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ABSTRACT

A problem often arising in engineering applications of computer models is to determine
the importance of each data item in the large pool of required input factors. This paper
explores a statistical approach for investigating factor sensitivities. The methodology is
demonstrated with the HDM-IIT highway life-cycle cost analysis model. Specifically, the
net present value (NPV) of life-cycle costs predicted by the HDM-III model is analyzed,
and sensitivities of NPV to the link characterization input factors are investigated.
In the statistical designed experiment, combinations of the input factors are chosen
using Latin hypercube sampling, a method well suited to the determinisﬁic HDM-
III model. Two analyses of the output data are performed, based on a first-order
regression approximation and on a Gaussian stochastic-process model. For NPV, the
factor rankings are similar, but the sensitivities obtained from the two techniques show
some marked differences. This demonstrates the greater flexibility of the stochastic-
process model in dealing with nonlinearities and factor interactions in complex input-

output relationships.



INTRODUCTION

Use of mathematical (computer-based) models has become very popular in engineering.
Good examples in transportation engineering and road management include the World
Bank HDM-III (Watanatada 1987), the British Transport Research Laboratory RTIM3
(Cundill and Withnall 1995), the Ministry of Transportation of Ontario OPAC-2000
(He et al. 1996), etc.

These models tend to be complex and computationally intensive with a large num-
ber of input variables. Sensitivity analysis of the model factors has, as a result, evolved
as an indispensable tool, both for evaluating the reliability of the decisions based on
the model outputs and for determining the most influential factors. The latter informa-
tion is useful in subsequent model applications, for example, to prioritize expenditure
on data collection (Mrawira 1996), to generate approximate/preliminary analyses, to
develop simplified model versions, etc.

Traditionally, sensitivity analysis has been used to assess whether some input factors
to a decision making process require further careful examination so as to reduce uncer-
tainties associated with the decision taken (Little and Mirrlees 1974). Ashley (1980),
in an article investigating the influence of factor errors in traffic forecasting models,
points out why sensitivity analysis by computer simulation is sometimes inevitable.
Computer based models are often too complex to analyze analytically.

The traditional approach to sensitivity analysis is to change one factor at a time,
the so-called ceteris paribus method. More efficient, alternative methods have been
developed in the framework of statistical design of experiments. In a designed exper-
iment, levels of one factor are combined with levels of the other factors in a planned
fashion. They are more efficient since they yield more reliable estimates of factor sen-
sitivities and, more importantly, they can identify factor interactions. The differences
between ceteris paribus and designed experiments are summarized in Table 1.

The objective of the paper is to demonstrate a comprehensive methodology for in-

vestigating factor sensitivities of complex computer models in engineering applications.



The HDM-III model, commonly used by road agencies in managing road networks, is
used as a case study. Specifically, we analyze the economic net present value (NPV)
predicted by HDM-III.

The next section outlines the data requirements for the HDM-III model. We then
describe the Latin hypercube design used for the sensitivity analysis experiment. Latin
hypercubes (McKay et al. 1979) are a class of experimental plans proposed specifically
for deterministic computer codes like HDM-III. They are easily adapted to deal with
inequality constraints on the input factors and allow estimation of interaction effects,
the critical limitation of ceteris paribus experiments. Latin hypercubes can have many
levels for each input, and are thus well suited to the detection of highly nonlinear ef-
fects. Statistical modeling of the nonlinear input-output relationship is then taken up.
We describe two methods. A first-order regression model is straightforward to imple-
ment and interpret but cannot deal with nonlinear behavior or interaction effects. The
second method, based on a stochastic-process model for the input-output relationship,
can model nonlinearities and interactions without explicit specification of the func-
tional forms. After describing the results of the sensitivity analysis for the HDM-III
model, we conclude with a summary of the specific findings and some discussion of the

methodology in general.

THE HDM-III MODEL

The World Bank Highway Design and Maintenance Standards Model (HDM-III) is
popular in highway agencies as a tool for evaluating and analyzing maintenance and
rehabilitation options. The model allows comparison of policies or standards and can
play an important role in supporting décision—making in the road investment sector in
general (Watanatada et al. 1987, World Bank 1989). The model estimates detailed life-
cycle pavement deterioration, agency costs, and road users’ costs for different design
and maintenance alternatives, and hence provides rational and consistent economic

decision criteria for technical pla.nners and policy makers.



