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This article introduces a new class of experimental designs, called split factorials,
which allow for the estimation of both response surface effects (fixed effects of
crossed factors) and variance components arising from nested random effects. With
an economical run size, split factorials provide flexibility in dividing the degrees of
freedom among the different estimations. For a split factorial design, it is shown
that the OLS estimators for the fixed effects are BLUE and the variance component
estimators from the mean squared errors on the ANOVA table are also minimum
variance among unbiased quadratic estimators. An application involving concrete
mixing demonstrates the use of a split factorial experiment.
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In many experimental settings, the measured response is affected not only by the
fixed effects of crossed factors, but also by the random effects (usualy nested) of
sampling and measurement procedures. For example, in an experiment to study certain
critical dimensions on a molded part, machine settings such as mold zone temperatures or
screw speed could be the crossed factors of interest while shift-to-shift variation, part-to-
part variation, and measurement-to-measurement variation might be the random effects
of interest. The fixed effect estimates can be used to optimize the process, and knowing
which variation sourceis largest could help to focus quality improvement efforts.

The fixed effects of crossed factors are often studied with 2 experiments, where k is

the number of crossed factors, p is the degree of fractionation, and 2P is the number of



design points. The variances of nested random effects are called variance components
(see Searle, Casdlla, and McCulloch, 1992), and are typically estimated by means of
hierarchical or nested designs (see Figure 1). If the ith nested random factor in a g-stage
hierarchical design has the same number of levels, m, at each level of the (i-1)st factor,

then the design is balanced. If m =m for dl i, then the design will have m‘

observations. Figure 1 shows a balanced hierarchical design for two random factors:

batches and samples nested within batches.

Batch 1 Batch 2 Batch 3

Sample Sample Sample Sample Sample Sample Sample Sample Sample
1 2 3 1 2 3 1 2 3

Figure 1. A Balanced Nested Design for my=3 Batches and mp,=3 Samples.

Both crossed factor effects and variance components could be estimated by
performing an m? nested design at each design point in a 2P design. However, this
would require m?x2P observations, which often is not feasible or economical.

In this article, we construct a new class of experimental designs, called split factorial
designs. A split factorial is a subset of an mx2P experiment that preserves the ability to
estimate both the crossed factor effects (with a specified resolution) and the q variance
components. Although other subsets could be used for these situations, the split factorial
is chosen here because it is easy to design, run and analyze. These desirable properties
result because the split factorial retains many of the characteristics of balanced designs

including equal number of observations at each of the 2P design points, the use of simple



methods for parameter estimation, and an easily understood structure that can facilitate
implementation of the experiment.

In the next section, a design methodology for split factorial experimentsis introduced.
Section 2 discusses analysis of split factorial designs and compares split factorials with
existing designs for the few practical cases where they are comparable. In Section 3, an
experiment involving concrete mixing, with three crossed factors and two variance
components, is used to motivate and demonstrate the use of split factorial experiments. A

discussion section concludes the article.

1. DESIGN METHODOLOGY
A methodology is now introduced for designing a split factorial experiment that has k
crossed factors, each at two levels, and g=2% (where d is an integer) variance components
associated with nested random effects. The methodology takes a 2P design with n
observations at each of the 2P design points. The design points are split into q sub-
experiments by d blocking (splitting) generators. The experiment is then called a 2%
(@Phn split factorial. Each of the sub-experiments gathers information on only one of the
q variance components. The design steps for a 2 9 Pn split factorial are as follows:
1) Select nand p such that 2P degrees of freedom (df.) are enough for estimating the
fixed effectsand (n—1)2*°"" df. are sufficient for each variance component.
2) Choose a 2 9P plocked factorial using blocking generators from a reference
such as Bisgaard (1994); Sun, Wu, and Chen (1997); or Sitter, Chen, and Feder
(1997). The q blocks (here called sub-experiments) will each have 2% design

points.



