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Abstract. We discuss selected applications of statistical theory and practice
as motivated by and applied to environmental sciences. Included in the
presentation are illustrations on how the interaction between environmental
scientists and quantitative researchers has been used to enhance and further
l'earning in both areas, and how this interaction provides a source of further
challenges and growth for the statistical community.
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1. INTRODUCTION

“Measuring the environment is an awesome challenge, there are so many things to measure, and at
so many different times and places.” (Hunter, 1994, p.6)

As a discipline, statistics has been affected greatly by the other sciences with which it interacts.
In the environmental scichccs, this is particularly true. Links to problems in the atmospheric,
ecological, geological, toxicological, biomedical, and economié sciences, an& concerns in public
health, risk manégement‘, and social policy, have provided rich data for quantitative analyses,
collectively called environ)nez_‘rics. Advances in these subject-matter sciences have pfoduced data
analytic challenges that often motivate new statistical developments (Olkin et al., 1990). In turn,
these developments prompt the subject-matter researchers to re-evaluate their design and analytic
goals, leading to further data gathering. If communication is good between the disciplines, the
cycle repeats, with each scientific discipline growing and improving. Rather than view this as
simply a circular interaction, we prefer to call it a spiral, an upward spiral, where science and

society continue to benefit as the disciplines interact.

Walter W. Piegorsch and Don Edwards are Professors, Department of Statistics, University of South Carolina,
Columbia, South Carolina 29208. Eric P. Smith is Professor, Department of Statistics, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061-0439. Richard L. Smith is Professor, Department of
Statistics, University of North Carolina, Chapel Hill, North Carolina 27599-3260.



These events are perhaps best illustrated by the number of both edited and sole-authored books
appearing in the past few years that deal with quantitative methods and applications in the
environmental sciences; examples include Cressie (1993), Giinther (1997), Helsel and Hirsch
(1992), Hewitt (1992), Ott (1995), Pearson and Turton (1993), Rivoirard (1994), and Scheiner
and Gurevitch (1993). Herein, we survey recent progress in the field, with particular reference to
a series of edited compilations on environmetrics that have appeared since 1992: Walden and
Guttorp (1992), Barnett and Turkman (1993; 1994; 1997), Cothern and Ross (1994), and Patil
and Rao (1994). We use examples from these collections and rhany other fine works to help
illustrate modern interactions between the statistical and environmental sciences. These include
| studies of exceedance faniqling,_ atmospheric pollution and mortality analysis, space-time modeling
of acid rain, trend analysis, ecological monitoring and assessment, low-dose risk e;étrapolation,
and envjfonmental effects on animal populations. The examples are intended not only to illustrate
important advances in modern environmental statistics, but also to emphasize that many important
problems in these areas remain unsolved.

Before continuing, we acknowledge that it is impossible to survey all the excellent theoretical
and applied environmetric research presented in the sources noted above. Indeed, we were struck
.by the breadth of enVironmetﬁc problems illustrated in these works, and by how different editors
could portray so successfully a wide variety of viewpoints on modern environmental statistics.
Within this cbntext, our goal will be to highlight a selection of subject-matter problems (noted
above), and to accent the diversities of views that have motivated statistical/environmetric advances

for them.

2. EXTREME VALUES AND RARE EVENTS, WITH AN APPLICATION IN MODELING
ATMOSPHERIC OZONE

Many environmental problems concern extreme values of some measured environmental
variable. Traditional examples for which there is a long history of statistical work include floods
and sea levels; see, e.g., Tawn (1993). For example, one might seek to build‘ a sea wall to
withstand a “N-year ﬂood,”‘i.e., a water level which is exceeded in any one year with probability

/N, where N is some large number such as 50, 100 or 250. Associated applications occur when



studying reservoir levels (Anderson and Nadarajah, 1993) and rainfall data (Buishand, 1993).
Other, modern applications include:

* Extreme levels of tropospheric ozone. Ozone standards are based typically on the number of
exceedances of some measure of ozone severity (e.g., hourly maximum value or eight-hour
average) about some specified threshold such as 120 or 80 parts per billion (ppb). A question of
statistical interest involves monitoring whether the rate of exceedance of this level is increasing or
decreasing }with time. This could have a completely different answer from the question of whether
the mean ozone level is increasing or decreasing with time, but it is widely recognized that the
frequency of extreme ozone events is a more relevant indicator of health effects than the average
level of daily ozone. - ' e

* Extremes in meteorology. Apart from the intrinsic interest in extreme weather events, there is
also a wide interest in whether projected global warming will affect extreme (high orv low)
temperatures and rainfalls to a greater or lesser extent than the mean levels. This again leads to
éoﬁsideration of trends in extreme values. |

* Insurance. Part of the concern over eiivironmental catastrophes such as Hurricane Andrew or
" Mississippi River flooding has fo do with the effect of very:large claims on the financial solvency
of insurance companies. This has.focused attention on the statistical properties of insurance claims
to environmentally-caused damage. .

The traditional method of extreme value analysis popularized by Gumbel (1958) was the annual
maximumv method, in which one of the three classical types of extreme ‘va.lue distributions was
fitted to, say, the annual maxima of a river or sea level series. For many modern environmental
applications, however, traditional methods are too restrictive. For example, a typical ozone data
series consists of between 10 or 15 years of daily readings, and to base the statistical analysis on
annual maxima, or even monthly maxima, wastes valuable data. Moreover, many of the issues
associated with ozone have to do with the effects of daily meteorological variation on the observed
ozone levels, and this cannot be captured by studying only maxima over extended time periods.

The second major approach to extreme value analysis is based on exceedances over a high

threshold. Originally popularized by hydrologists in the 1970s as the peaks over threshold (POT)



method, this was subsequently refined to deal with covariates and trends in the data, and also to
cope with time-series dependence (Davison and Smith, 1990; Gomes, 1993). A variant is to
model the two-dimensional point process of éxceedance times and excess values over a high
threshold, using probabilistic characterizations of the limiting process. Statistical inferences based
on this approach were developed by Smith (1989), with an application to trends in tropospheric
ozone. Even this refinement does not cope very well with dependence in the data, however. For
instance, time-series dependence affecting the joint distribution of neighborinlg values in a single
series, or the dependence between different series such as wind and wave extremes, can introduce
dependencies that exceed the capabilities of these models. In recent years a number of further
Aimp__rovements have been developed, based on the joint distributions of dependcnt extremes (Coles
and Tawn, 1994; Smith et al., 1997b), but much additional work is needed.

To go into more details about these techniques, consider the simplest fdrm of:: -a threshold
problem: observe a sequence Y1,Y>,... of independent identically distributed (i.i.d.) data sampled
from some unknown distribution function F(y), and center interest on the upper tail behavior of F.
Let o = sup{y: F(y)<1}. (Notice that ®r can be infinite; the resulting theory holds whether the
endpoint of the distribution is finite or infinite.) An argument originally given by Pickands (1975)
suggests that exceedanées over a high threshold u can be modeled approximately 'by' the

géneralized Pareto distributioﬁ (GPD)

' ~1/8
Pr[Y; < u+x| Y1>.u]=1—(1+%) , x20,

+

for suitable values of ¢ (depending on «) and &. The simplest form of threshold-based analysis
ﬁtg the GPD to all exceedances of some high level u via, e.g., numerical maximum likelihood
(Davison and Smith, 1990). An important practical question in this case is selection of the
threshold u. This has been the focus of much theoretical discussion over the years — see, e.g.,
Smith (1987) — but in practice the selection is usually handled by a mixture of graphical methods
of assessing the GPD fit and ad hoc judgment (Davison and Smith, 1990).

One practical difficulty in applying this to, say, daily river levels, is that such series are always

correlated. The traditional method of dealing with correlation identifies clusters of dependent



~ extreme values, and applies the GPD analysis to the cluster maxima or peaks, rather than }to all the
threshold exceedances (hence the name, peaks over threshold). Asymptotic theory of extremes in
stationary sequences (Leadbetter et al., 1983; Hsing et al., 1988) justifies this approach by
showing that high-level exceedances do tend to form clusters and that the cluster maxima also
follow a GPD. An additional parameter, important for the asymptotic distribution of extreme
values from a stationary sequence, is the extremal index 6 (Leadbetter, 1983), which is most
simply defined by setting 8! as the limiting mean value of the number of exceedances per cluster.
Thus if one can identify appropriate clusters, the POT method is justified by asymptotic theory.
Difficulties with this approach do exist, however. For instance, it is unclear how to identify the
- clusters; see Smith and Weissman (1994) for a discussion of this problem-in connection with
estimating the extremal index. Or, often one needs to know the joint distribution of extreme values
within a cluster rather than just the distribution of the cluster maximum. For example, one such
quantity is the cumulative excess by all exceedances over the threshold (Anderson, 1994).

