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Abstract

This paper is devoted to identifying precursors of freeway breakdown: decreased speed and
ow as the result of excess demand. We do so by formulating prediction problems wherein
we try to predict whether a breakdown will begin in the next �ve or ten minutes. We use
tree-structured statistical models to select conditions that are likely to precede breakdowns.
The data we use are from single loop detectors on Interstate 5 in the Seattle area, and were
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available essentially in real time, so results such as ours could be useful to indicate that
anti-breakdown countermeasures are called for. We also discuss techniques for visualizing
the breakdown process which we found critical in our research, and the extensive process by
which researchers must clean up detector data of this form before performing data analyses.

1 Introduction

Freeway breakdown | decreased speed and ow as the result of excess demand, rather than
decreased capacity (as from an incident) | is increasingly common. Its consequences range
from economic (e.g., lost time)1 to environmental (increased pollution). At the same time,
countermeasures such as ramp metering or lowering the speed limit have been proposed, and
are feasible provided they can be implemented in time, that is, before breakdown becomes
widespread and severe.

This paper is devoted to understanding the processes by which breakdown occurs. In
particular, we identify precursors that can alert motorists to imminent breakdown and allow
managers to implement countermeasures. We use data from single-loop detectors, which are
readily available in many locales. In our speci�c setting (Interstate Highway 5 in Seattle,
WA and its suburbs), the data are available in near-real-time over the Internet, and the
computations needed for our methods can be done su�ciently rapidly that countermeasures
could be implemented in time to make a di�erence.

1.1 What is Breakdown?

Critical to any empirical study of breakdown is a quantitative de�nition of breakdown. Fig-
ure 1 depicts a relationship fundamental to the understanding of freeway dynamics. For each
ow rate, or number of vehicles that pass per unit time, there are two possible speeds, which
correspond to high speed and relatively light tra�c, and low speed and very heavy tra�c.
The points in Figure 1 (left) were taken at one minute intervals from a single detector loca-
tion on a single day (June 4, 1996) of the data collection. We obtained the ideal relationship
by �tting a quadratic curve to these data.2 The quadratic curve predicts a free-ow speed
of 86 MPH, and a maximum ow rate of 1980 vehicles per hour per lane, attainable when
tra�c moves at 42 MPH.

Heuristically, breakdown at a single location is the shift of tra�c conditions from the
upper segment of the curves in Figure 1 to the lower. Reecting this, we de�ne breakdown

1The December 6, 1997, issue of The Economist quotes the Transportation Research Board and the
Federal Highway Administration in reporting that increased congestion on US freeways will cost an additional
$41 billion in 2010.

2Fitting a smooth curve to the data using a smoothing spline did not indicate that it was possible to
improve on a quadratic �t.
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Figure 1: Left: Speed-ow diagram, using data from one location on one day of our data
collection. Right: Speed-ow diagram, ideal relationship, �t to the data

conditions at a given location as follows:

The start of a breakdown at a given location is the �rst of �ve consecutive one-
minute intervals in which the estimated speed over the detector at that location
is less than 30 MPH. Similarly, a breakdown ends with the �rst of �ve consecutive
one-minute intervals in which speeds exceed 30 MPH.

Thus, breakdowns, if they exist at all, last at least �ve minutes. Shorter periods below the
30 MPH threshold are of less interest. Exactly what we mean by detector speed (recall that
data are from single-loop detectors) appears in x2.3. Figure 2 illustrates this de�nition.

Our analyses indicate that the conditions that precede breakdown conditions at a given
location are slow speeds, or decreases in speeds, either at that location or further downstream.
The relationship of these �ndings to the \phase transition" view of breakdown propounded
by physicists, as in [Browne, 1997], is unclear.

