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This article introduces a new class of experimental designs, called split factorials,
which allow for the estimation of both response surface effects (fixed effects of
crossed factors) and variance components arising from nested random effects.  With
an economical run size, split factorials provide flexibility in dividing the degrees of
freedom among the different estimations.  For a split factorial design, it is shown
that the OLS estimators for the fixed effects are BLUE and the variance component
estimators from the mean squared errors on the ANOVA table are also minimum
variance among unbiased quadratic estimators.  An application involving concrete
mixing demonstrates the use of a split factorial experiment.
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In many experimental settings, the measured response is affected not only by the

fixed effects of crossed factors, but also by the random effects (usually nested) of

sampling and measurement procedures.  For example, in an experiment to study certain

critical dimensions on a molded part, machine settings such as mold zone temperatures or

screw speed could be the crossed factors of interest while shift-to-shift variation, part-to-

part variation, and measurement-to-measurement variation might be the random effects

of interest.  The fixed effect estimates can be used to optimize the process, and knowing

which variation source is largest could help to focus quality improvement efforts.

The fixed effects of crossed factors are often studied with 2k-p experiments, where k is

the number of crossed factors, p is the degree of fractionation, and 2k-p is the number of
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design points.  The variances of nested random effects are called variance components

(see Searle, Casella, and McCulloch, 1992), and are typically estimated by means of

hierarchical or nested designs (see Figure 1).  If the ith nested random factor in a q-stage

hierarchical design has the same number of levels, mi, at each level of the (i-1)st factor,

then the design is balanced.  If mmi =  for all i, then the design will have mq

observations.  Figure 1 shows a balanced hierarchical design for two random factors:

batches and samples nested within batches.

Figure 1.  A Balanced Nested Design for m1=3 Batches and m2=3 Samples.

Both crossed factor effects and variance components could be estimated by

performing an mq nested design at each design point in a 2k-p design.  However, this

would require mq×2k-p observations, which often is not feasible or economical.

In this article, we construct a new class of experimental designs, called split factorial

designs.  A split factorial is a subset of an mq×2k-p experiment that preserves the ability to

estimate both the crossed factor effects (with a specified resolution) and the q variance

components.  Although other subsets could be used for these situations, the split factorial

is chosen here because it is easy to design, run and analyze.  These desirable properties

result because the split factorial retains many of the characteristics of balanced designs

including equal number of observations at each of the 2k-p design points, the use of simple
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methods for parameter estimation, and an easily understood structure that can facilitate

implementation of the experiment.

In the next section, a design methodology for split factorial experiments is introduced.

Section 2 discusses analysis of split factorial designs and compares split factorials with

existing designs for the few practical cases where they are comparable.  In Section 3, an

experiment involving concrete mixing, with three crossed factors and two variance

components, is used to motivate and demonstrate the use of split factorial experiments.  A

discussion section concludes the article.

1. DESIGN METHODOLOGY

A methodology is now introduced for designing a split factorial experiment that has k

crossed factors, each at two levels, and q=2d (where d is an integer) variance components

associated with nested random effects.  The methodology takes a 2k-p design with n

observations at each of the 2k-p design points.  The design points are split into q sub-

experiments by d blocking (splitting) generators.  The experiment is then called a 2(k+d)-

(d+p)×n split factorial.  Each of the sub-experiments gathers information on only one of the

q variance components.  The design steps for a 2(k+d)-(d+p)×n split factorial are as follows:

1) Select n and p such that 2k-p degrees of freedom (df.) are enough for estimating the

fixed effects and pdkn −−− 2)1(  df. are sufficient for each variance component.

2) Choose a 2(k+d)-(d+p) blocked factorial using blocking generators from a reference

such as Bisgaard (1994); Sun, Wu, and Chen (1997); or Sitter, Chen, and Feder

(1997).  The q blocks (here called sub-experiments) will each have pdk −−2  design

points.
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3) Let the variance components (1 to q) be such that the random effects of the (i+1)st

variance component are nested under the effects of the ith variance component.

4) In the ith sub-experiment (for i from 1 to q), a nested design that branches only at

the ith level (into n branches) will be run at each of the pdk −−2  design points.