A second major concern in POT modeling is the treatment of covariates. Suppose Y; is the
observation taken on day i, and let the associated GPD parameters be denoted by o and &;. In
principle, one could let o; and &; depend in quite general ways on covariates, but a convenient
representation in practicé is to assume &; is some constant value &, and that

P
log(o) = X xijYj
j=1
where X;,...,Xjp are measured values of p covafiatés and ¥j,...,Yp are unknown parameters to be
estimated. |

A complete model must also take account of the frequency of crossing the threshold. One
approach, which in effect assumes we are observing the process in continuous time, models the
point process of times when the threshold is exceeded by a non-homogeneous Poisson process of
intensity A, (here, ¢ is time); log(A,) may depend linearly on covariates. An alternative discrete-
time approach is to let ¢; denote the probability of crossing the threshold on day i and to apply a

logistic regression model:



where By,...,8, is another set of unknown parameters. In practice, some of By,...,B, or Yi,..., Y,
may be offset to zero, thus allowing for different covariates in the models for o; and ¢;. All these
parameters may be estimated by joint maximum likelihood.

“An application of these methods is to tropospheric ozone measurements. Interest here is in
determining whether the rate of threshold exceedances has increased or decreased in response to
government regulatory policies, correcting for the confounding effects of meteorology. One can
apply the models above using both time and meteorological variables as covariates, and separate
studies by Smith and Huang (1994) and by Smith and Shively (1995) have indicated a clear
decrease in ozone exceedances when meteorological effects are removed. This mirrors an earlier
conclusiorv;py_Smith (1989) based on similar statistical methodology, though without taking
account of meteorology.

In the case of ozone it is widely assumed that day-to-day values are conditionally independent
given the meteorology. This is based on physical models for ozone formation which show that
ozone drops to very low levels during the night, and re-forms from fresh emissions the next day.
Unfortunately, it is unclear if the conditioﬁal independence assumption is valid here, and methods
. I}lavvebbegn devised based instead on bivariate extreme value theory.A Classical bivariate extreme

value théory is concerned with asymptotic expressions for the joint distribution of maxima from
two dependent random variables (Resnick, 1987). By analogy with the univariate theory, it is
possible to develop threshold models for extreme values from bivariate distributions; e.g., use
bivariate extreme value theory to characterize the joint‘distribution of successive values in a time
series (Smith et al., 1997b). Via such a model, Smith and Huang (1994) found that ozone values
on successive days were in fact dependeht even after adjusting for meteorology, and this has a
significant effect on the goodness of fit of the model for tail probabilities. (We give some other
illustrations of environmental modeling with ozone data in §6, below.)

The first two volumes by Barnett and Turkman (1993; 1994) include many examples of extreme
value methodology applied in many different areas: hydrology (Anderson and Nadarajah, 1993;
Gomes, 1993; Klemes, 1994), rainfall modeling (Buishand, 1993; Coles, 1994; Reed and

Stewart, 1994), air pollution (Lindgren et al., 1993), and sea levels (Tawn, 1993; Dixon and



Tawn, 1994, Tawn et al., 1994, Vrijling, 1994). These cover many more techniques than have
been reviewed here, and they provide an excellent overview of the broad range of modern theory

and applications of this methodology.

3. ENVIRONMENTAL EPIDEMIOLOGY AND THE DEBATE OVER PARTICULATE
MATTER

A major concern in modern environmental health science is the study of associations between
environmental pollutants and adverse health outcomes. As might be expected,‘th'ere are many
statistical difficulties associated with detection of such associations, and in this section we review
some of these. For illustrative purposes, we also direct attention to a particular area of current

controversy: the health effects of airborne particulate matter.

3.1 Disease clustering

Elliott et al. (1995) reviewed some general issues concerned with making inferences about
adverse health effects from observed associations. One of the earliest successes of environmental
statistics was of this form: John Snow’s studies of cholera in London in 1854 led him to suggest
that the cause of the problem was a particular water pump, years before there was an established
medical link between cholera and infected water. Elliott et al. remarked, however, that there are
very few modern instances where an observed “cluster” of disease cases has been followed by the
identification of a causal mechanism associating the cluster with a particular environmental health -
hazard. They cite many reasons why such studies are difficult, including

-+ availability of data — often only aggregated health effects data are available whereas a precise
analysis would require individual data;

~« difficulties of measuring a population in small regions;
* migration, i.e., when individuals who become infected in one location move to another;
* confounding, e.g., by socioeconomic status; and

* the post hoc nature of many of the studies.

Diggle (1990) and Diggle and Rowlingson (1994) have considered some of the more
methodological issues associated with detecting clusters in spatial point processes of disease.

Diggle et al. (1997) extended the approach to the modeling of spatially aggregated data. Earlier



Stone (1988) proposed a nonparametric test for identifying disease clusters which has been widely
cited.

In monitoring the effects of very widely spread pollutants, such as ozone or sulfur dioxide in the
atmosphere, it is usually impossible to associate the effect with specific sources. Hence,
procedures based on cluster detection are not appropriate. In such cases it is generally assumed
that comparisons of mortality or disease incidence with levels of pollution across different spatial
regions is subject to so much confounding with other environmental effects that no meaningful
conclusions can be drawn. Nevertheless some of the key studies currently cited in support of the
adverse health effects of particulate matter are of precisely this form; we return to this point below.

-In a wide-ranging review, Zidek (1997) cited these confounding difficulties as the reason for
concentrating on longitudinal studies — i.e., studies based on detecting associations in temporal
» ﬂuctuétions of both the health effects and pollutant data at a single site. Nevertheless, the
information available at any one location is usually limited so there is still a need for statistical
methods of combining data from different locations (cf. §10).

Zidek formally modeled the errors in variables problem in terms of a triple (Y,X,Xg) where Y is
a set of outcome variables, X the set of “true” covariates, and X a set of measured or “gauged”
covariates. Zidek highlighted the well-known result that if Y is regressed linearly on X, rather
than X, the regression coefficient is underestimated by an amount corresponding.zto the linear
regression coefficient of X; on X. Rather than try to apply a correction factor based on the latter
regression coefficient, Zidek advocated regressing Y on E[X I X,]. The distinction between the
two methods is especially relevant when extended to nonlinear regression functions, such as
E[Y | X]= eP'X. Written as log{E[Y | X]} = B’X, this log-linear model is very commonly
adopted for count data in Poisson regression.

In pursuit of concrete statistical methodology based on these ideas, Zidek assumed outcome
measures { Yy} where, for instance, Yy, is the number of deaths in the kth region or location on
day t. Each Yy depends on a vector of covariates Xy;, some components of which may be

measured in error. The latter feature is captured by assuming certain functions for the means and



covariances of Xy, where components which are measured exactly have all variances and
covariances equal to zero. Random location effects also are allowed.

Based on these associations, Zidek was able to compute approximate means and covariances of
Y, conditional on the observed X, and hence to apply quasi-likelihood methods to estimate the
unknown parameters of the model. The methodology assumes, of course, that it is possible to
characterize the joint distribution of the measured and unmeasured components of X. This may be
difficult in the presence of spatial heterogeneity in the measured covariates. To estimate the
required means and covariances, Zidek adapted a number of ideas from the Bayesian approach of

Le and Zidek (1992), Brown et al. (1994), and Le et al. (1997) on spatial prediction of a

- multidimensional variable.

As an illustration, Zidek reported ongoing work from a study of hospital admissions due to

respiratory problems in Ontario. He fitted a model of the form

E[Yi | Xie] = mysexp{ B’th}

where my is a multiplier (assumed known) which accounts for the effects of seasonality, day of
week, and vaﬁable population size between regions. The emphasis was on effects of the pollutants
ozone (O3) and nitrogen dioxide (NOy), but with maximum daily temperature and average daily
humidity also incorporated into the analysis as possible cliniatological confounders. Some
questions raised by the analysis, which also recur in other problems of this rié_ture, were: which
measure .of the pollutant variable to adopt, and how to deal with long-term trends? The first
question essentially boiled down to whether the current day’s value or that with a one- or two-day
Jag should be taken as the best predictor. After considering all three possibilities for both O3 and
NO,, the two-day lagged variable was adopted. The analysis was also performed separately for
each year to look for long-term trends. In this case the results appeared fairly consistent for O3 but
with wide year-to-year variations in the effect due to NO,.

In another paper from the same volume, McCready et al. (1997) studied the influence of road
traffic pollution on asthma. An ingenious feature of their approach was the use of a geographical
information system (GIS) to compute a “road traffic pollution index” (RTPI) based on all roads

within a fixed distance of a subject’s residence. They then correlated both (a) whether a subject



has ever had asthma, and (b) whether a subject is currently suffering from asthma, with the RTPI
and other factors such as cigarette smoking and gender. They found a strong association between
“ever had asthma” and RTPI, but not betweeh “current as’thma” and RTPI. However, there
seemed to be some inconsistencies in the data. For example, the number of “ever had asthma”
patients was smaller than the number of “current asthma” patients. Another curious result was
that, apparently, smoking was not a significant risk factor for asthma. Whatever the

inconsistencies in these particular results, the idea of using GIS in this way is undoubtedly an

excellent one and could be of considerable value in future studies of this nature.

3.2 PMyp

It has long been recognized that airborne particulate matter can have major public health impacts.- -

One of the most famous air pollution events of history, the December 1952 ‘London smog’ which
resulted in thousands of deaths, was caused primarily by very high levels of particulate matter.
This and similar incidents in other European countries and in the U.S. were a major stimulus for
new air pollution legislation, including the (U.S.) Clean Air Act of 1970. During the 1990s,
however, the debate has shifted, with claims that even low levels of particulates are responsible for
thousands of deaths. In the U.S. this has led to é highly charged political debate, with stringent
new air poilution standards being proposed despite opposition from iﬁdustry and from some
sec.tiovns‘ of the scientific community.