Priority programming constitutes one of the most important functions of pavement
management analysis. The purpose, at both the project and network levels, is to
compare project alternatives for implementation. A detailed treatment is given by
Haas et al. (1994); see also the reviews by, for example, Haas et al. (1985) and
Liebman (1985). The shaded area in Figure 1 shows the major components of priority
programming. The priority analysis component is the subject of this paper.

Priority analysis is in general a tedious and computationally intensive procedure. It
requires an explicit consideration of the primary effects of traffic, link characterization
attributes and pavement standards, as well as the effects of maintenance intervention
upon the cost streams arising throughout the life-cycle of a road facility (Chesher and
Harrison 1987; Paterson 1987). This complexity is the motivation behind software
tools like HDM-III, RTIMS3, etc. These models are primarily used as analysis engines
to provide the function of eoohomic evaluation either independently or within larger
pavement management processes. |

The concept of applying HDM-III as an analysis engine in a network-level pavement
management system has been demonstrated widely: for example in Brazil (Queiroz et
al. 1992) and in Queensland, Australia (Robertson and Chafmala. 1994; Howard et al.
1994). In Brazil, HDM-III was used in conjunction with the Expenditure Budgeting
Model (EBM) which uses a heuristic technique to solve a multi-year budget constraint
problem (World Bank 1989) providing the optimization analysis function.

Figure 2 shows the HDM-III data requirements relevant to the rehabilitation and
maintenance (R&M) priority-programming problem. The investigation in this paperl
considers the link characterization factors. They are fairly detailed and numerous:
link characterization for a paved road, for instance, requires about 34 input attributes,
plus an option for pavement deterioration calibration parameters. These requirements
are especially daunting for low-income road agencies, and may constitute a major
disincentive for adopting the model. Although some of these input requirements are
optional (with default values supplied internally by the model) no formal guide exists

in the literature identifying the most sensitive input factors on which the user could



focus to achieve a reasonable precision in the 1ife—cycle predictions.

The current literature on sensitivity analysis of HDM-III is very limited. Notable
contributions on this subject include Mrawira and Haas (1996), Kerali et al. (1991),
Queiroz et al. (1991), and World Bank (1988). However, all of these studies were based
on the ceteris paribus approach. Furthermore, most of them focused on one investment

strategy, upgrading a gravel road to paved standard.

LATIN HYPERCUBE EXPERIMENTAL DESIGNS

Conventional factorial designs were developed for experiments where the response is
measured with random error. In contrast, Latin hypercube designs (McKay et al. 1979)
were proposed specifically for deterministic computer codes like HDM-III. They allow
estimation of complex nonlinearities and are particularly well suited to the flexible
modeling approach in the subsection titled “The Gaussian Stochastic Process Model”.

The 35 link-characterization input parameters and their ranges are listed in Table 2.
A total of 500 runs are performed to explore the input space. Some input variables are

constrained as follows:

ACRA+ ARAV + APOT
ACRW

RDS

AGE1 < AGE2

ACRWb

IA

100
ACRA
RDM
AGE3
ACRAD.

ININ A

IA

Cohsider first the unconstrained variables. Each is given a grid of possible values.
For example, we give MMP 26 equally spaced levels between 5 and 300, i.e. a spacing
of 1/25 of the range. This number of levels allows detection of nonlinearities if they
exist, whereas a traditional two- or three-level design (e.g., Box, Hunter and Hunter
1978) cannot detect highly nonlinear behavior. Each of the 26 levels of MMP will be

repeated 19 or 20 times in the 500 runs of the code. The remaining variables are put
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on similar grids.

For a completely random Latin hypercube the 500 values for MMP would be in
random order. Similarly, the second input, A, etc. Combining, for example, the
MMP and A values in this way hopefully fills out the two-dimensional MMP-A space,
representing all combinations of these two parameters. Similarly, there will be many
combinations of any three parameters, etc. Randomly combining the columns, however,
would produce correlation between variables from chance, which would make it difficult
to separate their effects on the outputs. Iman and Conover (1982) described how
to traﬁsforrn a starting, completely random Latin hypercube to one with very good
correlation properties. Iterating their procedure produces near-zero correlations here.