Example 1:  This split factorial is too small for actual use, but is useful for

demonstration of the design procedures.  Let a 23 experiment (k=3, p=0) be split into 4

sub-experiments for 4 variance components (q=4, d=2) with n=3 observations at each

design point.  The blocking generators B1=AB and B2=AC can be used to split the

experiment into sub-experiments, each with 2 design points (see Tables 1 & 2).  Figure 2

shows the nesting structure at each design point.  As described in design step 4, the

nesting structures only branch at one level and the branching level is different for each

sub-experiment.  For example, the nesting structures at the two design points in sub-

experiment 3 are circled in Figure 2 and branch only at the third level of nesting.

Table 1.  Coding for Converting 2 Columns, B1 and B2, from a Two-Level
Factorial into a Single Column Designating Sub-experiment or Block.

B1 B2 Sub-experiment,
Level, or Block

-1 -1 1
1 -1 2

-1 1 3
1 1 4

Table 2.  The 2(3+2)-(2+0)×2 Split Factorial using B1=AB and B2=AC for Splitting.

Design
Point

A B C B1=AB B2=AC Sub-exp.

1 -1 -1 -1 1 1 4
2 1 -1 -1 -1 -1 1
3 -1 1 -1 -1 1 3
4 1 1 -1 1 -1 2
5 -1 -1 1 1 -1 2
6 1 -1 1 -1 1 3
7 -1 1 1 -1 -1 1
8 1 1 1 1 1 4
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Figure 2.  The Nesting Structure for k=3, p=0, q=4, n=3.

2. ANALYSIS OF SPLIT FACTORIAL DESIGNS

In this section, a linear mixed effects model is presented for the analysis of a split

factorial. Using this model, estimation and tests of the variance components are

discussed, including the difficulty of avoiding negative variance estimates.  Correlation

between the fixed effects estimators is discussed, and then the estimates of the variance

components are used to perform approximate tests for the fixed effects.  Finally, split

factorials are compared with an alternative experimental design methodology.

Model and Variance Structure:  A response model for a 2(k+d)-(d+p)×n split factorial is:

∑
=

+=
q

i
ii

1

uZbXy , (1)

where r = 2k-p, X is an nr×r matrix of estimable response surface contrasts including a

constant column, and b is a vector of r unknown coefficient parameters.  The matrix Zi is

1

-1

-1

1

-1 1A

B

C

Sub-experiment 3

1 2

3 4

5 6

7 8
Guide to Nesting

Branches
at level 1

Branches
at level 2

Branches
at level 3

Branches
at level 4



6

an 
( )






 −+×
q

riqinr
nr  indicator matrix associated with the ith variance component, and

ui is a vector of length 
( )
q

riqinr −+
 consisting of normally distributed independent

random effect parameters associated with the ith variance component such that

( )2,~ ii N σI0u .  Each random effect in ui is nested under the treatment combinations and

the (i-1) random effects above it.  The usual random error term is uq.  The quantity

( )
q

riqinr −+
 is derived by observing that there are 

q

nr
 levels of the ith random factor in

the first i sub-experiments and 
q

r
 levels in the remaining (q-i) sub-experiments.

Assuming that the variance components do not depend on the crossed factors, then

.)(
1

2∑
=

′==
q

i
iiiVar ZZyV σ (2)

Given k factors, 2k-pdesign points, q variance components, and n observations per design

point, then expressions for X and Zi can be derived for a split factorial design.   Let

1X be the full rank rr × design matrix (including the constant) for a single replicate of

the 2k-p design, then rrIXXXX == 1111 '' , where Ir is the r×r identity matrix.  The

observations are ordered such that n1XX ⊗= 1 , where 1n is an n-length vector of ones

and ⊗  represents the Kronecker product.   Let ts ,x′ be the row in 1X , which is the tth

observation in the sth sub-experiment.  Now sort the rows of 1X in ascending order first

by t and then by s such that
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The Kronecker sum is defined such that 
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Q0

0P
QP  for any matrices, P and Q.  If

this notation is extended to a Kronecker summation, then the ordering in (3) leads to
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Estimation and Testing of Variance Components:  The variance component estimators

can be derived by the method of moments from the expected mean squares in Table 3.  In

the table, the sum of squares for the ith level of nesting is given by

∑∑
=

∗∗∗∗∗∗ −=
r

g m
ggm yySS

1

2
1 )(

��

, and

∑ ∑∑ ∑
=

∗∗∗∗∗∗ −=
r

g l m h
lglmgi yySS

1

2)(
����

�� , for i=2 . . . q,

where g is the subscript related to the design points (treatment combinations) of the

crossed design and l, m and h are the subscripts related to the (i-1)st, ith, and qth level of

nesting, respectively.  The star subscript indicates averaging over that level of nesting.