3) Let the variance components (1 to g) be such that the random effects of the (i+1)st
variance component are nested under the effects of the ith variance component.
4) In the i™ sub-experiment (for i from 1 to q), a nested design that branches only at
thei™ level (into n branches) will be run at each of the 24P design points.
Example 1. This split factoria is too small for actual use, but is useful for
demonstration of the design procedures. Let a 2° experiment (k=3, p=0) be split into 4
sub-experiments for 4 variance components (g=4, d=2) with n=3 observations at each
design point. The blocking generators B;=AB and B,=AC can be used to split the
experiment into sub-experiments, each with 2 design points (see Tables 1 & 2). Figure 2
shows the nesting structure at each design point. As described in design step 4, the
nesting structures only branch at one level and the branching level is different for each
sub-experiment. For example, the nesting structures at the two design points in sub-

experiment 3 are circled in Figure 2 and branch only at the third level of nesting.

Table 1. Coding for Converting 2 Columns, B; and B,, from a Two-Level
Factorial into a Sngle Column Designating Sub-experiment or Block.

B, B, Sub-experiment,
Level, or Block
-1 -1 — 1
1 -1 — > 2
-1 1 — > 3
1 1 — > 4
Table 2. The 22 9,9 glit Factorial using B,=AB and B,=AC for Splitting.
Design A B C B:=AB B,=AC Sub-exp.
Point
D -1 11 1 1 4
@ 1 1 -1 -1 -1 1
©) -1 1 -1 -1 1 3
@ 1 | 1 -1 2
® -1 101 1 -1 2
® 1 -1 1 -1 1 3
@ -1 1 1 -1 -1 1
® 1 1 1 1 1 4
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Figure 2. The Nesting Srructure for k=3, p=0, g=4, n=3.

2. ANALYSISOF SPLIT FACTORIAL DESIGNS
In this section, a linear mixed effects model is presented for the analysis of a split
factorial. Using this model, estimation and tests of the variance components are
discussed, including the difficulty of avoiding negative variance estimates. Correlation
between the fixed effects estimators is discussed, and then the estimates of the variance
components are used to perform approximate tests for the fixed effects. Finaly, split
factorials are compared with an alternative experimental design methodology.

Model and Variance Structure: A response model for a 2& @ Pxn gplit factoria is:
q
y=Xb+) Z,u; (1)
i-1

where r = 2P, X is an nrxr matrix of estimable response surface contrasts including a

constant column, and b is a vector of r unknown coefficient parameters. The matrix Z; is



an (nr xw) indicator matrix associated with the ith variance component, and
q

inr +(q—i)r

u; is a vector of length consisting of normally distributed independent

random effect parameters associated with the ith variance component such that
u, ~ N(O, Iof). Each random effect in u; is nested under the treatment combinations and

the (i-1) random effects above it. The usual random error term is ug. The quantity

inr +(g-i)r is derived by observing that there are " evels of the ith random factor in
q q

thefirst i sub-experiments and r levelsin the remaining (g-i) sub-experiments.
q

Assuming that the variance components do not depend on the crossed factors, then

V =Var(y)=Y 677,7]. @

i=1
Given k factors, 2Pdesign points, g variance components, and n observations per design
point, then expressions for X and Z; can be derived for a split factorial design. Let

X, be the full rank rxr design matrix (including the constant) for a single replicate of
the 2P design, then X X;'=X;'X;=rl,, where I, is the rxr identity matrix. The
observations are ordered such that X = X; ®1,,, where 1, is an n-length vector of ones
and ® represents the Kronecker product. Let x, be the row in X, which is the tth

observation in the sth sub-experiment. Now sort the rows of X, in ascending order first

by t and then by s such that



(X, %, ©1, ]
X’2,1 X,Z,l ® 1n
X’ X, ®1
X,=| M |andthus X =| " . ©)
X1,2 X1,2 ® 1n
X,2,2 X’2,2 ® 1n
| Xa | _XM@l”_

P O
The Kronecker sum is defined such that P@Q = [O Q] for any matrices, P and Q. If

this notation is extended to a Kronecker summation, then the ordering in (3) leadsto

z, = ,,q®((§ll : )@(ilm D (@)