To illustrate how we deal with the constraints, consider the constraint ACRW <
ACRA. In the Latin hypercube design we have ACRA on the range [0, 60] (see Table 2)
and a pseudo parameter, ACRW’ on the range [0, 2/3|. The variable ACRW' from the

Latin hypercube is transformed to
ACRW = ACRW' x ACRA.

This guarantees that ACRW is in the range [0,40] and that ACRW < ACRA. The
other constraints are dealt with similarly.

Designing in this way gives plenty of levels to many parameters but requires rela-
tively few runs.

The HDM-III model is run for each of the 500 parameter combinations in the
experimental plan. The output chosen for the case study is the NPV of life-cycle costs

for a roughness-dependent overlay strategy.



STATISTICAL MODELING

First-Order Regression Approximation

We first try fitting a first-order regression model linear in the 35 input variables to the
NPV values from the 500 HDM-III runs. The regression model is

Y=ﬁo+51b %
1

where Y is the NPV response variable of interest, z; is the jth input variable with range

x T z
1 2 ot B2 te, (1)

bj — a; b35 — asgs

- +ﬂ2b2 - +...+06;
[a;, bj] from Table 2 for j = 1,...,35, and Sy, ..., Ba5 are coeﬁicients to be estimated
by least squares. In such models, ¢ is usually regarded as random error with mean
zero and constant variance, but the error is actually deterministic model bias in our
context.

The advantage of this model is that §; provides a direct estimate of factor sen-
sitivity for ;. Because we divide each z; by its range, §; is the effect on NPV of
changing z; from its minimum to its maximum value, when the other factors are kept
fixed, up to error from e. The major disadvantage is that this model does not deal
with nonlinearities or interactions between input variables and, hence, may be a poor

approximation.

The Gaussian Stochastic Process Model

As the ﬁrsj;-order regression model does, indeed, provide a poor fit to the data (see
the subsection titled “Assessing the Approximating Models”), we also employ4 a more
flexible modeling approach.

Let x; s - - - » Xs00 denote the input vectors for the 500 runs in the experimental design.
Each vector x is 35-dimensional for the 35 inputs z;,.. ., zss. The corresponding NPV
output values are denoted y = (y1,...,¥s00)¥, where “I” indicates vector or matrix
transpose. Then, following the approach of, e.g., Welch et al. (1992), the response y(x)

is treated as a random function or as a realization of a stochastic process,
Y(x)=p+Z(x), (2)
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where u is the mean of Y'(x) and the stochastic process Z(x) is assumed to be Gaussian,
and to have zero mean and covariance 0?R(x,x’) between the values of Y at input
vectors x and x'.

This model can be motivated as follows. Assuming continuity of the response and
some smoothness, when two input vectors x and x’ are close together the outputs are
expected to be similar. As the distance between the two input vectors increases, the
similarity of the outputs is expected to decrease. Mathematically, we express similarity
as the correlation function R(:,-) of the stochastic process, which can be tuned to the

data. Here it takes the form
35

R(x,x) = ] exp(=0;|z; — ;") (3)

i=1
where 6; 2. 0and 0 < @; < 2for j =1,...,35. The parameter c; controls the
smoothness of the response as a function of z; (smoother as a; decreases to zero), while
0; controls the nature of the variability in the response (more local as 6; increases).
Note that R(x,x) = 1, so the output from replicate runs would be perfectly corre-
lated. Thus, although we are using a stochastic model to represent uncertainty about
the function, the model respects the deterministic nature of the computer code.
The best linear unbiased predictor of y at an untried x, denoted by §(x), can be

shown to be (see e.g., Sacks et al. 1989):

§(x) = p+rT (xR (y — 14), . (4)
where r(x) is the n x 1 vector of correlations between x and each of the n design points
with element i given by R(x,x;) in (3), R is an n x n correlation matrix with element
(4,1") given by R(x;,x#) in (3), 1 is an n x 1 vector with all elements equal to 1, and
f = 1R~y /1TR™'1 is the generalized least squares estimator of u. The further
parameters, o2 following (2), and 6y,...,60s5 and oy, ..., ass in (3), are estimated by
maximum likelihood.