1.2 Scope of Work

The remainder of the paper is structured as follows. In x2, we describe the process by which
we obtained the data on which the study is based: this involved downloading data from the
Internet, a substantial amount of preprocessing to weed out the unreliable data, as well as
structuring the data in such a way that we could address the question of what conditions
precede breakdown. In x3 we present the visualization techniques we developed, which were
particularly critical in identifying the patterns which breakdowns propagate and dissipate.
x4 details how we were able to formulate the problem as a prediction problem and describes
the models we obtained for conditions that precede breakdowns.
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Figure 2: The Start and End of Breakdown at a Detector Location. The thirty MPH
threshold is shown, along with the time trace of speeds. Despite the 25 MPH speed at time
25, breakdown does not begin until time 28. Similarly, it ends at time 53 even though the
speed at 48 is 33 MPH.

1.3 Comparison with Incident Detection

The freeway breakdown prediction problem has some similarities to the automatic incident
detection problem [Chen and Cheng, 1992, Incident Detection Project, 1990, Cheng et al., 1993].
There are similarities in the form of the algorithm (e.g., pattern recognition, statistical ap-
proaches, catastrophe theory), in the selection of variables (e.g., detector counts, speeds
and occupancies) and in the assessment of the algorithm utility (e.g., detection rates and
false alarm rates). For example, the pattern recognition approach, exempli�ed by the Cali-
fornia Algorithm Series [Payne and Tignor, 1976], uses a decision tree structure to identify
incidents. The variables of interest are the discontinuities over time, of speed and occu-
pancy over a local detector, and discontinuities over space, of speeds and occupancies across
multiple detectors.

An important distinction between the two problems is the time dimension. Incident
detection algorithms are reactive, i.e., they detect (or miss) an incident only after it occurs.
On the other hand, the freeway breakdown prediction algorithm attempts to anticipate the
occurrence of congestion in the near future. The reader should keep that distinction in mind
when the results presented in this paper are compared to those available from the incident
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detection literature.

2 Data collection

The data we analyzed were collected during the summer of 1996 from an 11.68 mile-long
section of Interstate 5 in the downtown and northern suburbs of Seattle, with the detectors
located between 220th Street SW and State Road 520, between milepost markers 168.02
and 179.90. See Figure 3 and Figure 4 for maps of the study area. In this region, I-5 has
three{four all-purpose lanes; in some places there is also a high-occupancy vehicle (HOV)
lane. The northbound direction has detectors in 24 locations; there are 23 detector locations
in the southbound direction. Each lane has a detector at each location. We collected data
only from mainline detectors, and not from HOV lanes or on- or o�-ramps. (Northbound,
there are eleven on-ramps and nine o�-ramps, while southbound has twelve on-ramps and
ten o�-ramps.)

Our main goal was to study the morning and evening peak periods in their appropriate
directions. Initially, southbound data were between 6:00 AM and 10:00 AM, and northbound
data between 3:00 PM and 7:00 PM on weekdays. Ultimately, we increased the afternoon
collection time to between 2:00 PM and 8:00 PM because many events seemed to begin
before 3:00 PM and last beyond 7:00 PM.

The detectors are of the single-loop variety with twenty-second time resolution. They
record both count, the number of vehicles that pass over the detector in that period of time
(typically reported in units of vehicles per hour per lane) and occupancy | the fraction of
time that some vehicle is \detected." How speed was imputed from these data is described
in x2.3.

2.1 Obtaining data from the Internet

As shown in Figure 5, the \raw" detector data are collected in computers operated by the
Washington State Department of Transportation (WSDOT). These data were accessed over
the Internet using software developed by researchers in the University of Washington (UW)
at Seattle,3 and stored on computers at the National Institute of Statistical Sciences (NISS)
in Research Triangle Park, NC. The Internet-based data access is essential: the detector
data are not retained by WSDOT.

Also as shown in Figure 5, UW computers transform the data by appending time stamps
and concatenating data from all detectors for a given 20-second time period into a single
vector. The time stamps are the clock times at which the data are received in UW, which
di�er from the time of actual collection times by at most 2-3 milliseconds.