Due to the simplicity of the expected mean squares for a split factorial, the method of

moments estimator for 2
iσ  is 1

2 MSMSˆ +−= iiiσ  for i = 1 to q-1. Under normality, these

ANOVA estimators are not only unbiased, but also are the Uniformly Minimum Variance

Unbiased translation-Invariant Quadratic (UMVUIQ) estimators (see Appendix 2).
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Table 3.  ANOVA table for a Split Factorial.

Source df SS MS Expected MS F ratio

Fixed Effects
(not corrected
for the mean)

2k-p SSFE MSFE

2

1

)1(

2

i

q

i

pk

q

ni
n σ∑

=

−






 −−+

′′ XbXb

Variance
Component 1

pdkn −−− 2)1( SS1 MS1 ∑
−

=
−

1

0

2
q

j
jqσ

F1=
MS1/MS2

� � � � �

Variance
Component i

pdkn −−− 2)1( SSi MSi ∑
−

=
−

iq

j
jq

0

2σ
Fi=
MSi/MSi+1

� � � � �

Error
(Var. Comp. q)

pdkn −−− 2)1( SSq MSq
2
qσ

Total n2k-p SST

Tests for the variance components are also simple under normality.  It can be shown

that all terms in SSi are zero except those deriving from observations in sub-experiment i.

Since each sub-experiment is balanced when treated alone, each of the sums of squares

for variance components in Table 3 when divided by its expected mean square has a chi-

squared distribution with pdkn −−− 2)1(  degrees of freedom.  Thus, standard F-tests as

shown in Table 3 can be used to test if any variance component is zero.

Unfortunately, ANOVA variance estimates can be negative. Searle, Casella, and

McCulloch (1992, p.130) discuss various methods of coping with this possibility.  A

common strategy is to assume that those variance components with negative estimates are

zero or at least negligible.  Alternatively, maximum likelihood methods like those

implemented in many software packages always produce non-negative estimates.

Negative estimates will tend to occur unless the variance components with lower
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subscripts are substantially larger than those with higher subscripts.  In split factorials,

increasing either n or r will reduce the problem of negative estimates.  Under normality,

Searle, Casella, and McCulloch (1992, p.137) provide an expression which, when applied

to the split factorial ANOVA table in Table 3, shows that

{ }


















<=<

∑

∑
−

=
−

+−

=
−

iq

j
jq

iq

j
jq

ffi F

0

2

)1(

0

2

,
2 Pr0ˆPr

σ

σ
σ ,

where pdknf −−−= 2)1(  and ffF , has an F-distribution with f and f degrees of freedom.

Clearly, one needs some knowledge of the relative size of the variance components in

order to determine the probability of negative variance estimates.

When all the ANOVA estimates are positive and normality is assumed, they are

equivalent to restricted maximum likelihood (REML) estimates of the variance

components.  This is due to the fact that each sub-experiment, treated alone, contains

balanced data (see Anderson, et al., 1984).  REML estimators are consistent and have an

approximately normal distribution in large samples (Searle, Casella, McCulloch, 1992).

This equivalence provides a closed-form expression for the REML estimates.

Estimation, Correlation, and Tests of Fixed Effects:  The condition under which the

OLS estimators of the parameters in b are the best linear unbiased estimators (BLUE) is

that an invertible matrix A exists such that AXXV =−1  (Seber, 1977, p. 63).  Appendix 1

shows that this condition is satisfied for data from a split factorial.  Thus, estimating the

coefficients of the response surface can be done by simple OLS regression techniques

( ) ( ) yXyXXXyVXXVXb ′=′′=′′= −−−−

nr

1ˆ 1111 . (5)
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In addition to the usual confounding caused by the fractionation in the 2k-p design,

there will also be non-zero covariance between certain fixed effect estimators due to the

covariance between certain observations in the split factorial.  The effect estimators that

are correlated can be determined by creating a new defining relation for the experiment,

called a correlation relation, that uses all the generators including the d generators that

are used to split the factorial into sub-experiments.  However, the splitting generators use

a different operator, “~” which means “correlated with”.  Suppose, for example, the

defining relation of a factorial design is I=ABCF and the splitting generators are:

B1~ABE; B2~BCDE.  Since there are no expected block effects, these effects are

eliminated.  The words ABE and BCDE are then used to extend the defining relation (see

Box, Hunter and Hunter, 1978, page 409) to a correlation relation as follows:

I=ABCF~ABE~CEF~ BCDE~ADEF~ACD~BDF.