The predictor interpolates the observed response values, as it should for the deter-

ministic HDM-III model. It has proven to be accurate for numerous applications, see
e.g., Currin et al. (1991), Sacks et al. (1989), and Welch et al. (1992).
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Assessing the Approximating Models

Cross-validation is commonly used to assess the performance of a predictor. The re-
sponse value y; for model run 7 is predicted using all data except y;. Figure 3 shows
the actual NPV values from the HDM-III model plotted against their cross-validation
predictions from (a) the first-order regression model (1) and (b) the stochastic process
model (2). The stochastic-process model gives superior prediction accuracy for NPV,
The cross validated root mean squared errors of prediction for the regression model

and for the stochastic-process model are 5.23 and 2.87 percentage points, respectively.

RESULTS

Table 3 summarizes the estimated regression coefficients in the first-order regression
model (1) for NPV from the HDM-III model. It lists only the factors with estimated
coefficients large enough that the null hypothesis Hy : B; = 0 is rejected at the 1% sig-
nificance level in favor of the two-sided alternative H, : §; # 0 (p value less than 0.0li).
~ As the output from HDM-III is deterministic, and hence the errors in the regression
model (1) do not satisfy the usual probabilistic assumptions, statistical significance
should be viewed here as descriptive rather than inferential. The factors are ordered in
the table by the magnitudes of their estimated coefficients. Because the factor ranges
are standardized in (1) the estimated coefficients estimate the change in average NPV
when a factor changes from its minimum value to its maximum value, if all other factors
are kept constant. |

From Table 3 it appears that the most significant factors affecting NPV are the
rutting calibration factor (Krp), the pavement width (W), the mean and the standard
deviation of rutting (RDM and RDS), the distress parameters (ACRW and APOT),
the pavément roughness (QI), the rise plus fall (RF), and cracking initiation (Kci).

The stochastic-process predictor (4) is a»complex function of all 35 input parame-
ters. To determine factor sensitivities, the predictor has to be separated into effects of

individual parameters or small groups of parameters.
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To isolate the effect of, say, Krp on NPV the predictor (4) is averaged with respect
to all other input variables over the ranges in Table 2. The resulting main effect
of Krp is shown in Figure 4(a). I4t is seen that Krp has a large estimated effect on
NPV relative to the pointwise approximate 95% confidence intervals also shown in
Figure 4(a) to provide an estimate of uncertainty. Moreover, the estimated effect
of this important factor is highly nonlinear, which is one reason why the first-order
regression approximation is poor here. Four further important main effects are shown
in Figure 4; it is seen that the estimated QI, Kci, and RF effects in plots (c), (d), and
(e), respectively, are also nonlinear.

To quantify these estimated effects we can decompose the total variability in the
predictor (4) over all 35 input parameters into contributions from individual factors, or
groups; of factors, and their interactions. Table 4 shows the breakdown. For example,
the strong estimated effect of Krp in Figure 4(a) accounts for about 43% of the total
variability in the predictor from varying all 35 iIiput factors over the ranges in Table 2.

In Table 4 the combined contribution of the rutting factors RDM and RDS is
reported. Thesé two factors could not be varied independently in the experimental
design because of the constraint RDS < RDM. It is difficult, therefore, to estimate
their separate effects. The 6.7% for their joint contribution reported in Table 4 is
calculated in the following way. First, the remaining 33 factors are averaged out from
the predictor, leaving a function of RDM and RDS. This estimated joint effect of RDM
and RDS is shown in the contour plot in Figure 5. The variability in the predicted NPV
across the RDM-RDS region shown in Figure 5 accounts for 6.7% df total predictor
variability, as reported.

It is seen in Figure 5 that there are large changes in the estimated effect as RDS
varies for fixed RDM, but changing RDM for fixed RDS has relatively little effect.
This suggests that RDS is a much more important factor than RDM. The pointwise
standard errors attached to the estimated NPV values in Figure 5 are all around 0.5
percentage points, i.e., fairly small relative to the changes in Figure 5. Thus, there is

little doubt that RDS is the more important factor. In contrast, the regression model



ranked RDM as more important than RDS. One problem inherent with the regression
model is that it estimates the effect of changing RDM, when all other factors are
kept fixed. As RDM increases, the constraint RDS < RDM does not restrict RDS
as much and RDS also tends to be larger in the experimental design. The inaccurate
first-order regression model probably has difficulty separating the effects of these two
related inputs.