Estimation and Testing of Variance Components:. The variance component estimators
can be derived by the method of moments from the expected mean squaresin Table 3. In

the table, the sum of squaresfor theith level of nestingis given by

r

SS =Y (Ygmerw = Yguun) N

g=1 m

S =Y Y Y (Fyime —Vguon)? foOri22.. g,
g=1 I m h

where g is the subscript related to the design points (treatment combinations) of the

crossed design and |, m and h are the subscripts related to the (i-1)%, ith, and qth level of

nesting, respectively. The star subscript indicates averaging over that level of nesting.
Due to the smplicity of the expected mean squares for a split factorial, the method of

moments estimator for o/ is 67 =MS —MS , fori = 1to g-1. Under normality, these

ANOVA estimators are not only unbiased, but also are the Uniformly Minimum Variance

Unbiased trandation-Invariant Quadratic (UMVUIQ) estimators (see Appendix 2).



Table 3. ANOVA table for a Split Factorial.

Source df SS MS Expected MS F ratio
Fixed Effects AL SSe  MSe  bXXb/
(not corrected q _
for the mean) . ( a_in-1) }Tiz
i-1 q
Variance &, Fi=
_ k-d-p o° .
Component 1 (n-12 S MS ; a- MS/MS;
Variance &, Fi=
_ k—-d-p ) o° . - -
Component i (n-12 SS MS o MS/MS+1
. . . 12
Error (n—=1)2<-P SSy MS, o,
(Var. Comp. q)
Total n2<P SSr

Tests for the variance components are a'so simple under normality. It can be shown
that all termsin SS are zero except those deriving from observations in sub-experiment i.
Since each sub-experiment is balanced when treated alone, each of the sums of squares
for variance components in Table 3 when divided by its expected mean square has a chi-

squared distribution with (n—1)2°"" degrees of freedom. Thus, standard F-tests as

shown in Table 3 can be used to test if any variance component is zero.

Unfortunately, ANOVA variance estimates can be negative. Searle, Casella, and
McCulloch (1992, p.130) discuss various methods of coping with this possibility. A
common strategy is to assume that those variance components with negative estimates are
zero or a least negligible. Alternatively, maximum likelihood methods like those
implemented in many software packages aways produce non-negative estimates.

Negative estimates will tend to occur unless the variance components with lower



subscripts are substantially larger than those with higher subscripts. In split factorials,
increasing either n or r will reduce the problem of negative estimates. Under normality,
Searle, Casella, and McCulloch (1992, p.137) provide an expression which, when applied

to the split factorial ANOVA tablein Table 3, shows that

g-(i+1)
2
2.0
A j=0
Pr{ai2 < 0}: ProF < ,
2
O
j=0

where f =(n-1)2“"" and F, , has an F-distribution with f and f degrees of freedom.

Clearly, one needs some knowledge of the relative size of the variance components in
order to determine the probability of negative variance estimates.

When all the ANOVA estimates are positive and normality is assumed, they are
equivalent to restricted maximum likelihood (REML) estimates of the variance
components. This is due to the fact that each sub-experiment, treated alone, contains
balanced data (see Anderson, et a., 1984). REML estimators are consistent and have an
approximately normal distribution in large samples (Searle, Casella, McCulloch, 1992).
This equivalence provides a closed-form expression for the REML estimates.

Estimation, Correlation, and Tests of Fixed Effects: The condition under which the

OLS estimators of the parameters in b are the best linear unbiased estimators (BLUE) is

that an invertible matrix A exists such that V"1X=XA (Seber, 1977, p. 63). Appendix 1

shows that this condition is satisfied for data from a split factorial. Thus, estimating the
coefficients of the response surface can be done by simple OL S regression techniques

6:(xwlx)1xw1y:(x’x)‘1x'y:n—1rx’y. (5)