Multiplying any effect by this correlation relation shows the confounding and correlation

pattern.  Concepts similar to resolution and aberration (see Fries and Hunter, 1980) can

now be used to select splitting generators for split factorials.

The sign and amount of correlation will be evident in the variance-covariance matrix

for the coefficient estimators, which is

( ) ( ) 11ˆ −−′== XVXbH Var . (6)

Commonly, the estimates of the variance components derived by the method of moments

above are used in (2) to obtain a V̂ that can be substituted for V in (6).  Let bt be the tth

element of b.  Under the null hypothesis that b = 0, the expected mean square associated

with bt can be shown to be 2

1

)1(
i

q

i q

ni
n σ∑

=





 −− .  However, if any of the effects in the
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correlation string for bt are non-null, they will bias the mean square.  Assuming all the

effects in the correlation string are null, an approximate F-test that bt=0 can be performed

using the test statistic tttt hbF ˆ/ˆ2= , where ttĥ  is the tth diagonal element of

( ) 11ˆˆ −−′= XVXH .  Equivalently,

∑
=






 −−=
q

i
iFEtt MS

q

ni
nMSF

1

)1(
/ , (7)

where MSFEt is the mean square due only to the tth factor.  It can be shown that the

denominator in (7) is equal to ma′ , where the ith element of m and a are iim MS=  and





−
=−

=
−

−

else

1for 
)1(

)1(

q
n

q
n

i

in
a

respectively.  Satterthwaite’s approximation now can be used to determine appropriate

degrees of freedom for this approximate F-test.  The numerator has one degree of

freedom and the denominator degrees of freedom are approximated by

( )
( )∑

=

−− ′−=
q

i
ii

pdk

ma

n
df

1

2

2

rdenominato

2)1( ma
.

Comparison with existing design methodology:  The only class of designs in the

literature for this type of experimentation is the staggered nested factorial proposed by

Smith and Beverly (1981).  Staggered nested designs were first introduced by Bainbridge

(1965) and are unbalanced hierarchical nested designs with a single branch at each level

of nesting.  These designs split the degrees of freedom equally among the variance

components.  The staggered nested factorial places a staggered nested design at each

point of a crossed factor design.  Staggered nested factorials exist only if n, the number of

observations at each design point, is q+1, where q is the number of variance components.
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For two designs to be comparable, they must have the same crossed design and equal

degrees for each of the variance components.  Thus, for any split factorial with q=2 and

n=3, there is a comparable staggered nested factorial.  Comparable designs for a 23

crossed design are shown in Figure 3.  Table 4 shows that the staggered nested design

produces lower variance estimators than the split factorial.  Unlike the split factorial, the

staggered nested factorial is orthogonal if the crossed factor design is orthogonal.

However, due to the imbalance of the staggered nested design, the OLS estimators for the

fixed effects will not be BLUE, as they are for the split factorial, and there is no

guarantee that the ANOVA estimators of the variance components are UMVUIQ.

Split Factorial Staggered Nested Factorial

Figure 3.  Comparable designs for k=3, p=0, q=2, n=3.

For Table 4, the variances of the variance component estimators can be found from

the formulas provided in Searle, Casella and McCulloch, (1992, Appendix F.1, part c).