Some interaction effects also show up as important. For example, Table 4 reports a
2.5% contribution to total NPV predictor variability from the interaction between Krp
and QI. This interaction contribution is computed in the fbllowing way. First, the joint
effect of Krp and QI together is estimated by averaging out the remaining 33 factors
from the predictor. The resulting estimated joint effect on NPV is shown in Figure 6.
Much of the variability in this estimated joint effect is due to the strong estimated main
effects of Krp and QI in Figure 4. If we subtract the two estimated main effects from the
estimated joint effect, the result is the estimated interaction (nonadditive behavior) of
Krp and QI on NPV. The variability in the estimated interaction across the rectangular
region of Krp and QI values accounts for 2.5% of total predictor variability (in addition
to the 42.6% and 5.6% main effect contributions).

Inspection of Figure 6 indicates that Krp is a very important factor, but its effect is
dependent on the level of QI. When QI is at its lower limit, 1.5 IRI, NPV is estimated
to change from about -2% to around 3% then b;a\ck down to about -6% as Krp changes
over the range [0.2, 4]. For QI at the midpoint of its range, 5.75 IRI, the estimated
peak NPV is about 11%, at about Krp= 1.5. When QI is at its uppér limis, 10 IRI,
the estimated peak NPV is about 10%, but the peak occurs whén Krp is near its Iowesf
value, 0.2. Thus, there can be no single number representing Krp sensitivity, which is
another reason why the linear regression model was inaccurate. (The same arguments
could be repeated for QI: its estimated effect depends markedly on the level of K ™D.)

Similarly, Table 4 reports some interaction between Krp and the rutting factors,
RDM and RDS, and these interactions should also be explored in the same way to

understand the Krp effect. Overall, the effect of Krp in the HDM-III model seems to
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be highly complex, depending on QI, RDM, and RDS.

To confirm that the Krp effect is highly nonlinear and, moreover, that it depends
on QI, for example, the HDM-III model was run for all combinations of Krp at the
11 levels 0.2, 0.58, 0.96,..., 4.00 and QI at the three levels 1.5, 5.75, and 10 IRL. The
other 33 factors were fixed at the midpoints of their ranges in Table 2. The plots in
Figure 7 show the actual NPV values from the HDM-III model as a function of Krp
for the three levels of QI. They confirm the features of the estimated joint effect of
Krp and QI in Figure 6.

In summary, according to the stochastic-process model, the most important factors
affecting NPV are the rutting progression (Krp), the carriageway width (W), road
roughness (QI ), and the pavement distress parameters (RDS, RDM, ACRA, ACRW,
APOT, and ARAV). NPV is also sensitive to the pavement strength (SN) and the
alignment grade (RF) for the overlay strategy used in the analysis.

It was noted above that the sensitivity of NPV to Krp is strongly dependent on
the levels of other factors, in particular, the roughness (QI) and deformation distresses
(RDS and RDM). If we average over these other factors, Figure 4(a) shows that for
Krp less than about 1.5, an overlay is more beneficial for pavements as the rate of
rutting progression ihcreases. After the maximum at a Krp of about 1.5, the benefit
decreases sharply with increasing rate of rutting. This is as expected in practice since
a thin overlay (50 mm is assumed in this study) does not correct the rutting problem.

The shape of the estimated main effects in Figure 4 of the roughness (QI), the
carriageway width (W), and the alignment grade (RF) are similar to earlier findings
(Mrawira 1996). The effect of roughness on NPV was shown in the earlier study to
flatten out for roughness beyond 7 IRI. This is again logical since an overlay treatment
(or other comparable strategies) will not improve the serviceability for extremely dam-
aged pavements. In other words, it is inefficient to overlay a road which has exceeded
7 IRI roughness. Other treatments (e.g., major rehabilitation) should be pr&cribed.
The sensitivity of carriageway width (W) to NPV is linear and negative since it is a

direct multiplier in agency annual costs but without significant savings on user vehicle
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operating costs. The slow increase in NPV with RF reﬂects the impact of alignment
grade on truck and heavier vehicle speeds, and hence increased fuel and tire consump-
tion.‘ Figure 4(e) suggests that it is marginally more economical to overlay a steeper
road section than a flat one.