An example of the kind of work which underlies this controversy is given by Schwartz ('1 993).
Schwartz collected four yea.rs’ of daily mortality data as well as related data on meteorology from
Birmingham, AL. To this was added data on PM1o; ie., pérticulate matter of aerodynamic
diameter less than 10 pm. Schwartz peri’ormed a Poisson regression analysis of deaths against
seasonal and long-term trend effects, meteorology, and three-day averages of PMjo. He also
included corrections for overdispersion and serial correlation, though neither of these was a
significant factor in this particular data set. On the basis of these analyses, Schwartz concluded
that a unit pg/m3 rise in PM,g would increasé the rate of deaths in the elderly population by about

0.08%. Although this seems a modest enough effect, when combined with similar results from



studies in other cities, and converted to deaths across the whole nation, it has led to claims that up
to 60,000 deaths per year in the U.S. may be attributed to elevated levels of particulate matter.
Subsequent studies on the same or similar data sets have been brought forth; see Samet et al.
(1995; 1997), or a number of analyses performed originally at the U.S. National Institute of
Statistical Sciences (Styer et al., 1995; Smith et al., 1997a; Smith et al., 1998). These various
studies have identified a number of important quantitative concerns, including:
s Seasonal variation and trends. Whatever effects may be attributed to either meteorology or air
pollution, there always remains a substantial seasonal component of variation. In addition, there

are irregular trends. As an example, Fig. 1 shows weekly total deaths in Birmingham, AL for four

years, together with a smoothed trend. The seasonal effect is very strong but also irregular; e.g., .-

during each of the winters of 1985-1986 and 1987-1988 thepeak deaths occurred in late February,
but in 1986-1987 they occurred at the end of December. A possible approach for modeling the
trend component involves some form of spline or LOESS smoother employed in a nonparametric or
genera]ized additive model.

. ACAhboice of nteteb?ological variable.f. Meteorology plays an important role in studies of air
pollution because of its role as a possible confounding factor. However, the interpretation of
different meteorological variables is open to question. For example, wind speed is sometimes
found to be correlated with increased death rates, but it is open to question whether this is a
surrogate for particulates or vice versa (high winds tend to keep particles suspended). Also, most
studies use temperature and humidity as the main meteorological variables of interest, the latter
measured either by dewpoint or specific humidity. Implementation varies, however. For exarnple,
Schwartz’ (1993) main model included temperature but not humidity, whereas Smith et al.
(1997a) found for the same data set that humidity was an important factor. Sensitivity of the
estimated PM effect to the assumed choice of meteorological variables remains one of the key
questions in this area.

* Choice of exposure measure. Various combinations of current and lagged days of particulate
matter have been used to define an appropriate measure of exposure. For example, Schwartz

(1993) used three-day averages of PM excluding the current day in his study of Birmingham,
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AL, whereas Styer et al. (1995) in a similar study of data from Chicago, IL used three-day
averages including the current day. Smith et al. (1998) pointed out that the two measures cannot
be interchanged without losing statistical significance. Other studies have used anything from
single-day values to five-day averages. The selection effect created by such differing exposure
measures has never been quantified, but noﬁetheless must be taken into account in the assessment
of any study claiming a significant particulates-mortality relationship.

» Existence of a threshold. Schwartz and Marcué (1990), in a re-analysis of historical data from
London in the 1960s, questioned the existence of a particulate threshold — in other words, a level
below which there is no discernible effect — to determine whether current standards provide
sufficient public health protection. Subsequent papers have generally supported the claim that there
is no such threshold, but in most cases without any formal test. Smith ez al. (l9§8> proposed a
very simple test based 6n a particulate matter effect of the form B(P — Py), where P is the level of
particulate matter calculated as a three-day average (or whatever exposure measure is under study),
Py is a threshold level, and B the regression coefficient. By fitting a linear model including this
term for a sequence of values of Py, it is possible to compute a proﬁle likelihood function for Py.
When .this was applied to the Biﬁrﬁngham, AL daté, it was found that therevwas little evidence to
dis:criminate' betweteni any two values of Py below abéut 80 p.g/m3; the bulk of the evidence for a
PM, g efféct comes from data above this valﬁe. On the other hand, a sinﬁlar\analysis: for Chicago,
IL led to the conclusion that any threshold must be close to zero, iﬁ other words, supporting the
lack of any measuréble threshold. There appeérs to be a need to conduct systematic tests of this
nature with other data series. |

* Mortality displacement (harvesting). "Some studies have correlated daily deaths with PMg
levels in order to identify an association between the two. However, such efforts do not resolve
the question of whether the individuals dying are those who were already very sick and would
have died anyway, or whéther they were otherwise healthy. The first scenario is known as
mortality displacement, or alternatively, the harvesting effect. Harvesting is one of the major
uncertainties associated with the interpretation of air pollution mortality data. In fact, the evidence

for the existence of a harvesting effect is indirect, and such results that have been obtained must be
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regarded as extremely tentative. To aid with this problem, Smith et al. (1998) proposed a
compartment-type model, dividing the population into “healthy” and “frail” subsets and assuming
that most of the deaths occur among the latter group. In principle this may be treated as a latent
variable problem, where the size of the frail population may be estimated using Markov chain
Monte Carlo methods. The results indicated that the frail population size may be finite and indeed
quite small. This would point to a strong harvesting effect, but there is great uncertainty about this
conclusioﬁ.

* Influence of different pollutants. In their analysis of particulate data from Philadelphia, PA,
Samet et al. (1997) considered the effect of total suspended particulates (in place of PM;) along
- with other major airborne pollutants. These were: ozone, sulfur dioxide (SO,), NO, and carbon
dioxide (CO). In one model with five covariates representing the five pollutants, all were
statistically signiﬁcant. Curiously, one coefficient, that of NO;, was negative. Samet et al.
attributed this to multicollinearity among the covariates rather than the implausible conclusion that
NO; has a protective effect. In a similar but more limited study of data from Chicago, Smith et al.
(1998) included PMlo, ozone, and SO; in the same equation, and achieved similar results: all
three pollutants contributed significantly, but now the coefficient of SO, was negative. Such
ambiguities are hardly surprising, since it is known that there is substantial chemical coupling
between the different pollutants (Meng et al., 1997). Our own conclusion fr6m these analyses is
that while thére is indeed evidence that air pollution in general has adversé health impacts, it can be

very difficult to separate out a specific effect due to particulate matter.

4. ADAPTIVE SAMPLING FOR POLLUTION “HOT SPOTS”

The issue of clustering in environmetric analyses extends beyond the epidemiological studies
noted in §3. Other examples where clustering plays a role include: endangered animal or plant
populations, geophysical investigations in which mineral ores cluster unevenly, or fisheries
research where schools of fish often cluster together tightly. A particularly important concern in

environmental pollution studies results when chemical contamination occurs in “hot spots”
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separated by uncontaminated expanses. In this section, we adopt the pollutant setting as a
backdrop to illustrate briefly this issue of environmental “hot-spots.” |

Suppose the primary interest in such a setting lies in estimating the population mean
concentration of the chemical pollutant; we will also be interested in locating as many of the “hot
spots” as pdssible, and perhaps quantifying these individually. A traditional approach to sampling
might select a simple random or (random-start) systematic sample of sites; the sample average then
provides an unbiased estimate of the population average, and the sample could provide a contour
map that identifies some pollution peaks. A majority of the measurements will record a zero level

of pollution, however, and there is a good chance that some clusters will be overlooked. Although

the sample mean is unbiased as an estimator of the population mean, it will have a large variance; in

addition, the contour map will have little accuracy in the areas of high concentration, which are of
particular interest.

Adaptive sampling provides a sensible alternative to this situation. In adaptive sampling, the
direction taken by the sampling procedure at any stage is determined at least in part by the
information that has been obtained in the previous sampling. Such a strategy might involve the
following: first, take a random sample of a given size from the region of interest; if any of the

selected units show contamination, then return and sample every unit neighboring a contaminated

unit. If any neighboring units show contamination, sample their neighboring units, etc., until a |

clean boundary is established for each discovered cluster. Figure 2 illustrates this strategy in the
case of a 400-unit population and é simple random sample of size 20. After initial sampling
'(Figure 2a), the 4 nearest neighbors of any contaminated sample unit are also inspected (Figure
2b). An obvious shortcoming to such a procedure is that the final sample size is not known in
advance; the advantages in terms of greater accuracy for estimating the hot spots can far outweigh
this drawback, though. |

This method of sampling will produce biased estimates of population parameters if the resulting
data are naively analyzed. To avoid this, Seber and Thompson (1994) outline a sampling theory
and estimation methodology applicable to a wide range of variants on the general adaptive sampling

scheme. The classical Horvitz-Thompson or Hansen-Hurwitz estimators (see Stehman and



Overton, 1994) can be modified to obtain unbiased estimators of the unknown population mean.
These estimators, along with the mean of the initial sample, are unbiased, but do not necessarily
possess minimum variance. To improve them, the Rao-Blackwell theorem may be applied. Seber
and Thompson (1994) provide further details, and also outline useful strategies for selecting the

initial sample in clusters, stratification, and alternative choices of the criterion for further sampling.