Since the variance components are nested under the treatment combinations, we can

ignore the fixed effects for this calculation.  Using their model and notation,

∑∑∑ ===

==

++=

,,

,,,2,1and,,2,1

,

3
3

2
2 SnSnNn

njai

ey

iii

i

ijiij

��

αµ

where a is the total number of batches in the experiment.  Both the staggered nested

factorial and the split factorial will have a=2r, and N=3r, where r is the number of design

Guide to Nesting

3 batches, 1 smpl. each

1 batch, 3 samples

1 batch, 2 samples &
1 batch, 1 sample
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points in the crossed factor design.  For the split factorial, 1=in  for 3r/2 of the batches

and 3=in  for the remaining r/2 batches, thus rS 62 =  and rS 153 = . For the staggered

nested factorial, 1=in  for r of the batches and 2=in  for the remaining r/2 batches, thus

rS 52 =  and rS 93 = .  Let 2
2

2
1 σστ = .  Substituting these values into the formulas

provided by Searle, Casella and McCulloch (1992) and simplifying gives:

2

22222
2
1 )23(

)6664651(2
)ˆ(

−
+−+−+−=

rr

rrrrrr
VarSplit

ττττσ ,

2

22222
2
1 )59(

)4529543054459(2
)ˆ(

−
+−+−+−=

rr

rrrrrr
VarStag

ττττσ ,

and the difference, )ˆ()ˆ( 2
1

2
11 σσ StagSplitv VarVarD −= , is

22

24232223232

1 )59()23(

)81225162345466201081567311(2

−−
+−+−+−++−+−=

rrr

rrrrrrrrrr
Dv

τττττττ

.

For r>2, it can be shown that Dv1 is a parabola in τ with a minimum point that is greater

than zero.  Since Dv1 is positive for all 2
1σ  and 2

2σ , then any staggered nested factorial

with q=2 and n=3 will have a smaller variance for 2
1σ̂ , than the competing split factorial.

Similar results were found by simulation for the case of q=4 and n=5.

Table 4.  Comparison of Split Factorial and Staggered Nested Factorial.

Split Factorial* Stag. Nested
Factorial*

Difference
(Split-Stag)

sbVar s ∀)ˆ(

(q=2, n=3) r3

2 2
2

2
1 σσ +

( )2
2

2
1

2
2

2
2

2
1

2
1

34

22

σσ
σσσσ

+
++

r ( )
2
2

2
12

2
2
1

2
2

2
1

2
1 ,0

343

)2( σσ
σσ
σσσ

∀>
+
+

r

)ˆ( 2
1σVar

(q=2, n=3)
)ˆ( 2

1σSplitVar )ˆ( 2
1σStagVar

2
2

2
1

2
1

2
11

,0

)ˆ()ˆ(

σσ

σσ

∀>

−= StagSplitv VarVarD

)ˆ( 2
2σVar

(q=2, n=3)
r

4
22σ

r

4
22σ 2

2
2
1 ,,0 σσ∀

*r is the number of design points in the crossed factor design.
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For these cases, and for the case of three variance components (q=3 and n=4) where

there is no comparable split factorial, the staggered nested factorials are preferable

designs unless a simple analysis is very important.  There are, however, many other cases

where 1+≠ qn  and staggered nested designs are not available.  In particular, for the

practical case of q=2 and n=2, there is no comparable design for the split factorial.  The

existence and optimality of designs when 1+≠ qn  and n>2 is left for future research.

3. CONCRETE PERMEABILITY APPLICATION

The split factorial designs were motivated by an experiment run at the NSF Center for

Advanced Cement-Based Materials at Northwestern University as a part of a joint project

with the National Institute of Statistical Sciences.  For exposition purposes, this

application has been simplified.  The full data set is in Appendix 3.5 of Jaiswal (1998).

The response is the electric charge (in Coulombs) passing through a sample in the

rapid chloride permeability test (RCPT), see ASTM (1991).  Lower charge implies lower

permeability of concrete to chloride ions and thus better performance.

Concrete is made by combining water, cement, and aggregate (rocks, sand) of various

sizes.  The experiment included 2 levels of water-to-cement ratio (W/C), 4 aggregate

grades, and 2 maximum aggregate sizes.  The goal of the experiment was to relate these

variables to the chloride permeability and to estimate the batch-to-batch and sample-to-

sample variance components. Since the RCPT is destructive, no repeated measurements

can be made, and thus measurement error is confounded with the sample-to-sample

variance component.  For simplicity, we take measurement error to be negligible.

In this application, there were two primary reasons for estimating the variance

components: (1) to understand the variation of permeability in concrete structures where
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multiple batches of concrete are poured together and (2) to gain intuition on whether the

mixing or casting process might produce larger variation.