In addition to the usual confounding caused by the fractionation in the 2P design,
there will also be non-zero covariance between certain fixed effect estimators due to the
covariance between certain observations in the split factorial. The effect estimators that
are correlated can be determined by creating a new defining relation for the experiment,
called a correlation relation, that uses all the generators including the d generators that
are used to split the factorial into sub-experiments. However, the splitting generators use
a different operator, “~" which means “correlated with”. Suppose, for example, the
defining relation of a factorial design is I=ABCF and the splitting generators are:
B,~ABE; B,~BCDE. Since there are no expected block effects, these effects are
eliminated. The words ABE and BCDE are then used to extend the defining relation (see
Box, Hunter and Hunter, 1978, page 409) to a correlation relation as follows:

I=ABCF~ABE~CEF~ BCDE~ADEF~ACD~BDF.
Multiplying any effect by this correlation relation shows the confounding and correlation
pattern. Concepts similar to resolution and aberration (see Fries and Hunter, 1980) can
now be used to select splitting generators for split factorials.

The sign and amount of correlation will be evident in the variance-covariance matrix

for the coefficient estimators, whichis
H =Var(b)= (x'vx) ™. (6)
Commonly, the estimates of the variance components derived by the method of moments

above are used in (2) to obtain a V that can be substituted for V in (6). Let b; be the tth

element of b. Under the null hypothesis that b = 0, the expected mean square associated

with b; can be shown to be i(n—i(nq_l)}ff. However, if any of the effects in the

10



correlation string for by are non-null, they will bias the mean square. Assuming al the

effectsin the correlation string are null, an approximate F-test that =0 can be performed

using the test statisticF, =bZ/h,, where h, is the tth diagona element of

A = (xVx)". Equivalently,

F, =MS,, /i(n— i(”q_l) )MSI , (7)

where MScg is the mean square due only to the tth factor. It can be shown that the

denominator in (7) isequal to a’'m, where the ith element of mandaare m = MS, and

a1_{n—(”% fori=1
-7 else

respectively. Satterthwaite' s approximation now can be used to determine appropriate
degrees of freedom for this approximate F-test. The numerator has one degree of

freedom and the denominator degrees of freedom are approximated by

_(n=12“*P(@m)’

denominator — q

> am)’

i=1

df

Comparison with existing design methodology: The only class of designs in the
literature for this type of experimentation is the staggered nested factorial proposed by
Smith and Beverly (1981). Staggered nested designs were first introduced by Bainbridge
(1965) and are unbalanced hierarchical nested designs with a single branch at each level
of nesting. These designs split the degrees of freedom equally among the variance
components. The staggered nested factorial places a staggered nested design at each
point of a crossed factor design. Staggered nested factorials exist only if n, the number of

observations at each design point, is g+1, where q is the number of variance components.

11



For two designs to be comparable, they must have the same crossed design and equal
degrees for each of the variance components. Thus, for any split factorial with g=2 and
n=3, there is a comparable staggered nested factorial. Comparable designs for a 2°
crossed design are shown in Figure 3. Table 4 shows that the staggered nested design
produces lower variance estimators than the split factorial. Unlike the split factorial, the
staggered nested factorial is orthogonal if the crossed factor design is orthogonal.
However, due to the imbalance of the staggered nested design, the OLS estimators for the
fixed effects will not be BLUE, as they are for the split factorial, and there is no

guarantee that the ANOV A estimators of the variance components are UMV UIQ.

1 [ H Guideto Nesting
= -
= {E 3 batches, 1 smpl. each

_rE 1 batch, 3 samples

B ot =

_EE 1 batch, 2 samples &
1 batch, 1 sample
Solit Factorial - Staggered Nested Factorial

Figure 3. Comparable designsfor k=3, p=0, g=2, n=3.

For Table 4, the variances of the variance component estimators can be found from
the formulas provided in Searle, Casella and McCulloch, (1992, Appendix F.1, part c).
Since the variance components are nested under the treatment combinations, we can

ignore the fixed effects for this calculation. Using their model and notation,

Yj =uto; +€,

i=12...,aand j=12,...,n,

Yn=N, Yn’=S, Yn’=s,

where a is the total number of batches in the experiment. Both the staggered nested

factoria and the split factorial will have a=2r, and N=3r, wherer is the number of design