In the context of prioritization of maintenance and rehabilitation works, the align-
ment and road width are normally fixed. Thus, the primary sensitive factors in R&M
programming for weak pavements under moderate traffic volumes are the progression
of rutting, the pavement distress parameters (particularly roughness and rut depth and
its variability, but also the surface distresses), the structural strength, and the rates of
cracking initiation and roughness progression.

The regression model and the stochastic-process model agree fairly well qualita-
tively: They give roughly the same rankings for the important input parameters.
Quantitatively, though, there are some marked differences. Ihcreasing the rutting éali—
bration factor, Krp, from 0.2 to 4.0 is estimated to reduce NPV by nearly 16 percentage
points according to the regression model (see Table 3). The more accurate predictor
from the stochastic process model estimates a reduction of 11-12 percentage points [see
Figure 4(a)]. This latter estimate averages the effect over the other factors. As noted
above, the effect of Krp on NPV is greatly modified by other factors, though. For'a
pavement with a low value for QI (around 1.5 IRI), Krp has less effect on NPV over
the range (0.2, 4.0] (see Figures 6 or 7). Another difference is that tile regression model
estimates a redud:ion in NPV of over four percentage points when RDM changes from
0 to 50 mm. Yet, the stochastic process model and Figure 5'suggest that RDM has a
much smaller effect on average NPV for any fixed value of RDS.

CONCLUSIONS

The paper has demonstrated that Latin hypercube experimental designs offer a sound
methodology for investigating factor sensitivities of computer models. Such designs

insure that the physical/practical factor ranges of the input space are fully explored.’
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They are also flexible enough to be easily modified to deal with constraints between
factors.

Statistical approximating functions were found useful in analyzing the NPV output
from the HDM-III model to determine factor sensitivities. The main advantage of the
regression approximation is that it is straightforward and the estimated coefficients
are immediately interpretable. The first-order model cannot identify interactions or
nonlinearities in factor effects, however. If we had chosen the range (0.2, 2.0] instead
of [0.2, 4.0] for Krp in the HDM-III runs, then Krp would have had a very small
estimated effect in the regression model, missing much of the rise and sharp drop
apparent in Figure 4(a). The regression model could be improved by introducing
quadratic nonlinearities and bilinear interactions. Factor sensitivities would then be
less immediate, howéver, and there is the practical difficulty of choosing significant
cbefﬁcients from a second-order model with over 600 terms.

The stochastic-process predictor approach after Sacks et al. (1989) is computa-
tionally intensive but provides more comprehensive estimates of factor effects. Nonlin-
earities and interactions are identified in a fairly automatic way without the analyst
needing to specify functional forms. Visualization of the predictor provides insight into
the complexities of a model like HDM-III.

Fbr the NPV output from the HDM-III model, the most significant factor was
found to be the rutting calibration (Krp). The dominance of Krp in NPV predictions
for weak older pavements under moderdte traffic loading (a departure from the current
literature) was confirmed by a further investigation of the reéponse as a function of
Krp at three levels of initial roughness (QI). The confirmation showed the behavior
of the Krp effect is greatly modified by. the level of QI. NPV was also very sensitive
to the carriageway width (W), the initial deformation parameters (RDM and RDS),
and the distress parameters (ACRA, ACRW, APOT, ARAV).
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APPENDIX II. NOTATION

The following symbols are used in this paper:

n
R

o]

SP

1

Number of runs in the experimental design
Correlation function of Z

Vector of correlations in (4)

Matrix of correlations in (4)

Value of input factor j

NPV value from HDM-III model

Statistical model for y

Vector of HDM-III NPV values

Stochastic process in model (2)

Correlation parameter for input factor j in (3)
Intercept in regression model (1)

(Linear) effect of input factor j in model (1)
Error term in model (1)

Mean of Z

Variance of Z

Correlation parameter for input factor j in (3)

n X 1 vector of 1’s in (4)

Further symbols, for the input factors, are defined in Table 2.
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Ceteris paribus experiments

Designed experiments

Experiments in which only one
factor at a time is varied; all

other factor are kept constant

Experiments which may change
the levels of all factors

from one run to the next

e Can be inefficient (large
number of runs)

e Not capable of detecting
factor interactions

e Requires detailed

knowledge of system for an
informed search

o Useful if the model has

few factors and is approxima,pely

additive

e Efficient (better

accuracy ;Nith fewer runs)

e Interaction effects

can be easily analyzed

e Experimental runs

give global coverage of input
space

° Can handle a large
number of factors even with

nonadditivity (interaction)