3We thank Professor Dan Dailey, Department of Electrical Engineering, for making the software available
to us.
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Figure 3: Map of the study area and its surroundings. The northern edge of the study area is
Interstate 5's 220th Street SW exit, near the bend in I-5 near the \Mountlake Terrace" label.
The southern tip of the study area is close to the State Road 520 exit. Thanks to the Washing-
ton State Department of Transportation, and their web site at http://www.wsdot.wa.gov/,
for providing this map.
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Figure 4: Schematic map of the two directions of tra�c in the study area. The label for each
detector location contains three pieces of information: the detector ID, its milepost, and the
number of lanes (high occupancy lanes included) at that location. Arrows leading onto or
o� the freeway denote on- and o�-ramps respectively.
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Detectors on I-5 in Seattle

Detector 1: (c1; o1) Detector 2: (c2; o2) ... Detector n: (cn; on)

Local transmission
in Seattle

WDOT (WA): (t; ID1; c1; o1; ID2; c2; o2; : : : ; IDn; cn; on)

Transmission via Internet

NISS (NC): (ID1; c1; o1; t)
(ID2; c2; o2; t)

...
(IDn; cn; on; t)

Figure 5: Collection and Transformation of the Count (c) and Occupancy (o) Data. Detector
IDs were added by WDOT and all readings for a given time interval were concatenated into a
single vector. At NISS the data were disaggregated by detector. Only data for the detectors
of interest were retained.
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At NISS, these data were transformed once more by separating data into one stream for
each detector, which enabled us to save data only for the detectors of interest (91 northbound
and 81 southbound, out of more than 3000). Separate �les were created for the morning and
evening of each day of data collection.

One day's data (AM and PM) amounted to approximately 4 MB; the roughly �fty days
of data we collected between May 28 and August 16, 1996, gave a total of 200MB of data
(about one-half of which, however, consists of detector IDs).

2.2 Data Preparation

The raw data downloaded from the Internet were not yet suitable for analysis. Both sub-
stantial cleanup | eliminating detectors that appeared to be giving nonsensical data, and
exploring aggregation (over detectors at the same location and over time) of the data were
necessary. We employed the S-Plus language not only to prepare the data for use, but also
to conduct the analyses.

2.2.1 Data Screening

Initial inspections of the data revealed many clearly awed entries. Interactive analyses, with
graphical output exempli�ed in Figure 6, identi�ed many problems. This �gure contains
one plot of count and occupancy over time from three detectors (in di�erent lanes) at a
single location. The right lane detector (whose data are shown in the top row of plots) we
accept without modi�cation. The middle lane (second row) detector seems to be generally
acceptable, except for a short period of bizarre behavior, so we would use these data, but
omit the suspect period from the calculations of average speeds and occupancies. The left
lane detector (bottom row) is clearly malfunctioning, and we would disregard its data.

For the southbound (AM) data, one of the 23 locations we examined had no functioning
detectors, while �ve other locations had at least one completely malfunctioning detector, in
the sense of the third row of Fig 6. Locations with one demonstrably faulty detector also
tended to have counts that seemed inconsistent with the output of adjacent detectors: for
instance, the hourly average counts at the downstream detector might have been larger than
those at the upstream detector by more vehicles than could plausibly have entered on the
on-ramp between the two detectors. To be conservative, we removed from our analyses all
locations with at least one malfunctioning detector. This left �fteen northbound and thirteen
southbound locations for which we were willing to use the data.

Further purging of data on the basis of implausible imputed speeds is described in x2.3.
Ultimately, as a result of the entire cleanup process, approximately 40% of the data were
discarded. This is a signi�cant insight into the quality of detector data.

A usable real-time implementation of our techniques would, of course, require that the
data cleanup process be automated. (All of the remaining steps are already performed in
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Figure 6: Example plots used for interactive identi�cation of faulty detectors. Upper row:
count and occupancy from a healthy detector. Middle row: count and occupancy from a
detector with suspect behavior early in the data collection. Lower row: count and occupancy
from a failed detector.

real time.)

2.2.2 Aggregation

To remove excessive noise and improve computational aspects of our analyses, the detector
data were aggregated in two ways. First, 20-second readings were aggregated to one minute
averages, which smoothed the data with no loss of essential information.