12



points in the crossed factor design. For the split factorial, n, =1 for 3r/2 of the batches
and n, =3 for the remaining r/2 batches, thus S, =6r and S, =15r . For the staggered
nested factorial, n, =1 for r of the batchesand n, =2 for the remaining r/2 batches, thus
Substituting these values into the formulas

S, =5 and S,=9r. Let 1=02/c?.

provided by Searle, Casellaand McCulloch (1992) and simplifying gives:

2(1—5r +6r> —4rt+6r°t—6rv° +6r°r?)
r(3r—2)°

Varspnt (612 ) =

2(9—45r +54r? —30r7 + 54r °t — 29rt° + 45r °1%)
r(9r —5)? ’

Var&ag (6-12) =

and the difference, D, =Varg,, (67) —Varg,,(67) , IS

_ 2(—11+73r —156r2 +108r > + 20r T — 661 > + 54r °t — 34rt° +162r > — 225r °z% + 81r ‘r?)

D
v r(3r—2)%(9r -5)°

For r>2, it can be shown that D, is a parabolain 7 with a minimum point that is greater
than zero. Since Dy, is positive for dl ¢/ and o7, then any staggered nested factorial
with g=2 and n=3 will have a smaller variance for 67, than the competing split factorial.

Similar results were found by simulation for the case of g=4 and n=5.

Table 4. Comparison of Split Factorial and Staggered Nested Factorial.

Split Factorial* Stag. Nested Difference
Factorial* (Split-Stag)
Var(b,) Vs 26. +05 2067 +20’05+0Z | 02(207 +02) . s
T — > > 5 >0 Vo,,0,
(0=2, n=3) 3r r(do? +302) | 3r(4o? +302)
22
o) | Varau(@) | Varag(6]) | D=Vl (61) ~Verey (61)
e >0 Vo/,0}
Var (62) 4 4
2y | = 0. voi.o}

*r isthe number of design pointsin the crossed factor design.
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For these cases, and for the case of three variance components (g=3 and n=4) where
there is no comparable split factorial, the staggered nested factoridls are preferable
designs unless asimple analysisis very important. There are, however, many other cases
where n# q+1 and staggered nested designs are not available. In particular, for the
practical case of g=2 and n=2, there is no comparable design for the split factorial. The

existence and optimality of designswhen n = q+1 and n>2 is|left for future research.

3. CONCRETE PERMEABILITY APPLICATION

The split factorial designs were motivated by an experiment run at the NSF Center for
Advanced Cement-Based Materials at Northwestern University as a part of a joint project
with the National Institute of Statistical Sciences. For exposition purposes, this
application has been ssimplified. The full dataset isin Appendix 3.5 of Jaiswal (1998).

The response is the electric charge (in Coulombs) passing through a sample in the
rapid chloride permeability test (RCPT), see ASTM (1991). Lower charge implies lower
permeability of concrete to chloride ions and thus better performance.

Concrete is made by combining water, cement, and aggregate (rocks, sand) of various
sizes. The experiment included 2 levels of water-to-cement ratio (W/C), 4 aggregate
grades, and 2 maximum aggregate sizes. The goa of the experiment was to relate these
variables to the chloride permeability and to estimate the batch-to-batch and sample-to-
sample variance components. Since the RCPT is destructive, no repeated measurements
can be made, and thus measurement error is confounded with the sample-to-sample
variance component. For simplicity, we take measurement error to be negligible.

In this application, there were two primary reasons for estimating the variance

components: (1) to understand the variation of permeability in concrete structures where

14



multiple batches of concrete are poured together and (2) to gain intuition on whether the
mixing or casting process might produce larger variation.

A design with 4 observations at each of the 16 design points is presented in Table 5
and shown graphically in Figure 4. Table 1 is again used to convert two columns from the
2* full factorial, A and B, into asingle column, X, for the four-level factor. Many authors
have described this procedure, including Ankenman (1999) and Montgomery (1997,
p.364). Although this full design was desirable, resource constraints required a design
with only 32 observations. If the design were reduced by simply eliminating one half of
the recipes from the full design, many interaction terms would not be estimable.