5. TREND ANALYSIS

An effect often studied in environmental science is the analysis of trend in some environmental

phenomenon over time. This often leads to adjustments for autoregressive effects or other

spatial/temporal correlations in the data, and this is another important area of environmetric trend |

analysis (Esterby, 1996). We noted some examples of this in §2, above. We give here two

additional illustrations: assessing global warming and monitoring ecological systems.

5.1 Estimation of vglobal and regional trends

An important, ongoing concern that incorporates trend analysis is assessing whether global
Warming is occurring in our environment. Specifically, has average ambient temperature increased
in the past 50-200. years as the pace of industrial and economic development has increased
worldwide? Data representing such an effect possess some form of time-dependence and possible
autocorrelation, calling for a time series analysis. Since the effect may involve very small relative
increases over an extended period, however, complementary issues of long-range dependence
enter info the analysis. For example, continuing on works by Bloomfield and Nychka
(Bloomfield, 1992; Bloomfield and Nychlga, 1992), Smith (1993) illustrated a method of analysis
that incorporates long-range dependence into the trend assessment using simple linear forms.
Specifically, let {Y,...,Yy} denote a sample of N observations from a stationary time series with

mean zero and autocovariance ¥ = E.[YnYmk] . Take the spectral density as

:’:_“ n€Xp{—~inw}
o) = Y v;np in

over -t < ® < 7. This is estimable at any frequency ® via the periodigram

2 2 ~Ton-k
o) = 2 {20 Y2 + 25 T Y Y macos(ka) | :
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Long-range dependence is incorporated via the relationship f(®) =~ bw!-24 as wd0, for constants
b> 0 and He (% , 1). To test for a linear trend, use the trend variable x, =n - %(N+1), where X,
is given zero mean for simplicity. Then, the ordinary least squares estimator of rate of increase
takes the well-known form ﬁ = ZLIYan/Z';:an. A simple approximation for the variance of B

is found as

36 br (1-H) 2H-4
H(1+H) T(2H) sin(n-nH) '

Var[p] =

If b and H are unknown, these must be estimated from the data. Applied to environmental
warming data over a variety of sites in central England and the continental United States, Smith
(1993) estimated the temperature increaseé to be between 0.27°C and 0.35°C per year. Standard
“errors of these estimators ranged between about 0.19 and 0.31, however, sugg'esting»va marginal,
but not strongly-significant increase in long-range temperatures. Smith noted that uncertainties
with the assumption of a simple linear trend, effects of estimating b and H on the standard errors,
and other sensitivities with selected model parameters make these inferences at best preliminary;
nonetheless, methods taking into account long-range dependence can provide improvements over
simpler autoregressive analyses, and further research into their use is called for, perhaps
incorporating more complex polynomials in the trend (Yajima, 1991), including a comprehensive
spatial model to account for differences across geographic areas (Solow, 1994), cen}cring on the
extremal properties of the distributions (Smith; 1989), or joint estimation of the long range and
regression features (Smith and Chen, 1996). |
Of course, this application has focused largely on the dcteétion of a linear trend, and this need
not be the main question of concern to climatologists. It is an agreed, empirical fact that global
temperatures have been rising over the past 150 years, and some climatologists debate the
usefulness of testing its statistical significance. Those scientists are much more concerned with
distinguishing among different causes of global warming. In this connection, there has been much
research into the relative effects of greenhouse gases, sulfate aerosols, variations in solar flux, and
other influences. Numerical models for the earth’s climate produce conjectured “signals” for each

of these effects, and the current task is to determine to what extent each of these signals is present

in the observed temperature record. Several specific methods have been developed, including the



pattern correlation statistics of Santer ef al. (1996) and the optimal fingerprinting technique of
Hegerl et al. (1996). Both of these methods ultimately depend on testing for the presence of a
trend of known functional form in a multivariate time series, which from a statistical point of view

is a generalization of the problem of detecting a linear trend in the univariate case.

5.2 Monitoring status and trends: EMAP

Estimation of énvironrnental trends also raises important questions on proper technique and bias
reduction when sampling environmental data. Driven in part by the need to assess national
legislation (such as the U.S. Clean Water Act), there has been considerable emphaéis on the spatial
status of and trends in pollutant concentrations. One effort which has received much statistical
attention is the Environmental Monitoring and Assessment Program (EMAP) of the U.S.

Environmental Protection Agency. Designed to describe status and trends of ecological indicators,

the sampling program is based on a sophisticated, systematic, hexagonal grid system (Stehman and

Overton, 1994). Within this context, an important focus is on the ability to evaluate both status
and trends under the EMAP sampling scheme.

For the purposes of optimal sampling, the status and trend outcomes conflict for resources. In
evaluating status, the emphasis is on sampling the regions over which an inference is to be made.
Samples over time would use different sites. Trend testing and estimation involve the use of the
same sites rather than different sites. A practical compromise involves designs that vary some of
the sites for estimating status but fix some sites for the estimation of trends. One design uses a
rotating panel (Duncan and Kalton, 1987) in which a series of sites are monitored for several
consecutive years, then replaced by another randomly selected site. These are augmented by
another set of sites that is monitored at all times. Another approach is to use an augmented, serially
alternating design in which some sites are monitored on each sampling occasion — e.g., each
year — while others are monitored using a wider interval — e.g., every four years. Urquhardt ez

al. (1993) studied the power of tests for trend and status under these two sampling schemes. They

proposed the model
Yik = Sik + Tj + &k
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where Yijk is the measurement made at the ith set of sites (i=1,2,...,s) for year j (j=1,2,...,t) at
the kth site within the ith set of sites (k=1,2,..., ny), Si is the site effect, Tj is the year effect, and
€jjk is a random error term. Assuming simple temporal autocorrelation, Urquhardt ef al. evaluated
the designs in terms of the power of test of trend/status and the precision of the designs. Here, the
augmented design appeared useful for the initial years of the study but became less important over
time. Otherwise, the two designs exhibited fairly similar power and precision. Bringing into
consideration additional characteristics such as the total number of sites visited suggested,
however, that the serially alternating design may in fact be more useful in practice. -

In principle, this model has the capacity to account for other, important statistical features, such
as substantial gaps in the data (i.e., missing data), or random effects in Sjk and/or Tj. For
example, van Leeuwen et al. (1996) discussed the problem of testing for trend wheﬁ the trend is
viewed as a fixed effect, but time is viewed as random. Their results led to exact tests for testing
various hypotheses, under a variety of spatial and temporal correlation structures. Further sfudy is.
needc;d, however, to determine how such complications affect the model’s ability to make

comparisons between trends at different sites.

6. SPACE-TIME MODELING, WITH APPLICATIONS TO ATMOSPHERIC POLLUTION
AND ACID RAIN

As noted throughout the preceding sections, the analysis of environmental time series data at a
fixed point in space has received generous attention in the statistics literature; likewise, the analysis
of spatial patterns at any fixed point in time has undergone extensive, albeit more recent,
development. However, developing useful rhethods for joint spatio-temporal analysis remains
one of the great challenges facing statistical researchers (Cressie, 1993, Ch. 1). Driven in part by
the demand for quantitative methods for large-scale envifonmental monitoring, spatio-temporal
modeling has seen considerable activity in the past decade, and the approaches put forth are as
diverse as the data they address. Solow (1994) and Guttorp and Sampson (1994) discuss early
work in this and related areas. In this section, we borrow from their reviews, and supplement with
discussions of additional work published thereafter to discuss these issues in more depth. A

number of treatments deserve more discussion than space considerations allow, however, and we
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refer the reader to the early approaches of Eynon and Switzer (1983), Egbert and Lettenmeier
(1986), and Eynon (1988). For more recent works, the interested reader may study also the
Bayesian approach of Handcock and Wallis (1994), the separate mean and scale approach of Hgst

et al. (1995), and the moving-cylinder models of Haas (1995).

Notation for spatio-temporal modeling is difficult to coordinate over the array of different

models seen in this area; one common aspect we employ is that the response of interest at time ¢
and location s will be denoted Z(z,s). In most cases, a single Z(#,s)) = Z;; is obtained (perhaps
after some imputation or averaging) at each combination of n regularly spaced.,time points f,
i=1,2,...n, and p locations sj, j=1,2,...p.

For example, an early work by Bloomfield ez al. (1983) studied global tfends in total ozone
(measured in a column extending from the earth’s surface to the top of the atmosphere) via a
frequency domain approach. Total ozone has been measured monthly at 36 locations in 7 regions
worldwide since the late 1950s. If Z;x denotes th_e_total ozone at location k in region j at time i,

the basic model takes again a log-linear form:

log(Zijx) = MWijk + & + mMjj + Eijk

where Lk is the mean, a; is a random component common to all stations, mj; is a random
component common to all stations within region j, and g;jx is a station-specific random error. The
random componénts are assumed to be mean-zero, stationary, with no cross-correlations among
them. The regional effects m;; are assumed to have the same spectra, as are the errors g within a
region. The mean term is modeled as Wijk = hj + Vjx, where h; is a temporal trend component and
Vjk is a spatial component independent of time. The data were deseasonalized by subtracting the
monthly location averagés, allowing the terms Vjx to vanish in the subsequgnt analysis. The global
temporal trend h; was assumed initially to satisfy h; = Bm;, where § is an unknown constant to be
estimated and m; is a depletion curve predicted by a photochemical model; testing for B=1 assesses
the validity of this model. Bloomfield et al. (1983) also considered extensions to include solar
effects and effects due to atmospheric nuclear testing.