A design with 4 observations at each of the 16 design points is presented in Table 5

and shown graphically in Figure 4. Table 1 is again used to convert two columns from the

24 full factorial, A and B, into a single column, X, for the four-level factor.  Many authors

have described this procedure, including Ankenman (1999) and Montgomery (1997,

p.364).  Although this full design was desirable, resource constraints required a design

with only 32 observations.  If the design were reduced by simply eliminating one half of

the recipes from the full design, many interaction terms would not be estimable.

The split factorial, shown in Table 6 and Figure 5, also reduces the design to 32 runs.

The design has k=4 two-level factors, two of which are converted to a four-level factor.

It has n=2 observations at each design point, and there are two sub-experiments so d=1

and q=2.  Since it is a full factorial, p=0, thus there is no defining relation and r=2k-p=16.

The correlation relation is I~ACD.  For the split factorial, all response surface effects can

be estimated, though some of these estimators are correlated.  There are 8 degrees of

freedom for estimating each variance component.

Figure 6 shows the measured charge (in Coulombs) for the observations in the split

factorial.  Lower aggregate grade levels and larger maximum aggregate size reduce the

charge, suggesting that including larger aggregate improves performance.

The variance components can be estimated from the mean square in Table 7 as

331,137560,135891,272ˆ 2
1 =−=σ  and 560,135ˆ 2

2 =σ .  In this case, the variance

components are roughly the same size.  The F-test in Table 7 has a p-value of 0.17
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suggesting the batch-to-batch variance may be zero.  However, this probably just means

that the batch-to-batch variance is not much larger than the sample-to-sample variance.

Table 8 shows the approximate tests for the fixed effects.  As in Section 2,

Satterthwaite’s method was used.  For this example, ( )2/12/3 −=′a  and

( )75.13555918.272891=′m , and thus the denominator for the F-test in (7) is

18.341557=′ma  and 42.5rdenominato =df .  The tests suggest that Factor D, the max.

aggregate size, and factor X, the aggregate grade, have significant effects, confirming the

observations from the cube plot in Figure 6.  Both the quadratic and cubic terms for

aggregate grade were found to be insignificant, thus only the linear contrast (X in Table

6) and max. aggregate size (D in Table 6) are included in the response surface model,

Permeability = 3987 + 654 X - 826 D.

This model allows for predictions of the permeability in the experimental region.

More description of the results can be found in Jaiswal, S. S., Picka, J. D., et al. (2000).

Table 7.  The ANOVA Table for the Concrete Permeability Example.
Source             DF   Type I SS    Type I MS       EMS    F       p

X                  3   17387343.84    5795781.28
C                  1      94721.28      94721.28
D                  1   21801455.28   21801455.28
X*C                3    2957371.09     985790.36
X*D                3    4013875.59    1337958.53
C*D                1    1168538.28    1168538.28
X*C*D              3    1102912.09     367637.36

BATCH(X*C*D)       8    2183129.50     272891.18  2
2

2
1 σσ +   2.01   0.17

Sample(BATCH)      8    1084478.00     135559.75      
2
2σ

Corrected Total   31   51793824.96

Table 8. Tests for Fixed Effects.
Source      NDF   DDF  Type III F  Pr > F

X             3  5.42       16.97  0.0036
C             1  5.42        0.28  0.6193
D             1  5.42       63.83  0.0003
X*C           3  5.42        2.89  0.1339
X*D           3  5.42        3.92  0.0809
C*D           1  5.42        3.42  0.1191
X*C*D         3  5.42        1.08  0.4332
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4.  DISCUSSION AND EXTENSIONS

Split factorial designs have attractive characteristics for estimating both response

surface effects and variance components.  1) The experimenter can divide the degrees of

freedom between the response surface effects and the variance components. 2) Each

variance component is estimated with equal degrees of freedom.  3) The ANOVA and

OLS estimates are often adequate, resulting in simple analysis.  4) The symmetry of the

split factorial facilitates the implementation and analysis of the experiment.

To illustrate 4) above, note that due to the symmetry of the split factorial, the estimate

of the sample-to-sample variance is just the pooled variance of the pairs of observations

in the shaded circles in Figure 6.  Similarly the pooled variance from the unshaded circles

is the estimate of the sum of the two variance components. Also, although missing

observations change the correlation structure of the fixed effect estimators, they do not

affect the property that the OLS estimators for the fixed effects are BLUE or that the

ANOVA estimators are UMVUIQ, since they only change the size of the identity

matrices and length of the vectors of ones in equations (3) and (4).  However, adding

observations, such as an additional sample to any batch in sub-experiment 1 on Table 6,

can destroy these properties.  With such an addition, generalized least squares and REML

estimates would be needed for the fixed effects and variance components, respectively.