The split factorial, shown in Table 6 and Figure 5, also reduces the design to 32 runs.
The design has k=4 two-level factors, two of which are converted to a four-level factor.
It has n=2 observations at each design point, and there are two sub-experiments so d=1
and g=2. Sinceit isafull factorial, p=0, thus there is no defining relation and r=2**=16.
The correlation relation is I~JACD. For the split factorial, al response surface effects can
be estimated, though some of these estimators are correlated. There are 8 degrees of
freedom for estimating each variance component.

Figure 6 shows the measured charge (in Coulombs) for the observations in the split
factorial. Lower aggregate grade levels and larger maximum aggregate size reduce the
charge, suggesting that including larger aggregate improves performance.

The variance components can be estimated from the mean square in Table 7 as

67 =272891-135560=137,331 and &7 =135560. In this case, the variance

components are roughly the same size. The F-test in Table 7 has a p-value of 0.17

15



suggesting the batch-to-batch variance may be zero. However, this probably just means
that the batch-to-batch variance is not much larger than the sample-to-sample variance.
Table 8 shows the approximate tests for the fixed effects. As in Section 2,

Satterthwaite's method was used.  For this example, a'=(3/2 -1/2) and
m’=(272891.18 135559.75), and thus the denominator for the F-test in (7) is
a’'m=341557.18 and df ... =542. The tests suggest that Factor D, the max.

aggregate size, and factor X, the aggregate grade, have significant effects, confirming the
observations from the cube plot in Figure 6. Both the quadratic and cubic terms for
aggregate grade were found to be insignificant, thus only the linear contrast (X in Table
6) and max. aggregate size (D in Table 6) are included in the response surface model,
Permeability = 3987 + 654 X - 826 D.
This model alows for predictions of the permeability in the experimental region.

More description of the results can be found in Jaiswal, S. S., Picka, J. D., et a. (2000).

Table 7. The ANOVA Table for the Concrete Permeability Example.

Source DF Type I SS Type I MS EMS F P
X 3 17387343.84  5795781.28

c 1 94721.28 94721.28

D 1 21801455.28  21801455.28

X*C 3 2957371.09 985790.36

X*D 3 4013875.59  1337958.53

C*D 1 1168538.28  1168538.28

X*C*D 3 1102912.09 367637.36

BATCH (X*C*D) 8  2183129.50 272891.18 O/ +0, 2.01 0.17
Sample (BATCH) 8  1084478.00 135559.75 o

Corrected Total 31 51793824 .96

Table 8. Tests for Fixed Effects.

Source NDF DDF Type III F Pr > F
X 3 5.42 16.97 0.0036
c 1 5.42 0.28 0.6193
D 1 5.42 63.83 0.0003
X*C 3 5.42 2.89 0.1339
X*D 3 5.42 3.92 0.0809
C*D 1 5.42 3.42 0.1191
X*C*D 3 5.42 1.08 0.4332

16



4. DISCUSSION AND EXTENSIONS

Split factorial designs have attractive characteristics for estimating both response
surface effects and variance components. 1) The experimenter can divide the degrees of
freedom between the response surface effects and the variance components. 2) Each
variance component is estimated with equal degrees of freedom. 3) The ANOVA and
OLS estimates are often adequate, resulting in simple analysis. 4) The symmetry of the
split factorial facilitates the implementation and analysis of the experiment.

Toillustrate 4) above, note that due to the symmetry of the split factorial, the estimate
of the sample-to-sample variance is just the pooled variance of the pairs of observations
in the shaded circlesin Figure 6. Similarly the pooled variance from the unshaded circles
is the estimate of the sum of the two variance components. Also, although missing
observations change the correlation structure of the fixed effect estimators, they do not
affect the property that the OLS estimators for the fixed effects are BLUE or that the
ANOVA estimators are UMVUIQ, since they only change the size of the identity
matrices and length of the vectors of ones in equations (3) and (4). However, adding
observations, such as an additional sample to any batch in sub-experiment 1 on Table 6,
can destroy these properties. With such an addition, generalized least squares and REML
estimates would be needed for the fixed effects and variance components, respectively.