Under the Bloomfield et al. model the discrete Fourier transform of the site-specific series,

denoted by djj(f) (-1/2 < f < 1/2), decomposed into terms as follows (using obvious notation):
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| dijk(f) = dn(f) + da(f) + dn(f) + de(f).

Bloomfield et al. used variance terms within regions and between regions to estimate dg and d;
using structural model(s) for h; and two kinds of assumptions on the «; (a first-order
autoregressive process and' a process with a self-similar spectrum) they were able to estimate d.
They fit thevir models via maximum likelihood in the frequency domain. The results showed no
strong evidence of a trend in global ozone in the 1970s: the trend coefficient was estimated as B =
0.1% with a standard error of 0.55%. The associated 95% confidence interval for B did contain
the value B=1.

More recently, Niu and Tiao (1995) used extensive data from the total 6zone mapping
spectrometer (TOMS) aboard the NIMBUS-7 satellite, which has been collecting daily data since
1978. They reduced the data to monthly averages for the period 1979-1989 on 1° latitude by 1.25°
longitude pixels spanning the globe, and took advantage of the regular spatial grid of sample points

to model the average ozone observation at each latitude at time # and longitude j as

Zij = U+ Bjti + Tj(l‘i) + &jj.
Here, Tj(+) is a seasonal cyclic term — a weighted sum of sine functions with 12- and 6-month
periods — and g is a space-time autoregressive moving-average (STARMA) process (ClLiff et al.,

1975). Niu and Tiao settled on a STAR(2,1) model for most latitudes:

gjj = dlei.j-l + 018541 + Q28 j-2 + 028 ju2 + PE_j + Uy - (6.1)
In this model the-a- and 8-unknowns are spatial autoregressive parameters modeling correlations
to the west and east of longitude j (respectively), and ¢ specifies a first-order autoregressive
parameter for correlation in time. The uj; were assumed uncorrelated, with variances allowed to
| depend on month. Niu and Tiao used theée models to estimate the trend in ozone by latitude and
1ongitudé. Their results included a contour plot showing negligible ozone trends in equatorial
latitudes, but ;Nith increasingly negative and statistically significant trends in total ozone depletion
moving towards the poles. Their contours showed a decline for the décade on the order of 5% at

the north pole and 10% at the south pole.
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A very different atmospheric contaminant model was given by Loader and Switzer (1992), who
analyzed the logarithms of sulfate concentration in rainfall at 19 sites in the eastern and midwestern

United States for 24 monthly observations, 1982-1983:

Z(ts) = L+ T®) + S(s) +&(t,s)
where T(-) and S(-) are smooth unknown functions, and €(t,s) is a zero-mean noise, uncorrelated
in time at any given site s, but with a possibly nonstationary spatial covariance structure X, at any
fixed time. The functions T(:) and S(-) were estimated using a LOESS smoother on the marginal
means of the Zs. Loader and Switzer derived the variance of their estifnate of E(Z\) in terms of the
covariance structure of € and used it to improve the estimated variance of predictions. The sample
—‘ épatial covariance matrix S from the residuals of the fit were smoothed via an empirical Bayes
approach: Aninverted-Wishart density was assumed as a prior for the true covariance matrix X,
with prior covariance matrix C and degrees of freedom m. C was chosen by fitting an isotropic
exponential semivariogram model to the residuals. The parametcr m was chosen via empirical
Bayes estimation, using information in the marginal density of S. As noted by Guttorp and
Sampson (1994), the empirical Bayes enhancement does not affect point predictions for Z(t,s),
which remain what they would be under the isotropic exponential semivariogram model used to
estimate C. The estimated variances of the predicted values are affected by the empirical Bayes
approach, however. |

Loader and Switzer examined their models via cross vaiidation. Their analysis showed that the
prediction variance formulas pcrformed well. They noted that the estimator for spatial signal S(s)
was most likely oversmoothed, but that it might be unwise to reduce the smoothing parameter with
so few sites.

Oehlert (1993) also modeled log sulfate concentrations in eastern North America, combining
information from 4 modeling networks (the APIOS-C, MAP3S, NADP/NTN, and UAPSP
networks), for a total of 94 staﬁons over the five-year span 1982-1986. Most of his analysis was
based on yearly precipitation-weighted means. He first estimated thé five-year mean and linear
trend in log concentrations for all stations by ordinary least squares. He reported results only for

the five-year overall means, however, citing a need for longer series to adequately address trends.
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His spatial approach tiled eastern North America into 1° latitude by 1.5° longitude cells. If a;

denotes the estimate of five-year mean for station j, this assumes

E(aj) = Qk() + Vu
where ay) denotes the true mean of the cell in which station j resides and v, is an adjustment term
for network u, u=1,2,3 (relative to the NADP/NTN network). Oehlert incorporated‘ the
assumption of similarity between neighboring cells via a partially improper prior on «, with mean

vector 0 and inverse covariance matrix Ao (A’A). A has arow for every pair of adjacent cells and a

column for every cell; it is all zeros except that each row has entries of 1 and -1 for the associated

cell pair coefficients. (This formulation could also be viewed as a discrete, two-dimensional first-
order smoothing spline.) Oehlert placed independent, zero-mean normal priors on. the network
bias terms. The prior variances were set to 1/Ay. The resulting posterior distribution for (e,v)

was Normal, with mean vector
1

) MAA 0 ) »
WZ, W + WX ‘a
0 A
-and covariance matrix
-1
) AJA'A 0O
W W + ,
. |

where W is the matrix relating each a; to its expected value in terms of the parameters o) and vy,
and 3, is the covariance matrix (to be determined) of a.

Oehlert used a combination of historical information, indirect generalized cross-validation
(IGCV, see Altman, 1990), and sensitivity analysis to determine values of unknown parameters
such as Aq, Ay, and unknowns in X,. The terms in this latter matrix were assumed to have a
component due to site-specific effects (which could be estimated since several cells had multiple
sites), a first-order moving-average correlation structure across years within sites (with correlation
on the order of 0.01, citing historical sulfate studies), a long-term, large-scale temporal correlation

structure similar to ARMA(1,1) models reported for precipitation, and a spatial covariance modeled

in one of three ways: (1) an equal variance/equal covariance model; (2) a kernel-smoothing
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approach with variances and covariances taken as a function of distances between sites, and
smoothing controlled by a parameter A; or (3) an isotropic, exponential semivariogram structure.

The IGCV analysis showed essentially identical fits for the first two models, with somewhat
less satisfactory fits for the isotropic exponential semivariogram. Due to its simplicity, Oehlert
adopted the equal variance/equal covariance model for interpretational purposes. It is worth
noting, however, that the kernel covariances showed distinct but weak anisotropy with peak
correlations at angle approximately 0.37, roughly parallel to dominant high-altitude wind vectors in
the region; anisotropy of this sort was also reported for this region (using hydrogen ions and
winter data) by Guttorp and Sampson (1994), employing a deformation approach (described
below) to modeling heterogeneous covariance functions. Under the equal variance/equal
covariance model, the station—si:eciﬁc variance was clearly the largest important component, but
this effect would be expected to decrease with regional averaging. There were few, if any,
network differences; a suggestion of an effect was evidenced for the APIOS-C network, but this
could have been attributable to partial confounding with spatial structure since the APIOS-C sites
had little overlap in space with sites from the other networks.

The approaches of Loader and Switzer (1992) and Oehlert (1993) feature attempts to model
anisotropy and nonstationarity in the covariance structure of the data. An important general
approach to this problem, known as the deformation approach, has Been the subject of
considerable devel‘oprnen't and applieation to atmospheric data. The summary provided here is
taken from Meiring et al. (1997); in recent years, the methodology has been applied in analyses of
solar radiation (Sampson and Guttorp, 1.99_2), acid precipitation (Guttorp et al., 1992; Guttorp and
Sampson, 1994), and tropospheric ozone (Guttorp et al., 1994), among others.

The fundamental idea underlying the deformatioﬁ approach is to compute a deformation of the
geographic plane so that the spatial covariance structure can be considered stationary and isotropic
in terms of a new spatial coordinate system. For simplicity of presentation, assume independence
in time. The spatial dispersion function, deﬁned as D(s,u) = Var[Z(t,s) — Z(t,u)] for each pair of

spatial locations (s,u), is modeled as

D(s,u) = v |[£(s) - f) ||



where f(-) represents a smooth (bijective) transformation of the original geographic coordinate
system (the “G-space”) to the new coordinate system (the “D-space”, which has been of dimension
2 and referred to as the “D-plane” in applications to date), and Y, represents an isotropic variogram
function with parameters 8. The transformation is accomplished via a pair of thin-plate splines
(Wahba, 1990), with transformation and semivariogram parametefs chosen to minimize the

objective criterion

~ 12
Cofa =2 dij = dj di'] + M(BEP)

iwi L i
where dj; and aij dehote the empirical and fitted dispersions, respectively, between sample sites s;
and sj, A is a smoothing parameter, and BEP denotes a bending energy penalty for the
transformation. This penalty is a quadratic form in the D-plane coordinates. The second term
above controls the smoothness of the transformation; small A may result in a “folded” D-plane
representation which is generally uninterpretable, while very large A results in a stationary or
homogeneous model with elliptical anisotropy. Meiring et al. (1997) demonstrated effects of
various choices of A using both simulated and real data. Visual interpretation of the deformation
mapping is Vaccomplished via biorthogonal gﬁds, as discussed by Guttorp and Sampson (1994).
Amongst other applications, these spatial correlation models may then be used in the estimation of

the values of a spatio-temporal process at unmonitored locations.