More flexibility can be introduced into the split factorial designs by allowing each

sub-experiment to have a different number, ni, of observations at each design point.  This

would result in the sum of squares for the ith variance component having pdk
in −−− 2)1(

degrees of freedom and the total number of observations being ∑
=

−−
q

i

pdk
in

1

2 .
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Table 5.  The Full 64-Run Design for the Concrete Permeability Experiment.

X A B C D Batch 1 Batch 2
Recipe # Grade Code 1 Code 2 W/C Ratio Max. Ag. Cyl. 1 Cyl. 2 Cyl. 1 Cyl. 2

1 1 -1 -1 -1 -1 × × × ×
2 2 1 -1 -1 -1 × × × ×
3 3 -1 1 -1 -1 × × × ×
4 4 1 1 -1 -1 × × × ×
5 1 -1 -1 1 -1 × × × ×
6 2 1 -1 1 -1 × × × ×
7 3 -1 1 1 -1 × × × ×
8 4 1 1 1 -1 × × × ×
9 1 -1 -1 -1 1 × × × ×

10 2 1 -1 -1 1 × × × ×
11 3 -1 1 -1 1 × × × ×
12 4 1 1 -1 1 × × × ×
13 1 -1 -1 1 1 × × × ×
14 2 1 -1 1 1 × × × ×
15 3 -1 1 1 1 × × × ×
16 4 1 1 1 1 × × × ×

×  Indicates an Observation

Figure 4.  The Full Design.

Max. Aggregate

-1 Water-to-Cement Ratio 1

1

-1

Aggregate Grade

1

2

3

4

Batch 1

Batch 2

Sample 1

Guide to Nesting

Sample 2
Sample 2
Sample 1
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Table 6. The Split Factorial Design for the Concrete Permeability Experiment.

X A B C D B1~
ACD

Batch 1 Batch 2

Recipe # Grade Code 1 Code 2
W/C
Ratio

Max.
Ag.

Sub-
Exp. Cyl. 1 Cyl. 2 Cyl. 1 Cyl. 2

1 1 -1 -1 -1 -1 -1 1 × ×
10 2 1 -1 -1 1 -1 1 × ×
3 3 -1 1 -1 -1 -1 1 × ×

12 4 1 1 -1 1 -1 1 × ×
13 1 -1 -1 1 1 -1 1 × ×
6 2 1 -1 1 -1 -1 1 × ×

15 3 -1 1 1 1 -1 1 × ×
8 4 1 1 1 -1 -1 1 × ×
9 1 -1 -1 -1 1 1 2 × ×
2 2 1 -1 -1 -1 1 2 × ×

11 3 -1 1 -1 1 1 2 × ×
4 4 1 1 -1 -1 1 2 × ×
5 1 -1 -1 1 -1 1 2 × ×

14 2 1 -1 1 1 1 2 × ×
7 3 -1 1 1 -1 1 2 × ×

16 4 1 1 1 1 1 2 × ×
×  Indicates an Observation

Figure 5.  Split Factorial Design for the Concrete Permeability Experiment.
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-1 Water-to-Cement Ratio 1

1

-1
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1
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3

4
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Figure 6.  A Cube Plot of the Data from the Concrete Experiment.

APPENDIX 1:

Proof that OLS Estimators are BLUE for the Fixed Effects in a Split Factorial.

The well-known condition, under which the OLS estimators of fixed effects from a

design, X, are BLUE, is that there exists an invertible matrix A such that AXXV =−1 ,

where )(yV Var= .  See Seber (1977, p. 63).

For a split factorial, we will show that AXXV =−1  for

11

1
XXA 1∆′=

r
,

Max Aggregate Size

-1 Water to Cement Ratio 1

1

-1

Aggregate
Grade

1

2

3

4

4814
5514

6724
5878

6024
6641

7470
6558

4465
4945

4182
4939

5154
5143

5123
5523

4559
4442

5749
6629

8313
7747

8522
7590

3742
4458

3864
4093

5273
4494

5715
5648

2 Samples from the same batch tested2 Samples from different batches tested
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where 1X is the full rr × contrast matrix (including the constant column) for a single

replicate of a 2k-p design and ∆1 is an rr ×  diagonal matrix.

