of omitting the variable z on the estimate of o and f3
is twofold. There is the usual effect, familiar from the linear case, where the bias in the
coefficient of the omitted variable equals the coefficient of the omitted variable times the

coefficient of the included variable from the regression of the omitted on the included variables.



Wx

49

In addition there is a rescaling effect determined by the denominators [.], so that even if the
omitted variable is uncorrelated with included variables, there is bias in the coefficients.”

The simulation models considered in this paper demonstrated some correlation between
the variables. If the logit model can be considered an approximation of the probit model, both .

of the above sources of bias are present.