7. ENVIRQNMENTAL RISK ASSESSMENT VIA LABORATORY EXPERIMENTATION

Another important area of environmetric research is that of quantitative risk assessment. In its
simplest environmental characterization, risk assessment concerns the identification of potential
risks to public health from hazardous chernicals,Aradiation, etc. (Portier, 1989). Data often come
from bioassays on small mammals or other bioldgical systemé, or epidemiolpgical analyses of

" human populations at risk. (Wé illustrated an example of this issue with human populations in the
discussion on atmospheric particulates — see §3.) A major quantitative component of»such studies
is statistical characterization of the stimulus/dose-response of the biological organisms to the
hazardous agent, and from this, estimation of possible human risks based on low dose

extrapolation from the dose-response data.
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A full overview of the many quantitative problems in environmental risk assessment could (and
has!) covered entire journal issues and even full textbooks; hence our discussion here is necessarily
incomplete. We hopé, however, to highlight some open areas of research; for more in-depth
surveys, see the early review by Krewski and Brown (1981), special journal issues as introduced,
e.g., by Redmond (1991) or Bailar (1988), or some of the more recent Works in the literature,
such as Bailer and Portier (1994) or Hallenbeck (1993), among many others.

When conducting predictive or environmental toxicity studies that generate data based on a dose-
response, it is common for the dose levels to be taken at fairly high values. This is true primarily
for laboratory animal experiments conducted as screens for certain toxic effects (Haseman, 1984)
due to the relatively short time span available for the animals to exhibit the toxicity. It is a long-
recognized concern in quantitative risk assessment, however, that the lack 6f observed low-dose
information often results in suspect inferences (Crump and Howe, 1985)

Historically, to estimate low-dose effects regulators have used the lowest or least potent
exposure to a chemical at which toxicity is observed. This is called the lowest-observed-effect
level (LOEL). Lying ostensibly below the LOEL is the highest concentration where no toxicity is
observed: the no-observed-effect level (NOEL). Extensions include no-observed-adverse-effect
levels (NOAELSs), lowest-observed-adverse-effect levels (LOAELS), etc. These quantities are
determined statistically by comparing each concentration’s observed respéﬁse with the zero-
concentration control group: e.g., the NOAEL can be estimated as the highest concentration at
which no significant increase in response is seen over the control, after adjusting for the multiple
comparisons. Unfortunately, observed effect level estimation is tied critically to the spacing of the
doses chosen for each study. If the dose grid is not fine enough, the resulting observed effect level
may be only a crude estimate.

To illustrate, consider the following data, which are proportions of mice exhibiting bladder
tumors after exposure to sodium saccharin, as discussed by Kodell and Park (1995). At saccharin
exposures of 0.01, 0.10, 1.0, 5.0, and 7.5% of diet, 0/25, 0/27, 0/27, 1/25, and 7/29 mice
exhibited tumors, respectively. To determine the NOAEL, we perform a series of one-sided Fisher

exact tests comparing each exposure group with the control, and applying a Bonferroni adjustment
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to the P-values. (For the saccharin data, we use the response at d = 0.01% to approximate the
control response.) At a = 0.05, and adjusting for multiplicity, the NOAEL for these data is the
exposure at 5.0%. Clearly, however, this is a relatively crude measure of the chemical’s potential
toxic risk, and many questions regarding it remain. For instance, is the observed response at this
exposure truly different from the control (or is the lack of significahce a function “of the small
sample size), would higher exposures of 6 or 7% produce essentially the same response, or, for
that matter, is the underlying response at 1% also essentially similar to that at 5%? If the risk
analyst were interested in specifying some form of “safe dose” estimate for use in public health
management — e.g., the dose at which a very small response rate of, say, 10~ is incurred — is
the NOAEL even useful in this case? Here, since the NOAEL corresponds to a response rate well
above 10‘6, it is not particularly useful for “safe dose” estimation. \:

Common modifications of the NOAEL include downward adjustment by an ;;uhcértajnty
factor” — say, dividing by 10 — to account for incertitude in the estimation process. The result is
knoWn as a reference dose, or RfD (Cicmanec et al., 1996’), but clearly suffers from the same
limitations as the NOEAL on which it is based. Some of these questions could be addressed with
more advanced statistical tools, such as confidence intervals for NOAEL or NOEL (Schoenfeld,
1986), but these may not overcome the fundamental austerity of information the measure presents.
In general, observed effect levels are viewed as poor summary statistics for modem;fisk analysis
(van der Hoeven, 1997).

Unfortunately, numerous gaps remain in methodological understanding and implementation of
low-dose ektrapolations when used to support quantitative risk assessments (Freedman and Zeisel,
1988). In order to develop more realistic risk assessment formulations, complex models are under
continuing development. Fof example, in cancer risk assessment multi-stage modeling of the
carcinogenic process has received extensive interest, going back to an original formulation of
Armitage and Doll (1954). The basic multi-stage model assumes that after time ¢ of exposure to a
dése d of some hazardous agent, a group of normal cells acquire a mutation that leads to
unregulated growth (cancer) over a series of k progressive stages. This leads to a probability

function for tumor development of the form P(d,r) = 1 - exp{-Ctk(qo + q1d + = + qd®)},
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where C and g; 2 0 are unknown constants. (Other link functions are possible, such as the logistic
form P (d,t) = [1+exp{—Bo— P1d - - —=Bxd*)}1"!. These do not share a mechanistic
motivation available with the multi-stage model, however.) At k=1, the multi-stage form
corresponds to a simple one-hit model of carcinogenesis (Hoel, 1985). Notice that the one-hit
form 1 - exp{~Ct(qo + q14)} is approximately linear in d as d—0; this feature makes it a popular
first approximation for many low-dose problems.

For example, consider the saccharin data discussed above (for simplicity, set = C = 1).
Applying the one-hit model, we find the maximum likelihood prediction equatioﬁ to be P(d, )=
1 — exp{0.1946 — 0.0512d}. From this, greater flexibility in, e.g., safe dose estimation is
available than, say, the NOAEL. For example, setting P=10" and solving the prediction
equation for d yields a safe dose estimate of dsp = 3.80%. This is clearly below the NOAEL of
5% seen above. Improvements in the estimation process are also possible; e.g., higher-order
linear predictors or low-dose linear approximations can improve precision in the model fit, or
confidence limits on the slope parameters can add a conservative property to the safe dose estimates
(Kodell and Park, 1995).

Further development of the multi-stage model has incorporated multi-step/multi-stage biological
processes such as cellular proliferation and transformation, in vivo pharmacokinetics and
pharmacodynamics of the hazardous agent, and complex features of dose-relaiéd mutagenesis. A
popular variation is due to Moolgavkar and colleagues (Moolgavkar and Venzon, 1979; Luebeck
and Moolgavkar, 1996), where two mutations are assumed necessary for a normal cell to
transform into a cancerous one. Various levels of initiation and promotion of the cancer are
accolmmodated in this model, although further study of the two-mutation assumption, and
stability/interpretation of‘ statistical estimates for the model parameters remain open areas of study

(Portier and Kopp-Schneider, 1991; Little, 1995).
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8. ECOLOGICAL MODELING: HOW ENVIRONMENTAL FACTORS AFFECT ANIMAL
POPULATIONS

8.1 Modeling salmon populations in the San Joaquin River

With many environmental data sets, statistical analyses may be developed from complex models
of the phenomena being studied. (The Moolgavkar two-stage model notéd at the end of §7 is a
good example.) This can be particularly useful in cases where a standard regression or time series
analysis would ignore key features of the data structures. For instance, in the area of ecological
population dynamics, Speed (1993) discussed the problem of modeling the number of Chinook
salmon in the San Joaquin River. There, the salmon population has declined ovér the last few
decades, and great interest exists in understanding possible causes of the decline, especially those
' related to environmental factors. ‘Data are available on Spring river flow, escapement (abundance
of fish available for spawning), and catch of fish. The data form a time series, and Spé'éd indicates
that standard approaches based on classical regression analysis cannot approximate the complexity
of the problem. Conversely, baéing the analysis on complex age-class models produces far too
many parameters and components, making them difficult to fit and evaluate. A compromise is
foundin a rnodél which includes both the age-class components and a stochastic component. The
model is described through the (unobservable) number of fish that survive to a particular age —
called ‘recruits’ — and the number of these which spawn. These then lead to models for the

observable number of fish which are caught (C;) and the escapement (E;). The model equations

begin with
R%, = aQSi1exp{-BSii) + e
R = (- -o)(1-p)R]
. RY, = (1-p(l-7(1-p3)R]

3 .
Sc= (-1 -opeR? + (- -7(psR? + RY),

~where R’: is the recruitment in year ¢ for age fish of age k (k = 2,3,4), and « is a recruitment

parameter. Q is the flow, S; is the abundance of spawners in year £, [L is the fraction lost to ocean

mortality, @ the fraction lost to fishing for two-year old fish, vy the fraction caught for three- and

28



four-year old fish, and p; is the fraction of year class i returning to spawn (i = 2,3). The

observable quantities are then described via the equations

Et = S[ + 8][
and

c= (1-wy(R'+RY) + &,

where the 8s are additive error terms. By reducing the number of model parameters to only a
select few, the age-class model is fit using Kalman filtering. The resulting model provides a
reasonably good fit to the San Joaquin data, although it raises almost as many questions as it
answers regarding fishery population management in the face of environmental disruptions.
Speed’s (1993) discussion touches on some of these.