More flexibility can be introduced into the split factorial designs by alowing each

sub-experiment to have a different number, n;, of observations at each design point. This

would result in the sum of squares for the ith variance component having (n, —1)2 4P

q
degrees of freedom and the total number of observations being ) n, 2.

i=1

17



Table 5. The Full 64-Run Design for the Concrete Permeability Experiment.

--------------- e
Max. Aggregate

X A B C D Batch 1 Batch 2
Recipe# Grade Codel Code2 W/CRatio Max.Ag. |[Cyl.1|Cyl.2|Cyl.1|Cyl. 2
1 1 -1 -1 -1 -1 X X X X
2 2 1 -1 -1 -1 X X X X
3 3 -1 1 -1 -1 X X X X
4 4 1 1 -1 -1 X X X X
5 1 -1 -1 1 -1 X X X X
6 2 1 -1 1 -1 X X X X
7 3 -1 1 1 -1 X X X X
8 4 1 1 1 -1 X X X X
9 1 -1 -1 -1 1 X X X X
10 2 1 -1 -1 1 X X X X
11 3 -1 1 -1 1 X X X X
12 4 1 1 -1 1 X X X X
13 1 -1 -1 1 1 X X X X
14 2 1 -1 1 1 X X X X
15 3 -1 1 1 1 X X X X
16 4 1 1 1 1 X X X X
x Indicates an Observation

Guideto Nesting

Sample 1
Batch 1 Sample 2 :|_/. —|:

Sample 2 i
Batch 2 g | 4
s — = S
— A — =
; i} ! — =
Aggregate Grade :|__E ‘|: _|:
) | — |
J=s
—F

Figure 4. The Full Design.
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Table 6. The Split Factorial Design for the Concrete Permeability Experiment.

X A B C D B~ Batch 1 Batch 2
ACD
] W/C Max. Sub-
Recipe# Grade Codel Code2 Rgio Ag. Exp. [Cyl. 1 |Cyl. 2 |Cyl. 1|Cyl. 2
1 1 -1 -1 -1 -1 -1 1 X X
10 2 1 -1 -1 1 -1 1 X X
3 3 -1 1 -1 -1 -1 1 X X
12 4 1 1 -1 1 -1 1 X X
13 1 -1 -1 1 1 -1 1 X X
6 2 1 -1 1 -1 -1 1 X X
15 3 -1 1 1 1 -1 1 X X
8 4 1 1 1 -1 -1 1 X X
9 1 -1 -1 -1 1 1 2 X X
2 2 1 -1 -1 -1 1 2 X X
11 3 -1 1 -1 1 1 2 X X
4 4 1 1 -1 -1 1 2 X X
5 1 -1 -1 1 -1 1 2 X X
14 2 1 -1 1 1 1 2 X X
7 3 -1 1 1 -1 1 2 X X
16 4 1 1 1 1 1 2 X X
x Indicates an Observation
Guideto Nesting |_|:
Sample 1 |
Batch 1 Sample 2 i
Sample 2 I
= O
3 }‘ i JE
Aggregate Grade '
, —1 :|‘|7:L _______________ j‘ __________
o 1
1 /”/ Max. Aggregate
-1
-1 Water-to-Cement Ratio 1

Figure5. Split Factorial Design for the Concrete Permeability Experiment.
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O 2 Samples from different batches tested Q 2 Samples from the same batch tested

5715

4
3

Aggregate

Grade
2
1
4814 4559 Max Aggregate Size
1 5514 @
-1

-1 Water to Cement Ratio 1
Figure 6. A Cube Plot of the Data from the Concrete Experiment.

APPENDIX 1:
Proof that OL S Estimatorsare BLUE for the Fixed Effectsin a Split Factorial.

The well-known condition, under which the OLS estimators of fixed effects from a
design, X, are BLUE, is that there exists an invertible matrix A such that V7IX=XA,
where V =Var(y) . See Seber (1977, p. 63).

For asplit factorial, we will show that V1X=XA for

A=1x:a,x,,
r
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where X, is the full rxr contrast matrix (including the constant column) for a single

replicate of a 2P design and Ay isan rxr diagonal matrix.