Given the ordering of X in (3) for a split factorial and the resulting Z in (4), then
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From (2) and (A.1.1), it can be seen that ( )njnj

r

j
JIV βα +⊕=

=1
, where

∑∑
==

==
j

i
ij

q

i
ij

1

2

1

2 and σβσα  and r = 2k-p.  Assume that 02 >qσ .  Since ii ∀≥ 02σ , it

follows that .0,0 jjj ∀≥> βα   The inverse of V is then

( )njnj

r

j
JIV ∗∗

=

− +⊕= βα
1

1 , (A.1.2)

where 
j

j αα 1=∗  and ( )jjj

j
j nβαα

β
β

+
−

=∗ .

Let ∆1 be an rr ×  diagonal matrix such that ∗∗ += jjjj nβαδ  is the jth diagonal

element of ∆1, then using (A.1.2),

XXV ∆=−1 , (A.1.3)

where nI⊗= 1∆∆ .  Since 
jj

jj nβα
δ

+
= 1 ,  then 0>jjδ , thus both ∆1 and  ∆ are

invertible.  Using (A.1.3) and rrIXXXX == 1111 '' , then

( ) ( )( ) .)1
1

( 1
11111111 XVX1XI1IXXX1XXA −==⊗⊗=⊗=⊗′⊗= ∆∆∆∆∆ nnnnn r

Since 1
1

11
1 1

XXA −− ′= ∆∆
r

, A is invertible and therefore, the OLS estimators of the

coefficients b in (1) are BLUE, if X is the contrast matrix of a split factorial.
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APPENDIX 2:

Proof that ANOVA Estimators of the Variance Components for Split Factorials are

UMVUIQ.

The proof of this result follows the argument given in Searle, Casella, and McCulloch

(1992, pp. 417-421). It is necessary to assume that there is no kurtosis associated with the

random effects.

The argument has two steps, both of which involve constructing a linearized version

of the quadratic ANOVA estimators of the variance components. The proof in Appendix

1 implies that the argument on pp. 420-421 of Searle et al. (1992) is true for the ANOVA

estimators for split factorial variance components, and hence that they are the best

quadratic unbiased estimators of these variance components. By construction they are

invariant, and to show that they have uniformly minimum variance among all such

estimators, a condition specified by Seely (1971) must be satisfied. The remainder of this

appendix shows that this condition is satisfied, and that hence the ANOVA estimators are

UMVUIQ estimators.

For this proof, we use the model in (1).  Using X1 as in (3),

( )( ) )(
11

'
1

11
1

nrnn nnrnr
'' JI1X1XXXXX)X(X ⊗=′⊗′⊗==− .

Let us define a matrix )( 1XX)XX(IM ′′−= −
nr .  Some manipulation shows that:






 −⊕⊗=

= nnn

q

s
qr JIIM 1

1
/ .

Seely’s condition concerns the set,









ℜ∈′=Ω ∑
=

q

i
iiii cc
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of all linear combinations of the MZMZ ii ′  matrices.  Searle, et al. refer to Theorem 6 of

Kleffe and Pincus (1974) to state that if Ω  is a quadratic subspace of symmetric

matrices, then UMVUIQ estimators exist.  A quadratic subspace is a set of matrices is

such that if any matrix B is in the set, then B2 is also in the set. Using Lemma 1 condition

(c) of Seely (1971), Ω  is a quadratic subspace if

( )( ) wvc
q

s
ssswvwwvv ,

1
,, ∀′=′′ ∑

=

MZMZMZMZMZMZ   , (A.2.1)

where { }swvc ,,  is a qqq ××  tensor of constants.  The condition, simply stated, is that the

product of any pair of MZMZ ′  matrices is some linear combination of the set of original

MZMZ ′  matrices.

We will now show that any split factorial experiment will satisfy this condition.

Using the expression for Zi in (4),
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Since ( ) nnnnn 0JJI =− 1 , where 0n is an n×n matrix of zeros, then
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Note that ( )( ) ( )nnnnnnnnn JIJIJI 111 −=−− .  Thus if v ≤ w, then

( )( ) ( )( ) MZMZMZMZMZMZMZMZMZMZ vvvvwwwwvv ′=′′=′′ ,

and the condition is satisfied.
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