Speed’§ article illustrates several important aspects of stochastic environmental modeling. First,
it is often foolish to apply statistical methods blindly to solve complex envifonmental problems.
Second, undérstanding of the problem and of its fundamental components are essential. Third,

models and data must match the questions that are of interest.

8.2 Modeling animal abundance for assessing ecological risk

Statistics has a long, fruitful relationship with fisheries and wildlife sciences in developing
stochastic models of vertebrate populations. Some of these methods are finding use in the
assessment of environmental impacts. For instance, Anderson et al. (1995) review the use of
animal abundance models for assessing ecological risks to vertebrate populations. They apply their
methodology to analyze survival of the northern spotted owl after the animal experiences habitat
loss, employing the well-known Leslie-Lefkovitch model (Leslie, 1945). The model uses
information about survival and fecundity in a matrix framework to predict future age structure from
past age structure information. For spotted owls, the model is applied to a post-birth population
with four age classes. The model sets

Ni1 = AN,

where N, is a vector containing population sizes of the four age classes,
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by is an age-specific fecundity for category i, and ¢; is an age-specific.annual survival probability,

any of which may depend on environmental factors. This model has the attractive feature that the
dominant root of the characteristic equation of A determines the rate of increase (or decrease) of the
population (assuming A is fixed). By estimating this parameter and its uncertainty from estimates
of the parameters of A, the effects of important environmental factors can be éssessed. With
female spotted owls, for example, Anderson et al. determined that the characteristic root was
significantly less than zero, suggesting a decline in female owl populations due perhzips to habitat
loss. However, other parameters, including many vital rates, did not exhibit sig'niﬁcant negative
trends, and the issue remains open for further study.

Anderson et al. (1995) and the references therein proVide other interesting examples of the
application of statistics to ecological risk assessment. An important point of their article is that use
of appropriate variance models is critical in stochastic modeling. Forexample, misleading results
can occur with an age structured model when variance estimates for projections are computed
based on data from a single sampling season. A better estimate is obtained by considering the
- process variance, which reflects changes in the paraimeters over a number of sampling occasions.
Further work into how best to incorporate and apply process variance information is still needed,

however.

9. DETECTION LIMITS

Environmental monitoring as described, e.g., in §5.2 often requires determination of a chemical
pollutant’s existence and measurement of its concentration. Detection limits and related quantities
arise in these settings primarily from the need to deal with instrument measurement error. When
presented with an environmental sample, say of water, laboratory instruments for measuring for

the presence of a pollutant, a chemical analyte, or biological microorganism may not have the
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sensitivity to detect small amounts of the (bio-)chemical component of interest. Or, they may
incorrectly give non-zero responses when presented with material not containing the chemical.

The problem of assessing environmental effects with observations that may fall below a
detection limit has a long history (see Akritas et al., 1994). In most applications, the detection
limit paradigm is based 6n the evaluation of machine error and the processing of blank (no
chemical) signals. This has led to definitions such as those presented by the American Chemical
Society (ACS) Committee on Environmental Improvement (1980), in which the detection limit is
given as “the Jowest concentration level that can be determined to be statistically different from a
blank.” Computationally, the ACS suggested using three times the standard deviation of blank
responses. The underlying foundation for this (and other) thinking about detection limits comes
from work by Currie (1968), who took essentially a decision theoretic view. A detected
observation was simply one that led to rejection of the (null) hypothesis that a chemical or analyte
was absent.

Specifically, let & be the true concentrhtion which results in measured response Y. Y is viewed
as a random variable whose distribution depends on &. A calibration curve also depending on &,
F(€), is employed to estimate the underlying concentration, via E = FI(Y). Currie (1968)
delineated three possible limits based on estimating Y or E The first such is a “decision” limit, as
presented in Davis (1994): “the signal level (response) above which an obséfved signal may be
reliably recognized as being detected.” This may be interpreted statistically as the critical value for
.~ testing the null hypothesis Hq:E=0 using the data onY. A second limit is the “detection limit or
true signal level (concentration) which will reliably produce observed signals which lead to
detection.” This may be interpreted as the concentration & which has a high power for the detection
hypothesis. Finally there is the detérrrﬁnation or method quantitation limit: the “true signal level
(concentration) which will be expected to provide measurements of adequate precision for
quantitative determination (as opposed to qualitative detection).” Currie’s approach thus divided
the measurement axis into regions of unreliable detection, detection but unreliable measurement,

and reliable measurement.
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The definition of detection limits may be quite importaht when decisions are based on proper
detection of hazardous compounds. In compliance monitoring for example, measurements may be
taken from several wells around a toxic waste site to assess if hazardous material is entering the
groundwater. The sampling protocol typically monitors well water in a routine fashion unless a
toxin or toxic indicator is detected; then, more intensive (and cosﬂy) monitoriﬁg is applied.
Gibbons (1994; 1996) noted, however, that the simple decision theoretic approach to setting a
detection limit may be flawed for this problem. His work focused on two important questions:
(1) if k wells aré sampled, what is the probability that at least one exceeds a regulated standard due
to instrument error when in fact all are in compliance [cf. Lambert et al. (1991)]? And,‘(ii) how
..should a method detection limit (MDL) be estimated when the yariance ing_reases with

concentration? These problems have quite different perspectives on what the MDL is, and
estimates of the limit can differ widely. What seems important is that definitions of detection limits
need to be stated carefully iﬁ experimental protocols and scientific reports.

Even if properly defined, use of MDLs for estimation and testing purposes,is irregular and
uneven in the literature, primarily due to minimal statistical input on how to quantify MDLs and
non-detects. Common usage replaces non-detects bv.vith a single value, such as 0, %MDL, or MDL.
Clearly, this is too simplistic for most applications — although Davis (1994) indi‘c;(;tes selected
cases where the results can be rcasonéble — and only slightly greater effort is requir_;d to improve
the estimation process. For example, Akritas et al. (1994) illustrate a robust Pmaﬁetric method
for quantifying non-detects, using simple probability plot regression. Given N observations of
which nc are below a dcﬁned MDL, the N — nc detected (non-censored) observations. are plotted
on normal (or log-normal, etc.) probability paper and then a straight line ié fit through them.
Extrapolated back into the non-detect region, the line provides .csti_mates for the non-detected
values.

A hypothetical example given by Akritas et al. illustrates the approach. Table 1 contains data,
Y; (i=1,...,50), generated from a distribution such that log{Y} ~ N(0,1). Suppose detection can
only occur if the observation exceeds 0.4. Thus n¢ = 10 observations are non-detects in Table 1.

Plotting the logs of the 40 detected values against quantiles from a standard normal and then fitting
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a straight line to them produces estimates for the log-non-detects on a line with intercept —0.0689
and slope 1.064. Table 2 gives the corresponding estimates (on the original scale), along with the
more naive O, 1EMDL, and MDL _ values. Improvements in estimating the non-detects are
evidenced, although there appears to be a slight upward bias in the estimates with these data.
Akritas et al. (1994) discuss modifications and improvements to address variance and bias
reduction for this and other approaches with detection limit data.

In these areas, many further problems remain unresolved. Fér example, the chemical
monitoring problem typically involves multivariate data, bringing with it the poteﬁtial for multiple
censoring (El-Shaarawi and Naderi, 1991). How can the ideas of detection limits be extended to
the multivariate setting, and how should detection limit studies be d'esign‘ed in this case? How
should monitoring programs apportion resources between the expense of a detection limit study
and the larger monitoring effort? Also, Lambert ef al. (1991) and Gibbons (1994) emphasize that
non-detects in the field are different from those in the laboratory, and issues important to one area
may be only secondary in the other. Indeed, Davis (1994) notes the need for more emphasis on
random effects and variance components in the analysis of data from field studies.

It is worth noting that Currie’s (1968) seminal work focused largely on quality control and error
rates. In actual applications, there may be errors associated with technicians, machines, and
laboratories, as well as confounding effects due to the manner in which the soil or water is
collected and treated following cdllection. The data collection effort may also introduce new
complexities. For example, when data have been collected over time, there may be multiple limits
due to ongoing improvements in measurement. Or, it is often assumed that an observation
measured as a non-detect actually correspondS to a value below the detection limit. As pointed out
by Lambert et al. (1991), however, this is not true; in fact, depending on how the limit is defined

and what is studied, there may be cases where a known concentration is recorded as a non-detect.