Given the ordering of X in (3) for asplit factorial and the resulting Z in (4), then

s=1 s=i+1

622,27 =é§((éaﬂ ) ]@( ® 623 D (A.11)

r
From (2) and (A.1.1), it can be seen that V:@(ocjln+ﬁjJn), where
j=1

g j
o, =Y ocland B, =)0} and r = 2P. Assume thato? >0. Since 6720 Vi, it
i=1

i=1

followsthat r; >0, 3, 20 Vj. Theinverseof V isthen

VEi=@(wl, +Bd,), (A.12)

j=1

whereoc’.‘:}/ and B = ol .
VAT ' (o, +nB))

Let A; be an rxr diagonal matrix such that 6, =a | +ng; is the jth diagonal

element of Az, then using (A.1.2),
VX =AX, (A.1.3)

1

where A=A, ®l,. Since §; = Y,
o .
J J

, then 6, >0,thus both A; and A are
invertible. Using (A.1.3) and X X;'=X{'X;=rl,, then
1., 1
XA=(X, ®1 J=XAX, ®D)=AX,®1 1 =(A,®] )X, ®1,)=AX=V'X.
r
Since A= EXiAle, A is invertible and therefore, the OLS estimators of the
r

coefficientsb in (1) are BLUE, if X isthe contrast matrix of asplit factorial.
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APPENDIX 2:
Proof that ANOVA Estimators of the Variance Componentsfor Split Factorialsare
UMVUIQ.

The proof of this result follows the argument given in Searle, Casella, and McCulloch
(1992, pp. 417-421). It is necessary to assume that there is no kurtosis associated with the
random effects.

The argument has two steps, both of which involve constructing a linearized version
of the quadratic ANOVA estimators of the variance components. The proof in Appendix
1 implies that the argument on pp. 420-421 of Searle et al. (1992) is true for the ANOVA
estimators for split factorial variance components, and hence that they are the best
quadratic unbiased estimators of these variance components. By construction they are
invariant, and to show that they have uniformly minimum variance among all such
estimators, a condition specified by Seely (1971) must be satisfied. The remainder of this
appendix shows that this condition is satisfied, and that hence the ANOV A estimators are
UMV UIQ estimators.

For this proof, we use the model in (1). Using X; asin (3),

ordo 1o, 1 , oy 1
X(X'X) X :EXX =E(x1®1n)(xl®1n):ﬁ(| (®J,).

Let us defineamatrix M =(1 ,, —X(X’X)™X") . Some manipulation shows that:

q
M :'r/q®(§3'n‘%‘]n)-

Seely’ s condition concerns the set,

9
Q :{quzizﬂvl c e EK}
i=1
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of al linear combinations of the MZ.Z'M matrices. Searle, et a. refer to Theorem 6 of

Kleffe and Pincus (1974) to state that if Q is a quadratic subspace of symmetric
matrices, then UMV UIQ estimators exist. A quadratic subspace is a set of matrices is
such that if any matrix B isin the set, then B?isaso in the set. Using Lemma 1 condition
(c) of Seely (1971), Q isaquadratic subspace if

q
Mz,ZMMZ,Z.,M)=>c

s=1

MZ.Z'M  Yv,w (A.2.1)

V,W,s

where {CV’W’S} isa gxqx(q tensor of constants. The condition, simply stated, is that the

product of any pair of MZZ'M matrices is some linear combination of the set of original
MZZ'M matrices.
We will now show that any split factorial experiment will satisfy this condition.

Using the expression for Z; in (4),

i q
z.z2 =, Qe |o ©J, ||
i—i r/q o1 n soidl n

Since (I, —1J, )3, =0,, where 0, is an nxn matrix of zeros, then

i q
M’Z.ZM = r,q®((@ll ) —%Jn)(@( ® 0, )]

Notethat (1, ~23, )i, ~213,)=(,-213,). Thusif v<w, then

Mz, Z.MMZ,Z.M)=(MZ,Z MMZ,Z,M)=MZ,Z M,

and the condition is satisfied.
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