Table 1: Motivation for Designed Experiments

18



Symbol  Factor description Range
MMP Average monthly rainfall 5-300 mm
A Altitude 0-2500 m
RF Rise plus fall 0-120 m/km
o Horizontal curvature 0-700°/km
W Carriage-way width 2.5-10m
WS Shoulder width 0-2m
HSNEW New surface layer thickness 10-200 mm
HSOLD  Old surface layer thickness 10-200 mm
CMOD  Strength of soil cement 0.5-30 GPa
HBASE  Total base layers thickness 100-700 mm
COMP  Relative compaction 85-100 %
SNSG Subgrade CBR 2-50 %

SN Structural number 0.5-6

Kci Cracking initiation 0.2-4

Kcp Cracking progression 0.5-3

Kuvi Raveling initiation 0.2-3

Kge Roughness-age term 0.8-14
Kpp Pothole progression 0.2-3

Krp Rut depth progression 0.2-4

Kgp Roughness progression 0.8-2
ACRA  Area of all cracks 0-60 %
ACRW  Area of wide cracks 0-40 %
ARAV  Area raveled 0-40 %
APOT  Area of potholes 0-5 %
RDM Mean rut depth 0-50 mm
RDS Rut depth standard deviation 0-40 mm
QI Roughness 1.5-10 IRI
cQ Construction quality 0,1

AGE1 Age of preventive treatment  0-30 years
AGE2 Age of surfacing 0-30 years
AGE3 Age of last construction 4-30 years
CRP Cracking retardation time 0-3 years
RRF Raveling retardation factor 14
ACRAb  Previous area of all cracks 0-60 %
ACRWb  Previous area of wide cracks  0-40 %

Table 2: Factors Investigated and Their Ranges (Source: Mrawira 1996)
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Input Estimated Standard t D

faetor  coefficient, B €error statistic  value

Krp -15.65 075  -20.88  0.0000
W 812 075 -10.79  0.0000
RDM 497 113 378 0.0002
ACRW  -3.97 132 -3.02  0.0027
QI 3.73 075 495  0.0000
APOT  -343 075  -459  0.0000
RDS 291 097 299  0.0029
RF 285 075  3.80  0.0002
Kei 2.56 075 341  0.0007

Table 3: Factors Significant at the 1% Level in the Linear Regression Model (1),
Ordered by the Magnitudes of Their Estimated Coefficients
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Contribution to

Input factor(s) predictor variability (%)
Krp 42.6
w | 135
(RDM, RDS) 6.7
QI 5.6
Krpx (RDM, RDS) 46
(ACRA, ACRW, APOT, ARAV) 33
SNx QI 2.9
Krpx QI 2.5
Kci 2.5
RF 18
Kgpx QI 1.2

Table 4: Factors or Interactions Accounting for at Least 1% of the Variablility in the
NPV Predictor From the Stochastic-Process Model (2); Factors in Parentheses are

Considered Together as a Group; A x B Denotes the Interaction Between Factors A
and B
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INFORMATION
________________ Pavementinventory data, traffic data, |=s-------------<
environmental data, costs, etc. :

) CURRENT NEEDS & PROGRAM )e..-.
""’[CRITERIA ] >[FUTURE NEEDS ]“l PERIOD

B g
D R W,

OUTPUT REPORTS
* Effects of different budgets
* Recommended Programs of work

Figure 1: Major Steps in Priority Programming (Adapted From Haas et al, 1985)
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|Series A

Link characterization Maintenance strategies
* alignment & environment * definition of treatments
¢ structural standards * intervention criteria
* condition & history * unit costs

|Series D | |Series E

Vehicle characterization Traffic data

* performance specifications * vehicle types

* prices & unit costs » * volumes

* operating conditions & usage * growth rates

Figure 2: HDM-III Data Requirements for R&M Priority Programming
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Figure 3: Actual NPV Values From HDM-III Versus Their Cross-Validation Predictions
From (a) the Linear Regression Model and (b) the Stochastic-Process Model
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Figure 5: Estimated Joint Effect of RDM and RDS on NPV (%)
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Figure 7: NPV From the HDM-III Model Versus Krp at QI Values of 1.5, 5.75, and
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