10. COMBINING ENVIRONMENTAL INFORMATION

Another increasingly important issue in the envirohmental sciences is the need to combine

information from diverse sources that relate to a common endpoint. Statistical techniques for data
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combination continue to develop, however, and the issue of combining environmental information
is a very active area of statistical and applied subject-matter research. A common rubric for
combining independent results is meta-analysis (Hedges and Olkin, 1985), where the goal is to
bring together results of different studies, re-analyze the disparate results within the context of their
common endpoints, and provide a quantitative analysis of the phenomenon of interest based on the
combined data. With many environmental endpoints, however, the effects of interest often are
small and therefore hard to detect with limited sample sizes; or, data on many multiple endpoints
may mask small or highly-localized effects.

In this section, we assume the different studies are considering similar endpoints, aﬁd that the
data vd_erived from them will provide essentially similar information when a_sSociv_atedv'with..similar
study conditions. This is a form of homogeneity or exchangeability among the d;al‘lta sources.
For this setting, we discuss how some attempts at solving these data combination problems have
led to a number of interesting environmetric developments and modifications of standard statistical

methods.

10.1 Combining P-values

Perhaps the best-known method of combining information is Fisher’s inversgx2 method
(Fisher, 1948), where individual P-values, Pk, from K independent studies are combined
(k=1,...,K). The result is a combined P-value: Xg = —ZZLllog(Pk), which is compared to a %2
reference distribution with 2K df. For example, when characterizing or remediating environmental
waste sites, levels of various toxic chemicals are recorded at a single site to identify if a particular
clean-up technology is operating properly. )The data are collected at K diffgfent locations within the
site, requiring éfficient combination as part of the reporting process. One questions whether the
overall clean-up been successful, or is more effort required?

If there are M different chemicals’ concentrations recorded at each location, this may be viewed

as a multiparameter hypothesis testing problem, where we observe K independent P-vectors Zy =

[(Zkye-Zky)’s each with common mean Ly = [Hi;se-oH,,) and possibly-unequal covariance.

/

matrices 2. Then, we test if p has exceeded some known threshold vector p° = (e 1 ,...,uEM]
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If the null hypothesis of no exceedance is rejected, the clean-up has not been successful, and
requires continuation.

For the special case Xy = 0'}2(1 (k=1,...,K), and assuming normality, each separate location
provides an independent F-statistic for testing mx = n°. Combination of the information to
achieve an omnibus test of the clean-up’s effectiveness across all M chemicals can be achieved via
Fisher’s method: take the individual P-values, Py, based on each Fy, and compute Xg. If X? is
larger than an upper-o %2(2K) critical point, conclude that the clean-up requires continuation.

Alternatively, in selected cases it is possible to derive a more powerful combined test, by taking
advantage of possible correlations between the Zy values. Consider the case K=2: let R be the
observed correlation coefficient between Z;—p° and Zo—p°. Under.Ho, R possesses a

distribution whose density is proportional to (1 - r2)M-3)2

, and this allows for calculation of a
one-sided P-value, say, Pr. Then, Mathew et al. (1993) show that Fisher-combination of the P-
values Py, P,, and Py, via
| | X2 = -2{log(Py) + log(Py) + log(PR)} ,

yields a more powerfu1‘ test statistic than Xﬁ, referencing Xg to a x2(6) distribution. In this
particular environmental clean-up application, there are the concerns that statistics based on the
simple correlaﬁon may also be sensitive to cases where the observed vector drops well below the
threshold level,'or whether the sample sizes .are large enough to assure reasonéble power to detect
departures from Ho. Also, it may be more appropriate to test for threshold exceedance in
population extremes, rather than population means. Useful modifications and extensions may be

possible in these regards, however, and development of this environmetric application is an

important area of further research.

10.2 Hierarchical Bayesian Methods for Combining Information from
Multiple Studies

Some fascinating applications of combining environmental data involve settings where a
hierarchical model is posited, and appeal is made to some form of Bayesian or empirical Bayesian
analysis. For instance, following on analyses by Hasselblad (1994), DuMo,lichebl (1994)

considered nine separate studies from North America and western Europe on toxicity to the
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airborne irritant nitrogen dioxide (NO3). The studies reported adverse lower respiratory symptoms
after NO,-exposure in children aged 5 to 12 years, using odds ratios to quantify any increased risk
of lower respiratory distress.

To adjust for possible sources of heterogeneity across differences in design and subject
characteristics among the nine studies, DuMouchel employed a hierafchical regressioﬁ model. A
key feature was inclusion of covariates that represented the different sources of heterogeneity. For
each study the outcome of interest was the odds ratio of exposure for responding subjects (“‘cases’)
to odds of exposure for non-responding, healthy subjects (“controls”). Denote the log-odds ratios
as Y (i=1,...,9), and assume ¢ ~ (indep.)N(6;, s%). DuMouchel made s; proportional to
- log{vy/A;}, where v; and A; are the upper and lower 95% confidence limits on the odds ratio
reported in the ith study. The hierarchical feature assumed 6; ~ (indep.)N(m(B),Tz), v;vhere ni(B)
is a linear predictor encompassing the regression feature, mi(B) = Bo + B1x1; + - + BpXpi, and
72 is a hierarchical variance parameter (DuMouchel and Harris, 1983). The x; terms represent
covariates that quantify the known sources of heterogeneity. DuMouchel set P=3 and defined the
covariates as indicators that identified if the ith study failed to correct for (1) background smoking,
(2) NO, measurement heterogeneity, or (3) subject gender. In this way, the B parameters act to
correct the log-odds ratios for any single study’s failure to correct for these factors. '

If in the parameter hierarchy the prior quantities B and T2 are unknown (as is common), further
hierarchical hyper-prior distributions can be assigned to them. Often, the hyper-priors are taken as
diffuse functions in order to represent a form of vague prior knowledge. The various levels of the
hierarchy are then combined in standard fashion to yield posterior specifications for thé parameters
of interest, here, the expected log-odds fatios ;. Point estimates are taken as the posteriof means
of the 8;s, and standard errors are available as the square roots of the posterior variances of the 8;s.
Applied to the nine NO; studies, DuMouchel’s hierarchical regression model produced posterior
interval estimates based on normal approximétions for the posterior log-odds in which five of the
nine studies exhibited significant posterior increases in odds of disease. [Unadjusted for the

hierarchical model effects, only four of the nine separate studies were viewed as significant; see
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Piegorsch and Cox (1996).] The hierarchical model was able to synthesize information across the
ensemble of data, helping to more sensitively identify the significant effects.

Hierarchical Bayesian analyses such as this represent important advances for understanding the
complex effects of environmental toxins, and further formulations and applications of such models
represent important examples of advanced statistical research in the environmental sciences. We
expect their development will continue, as this and other recent examples (Warren-Hicks and

Wolpert, 1994; Conéonni and Veronese, 1995; Dominici et al., 1997) have begun to illustrate.

11. SUMMARY

.. The many environmetric problems described above represent only a sampling of the great

diversity of challenging issues in quantitative environmental research, and of the great diversity of

views on how to solve them. A goal of our presentation has been to mirror both forms of
diversity, illustrating that a great many perspectives exist on the nature of “envifonmental
statistics.” Many of these areas remain open for further advancement, and as we have noted
throughout, any sﬁch advances in both the science and the statistics cannot occur without greater
multidisciplinary collaboration among subject-matter scientists, social/public policy makers, and
statisticians. We encourage statistical and subject-matter readers to assume these challenges, and
_in doing so, to work towards better multidisciplinary interaction. The resulting quantitative

methodology will best represent good statistics, good science, and good regulation/public policy.
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TABLE 1
N = 50 observations (ordered) from a lognormal distribution with mean e'? = 1.649 and variance
¢’ — e =4.671, from Akritas et al. (1994); asterisks indicate MDL at 0.4

"0.1007 *0.1113  *0.1167 *0.1848 *0.2531 *0.2621 *0.2747 *0.2915
"0.3529 *0.3629  0.4014 04136 04154 0.4182 04443  0.4696
0.5282  0.5386 . 0.5648 0.6152 0.6779 0.7485 0.7508  0.8170
1.1029  1.1210  1.1938 1.3856 1.4381 14526 1.5144 1.5220
1.5470  1.5472 1.6761 1.7095 2.0705 22106 22118 2.2966
24249 24444 24615 27230 2.7461 3.3692 4.4418  4.8487
4.8613  6.9258

TABLE 2

N = nc = 10 non-detected observations (ordered) from Table 1 assuming
the MDL is 0.4, along with estimated values from Akritas et al. (1994)

actual values .probability plot régressed 0 %MDL MDL

0.1007
0.1113
0.1167
0.1848
0.2531
0.2621
0.2747
0.2915
0.3529
0.3629

0.1040
0.1434
0.1765

10.2068

0.2357
0.2639
0.2917
0.3194
0.3472

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4

0.3754
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FIG. 1. Birmingham weekly deaths for 1985-1 988 together with smoothed curve obtained via LOESS fit. The dotted
vertical lines denote the ends of each year (weeks 52, 104, 156).
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FIG. 2. An illustration of adaptive sampling for hot spot identification with a 400-unit population and a simple
random sample of size 20: After initial sampling (a), the 4 nearest neighbors of any contaminated sample unit are
also inspected (b).