Second, we took averages over all detectors in the same location. The justi�cation for this
was concurrent research [Click et al., 1996] on data taken from a freeway in North Carolina.
In these data, the correspondences between lanes were remarkable (the rightmost lane tended
to have slower speeds than the other lanes, but slowdowns happened in all lanes at the same
time, to the nearest minute); Figure 7 demonstrates this phenomenon.

After all aggregation was complete, we were still left with some 6MB of usable data.

2.3 Speed imputation

Single-loop detectors record count and occupancy measurements, which are customarily used
to derive estimates of the prevailing speed by dividing count by occupancy. More precisely,
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suppose that C(T ) vehicles pass over the detector during a period of time of length T , and
these vehicles have lengths `1; : : : ; `C(T ) and speeds v1; : : : ; vC(T ). Vehicle i spends (`i+`D)=vi
time over the detector, where `D is the length of the detection zone, so that

Occupancy =
1

T

C(T )X

i=1

`i + `D
vi

:

Then if, for instance, all the speeds vi are equal to v, one may recover this speed by computing

v =
1

T �Occupancy

C(T )X

i=1

(`i + `D) =
C(T )�̀

T �Occupancy
; (1)

where �̀ is the average vehicle length, plus the length of the detection zone. More generally
if speeds vary but are independent of vehicle lengths (length is uncorrelated with 1/speed),
then by computing Count=(Occupancy=Length) one obtains the harmonic mean of these
speeds.

In this study we have used 24 feet as the value of �̀. This assumption is not critical: if, for
instance, 22 feet were a more reasonable value of �̀, all of our conclusions could be modi�ed
by multiplying our reported speeds by 12/11. We did, however, (on the advice of WSDOT)
assume that vehicle mix does not depend on location, time of day, day, or direction.

Using (1), we removed from the data set all detectors reporting speeds in excess of 100
MPH.

Double{loop detectors would not require imputation of speed. Our techniques would not
perform worse in this case than for single{loop detectors, but it is not clear that they would
perform signi�cantly better.

3 Visualization of Congestion

Visualizations of the data were the essential step in developing insight about breakdown.
Most of these depict speeds, calculated using (1). Recall from x1.1 that breakdown conditions
begin at a given location on the �rst of �ve consecutive one-minute speed measurements
that are slower than 30 MPH, and end with the �rst of �ve consecutive speed measurements
greater than 30 MPH.

3.1 Breakdown in Time

Figure 7 (Cited in x2.2.2 as justi�cation for aggregating over detectors in di�erent lanes at
one location.) shows breakdown during a typical morning peak at a single location on I-40
in Research Triangle Park, NC. The three graphs correspond to the three lanes at a single
location, and the x-axis measures minutes after 6:00 AM. Each column of blocks displays a
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color histogram of the distribution of speeds of cars passing that detector during that minute:
light colors mean a high proportion of cars traveling at that speed. Early in the day, all three
detectors saw most cars traveling at the free ow speed of about 70 mph. Tra�c �rst hit
very slow speeds at about 7:25 (time 85 on the x-axis), but there was a rapid partial recovery
before another brief slowdown at about 7:35. From 7:50 to the end of the data collection,
the location was in extended breakdown.

While useful, visualizations such as Figure 7 do not reveal the spatial structure of break-
down, which is what we consider next.

3.2 Breakdown in Time and Space

A visualization of the space-time properties of breakdown on a typical afternoon (June 20,
1996) for northbound tra�c on I-5 in Seattle is given in the left panel of Figure 8. There,
the x-axis displays time, beginning at 2 PM and going to 8 PM (time zero is 3 PM, and time
is measured in minutes). The y-axis displays space (measured in mileposts); tra�c ows
downward.

Breakdown is shown as follows: a horizontal line is drawn through each one-minute
interval and at each location during which the imputed (using (1)) speed is less than 30
MPH. For instance, at milepost 176.73 (the bottom line), breakdown conditions predominate
between times 0 and 260 (3:00 and 7:20 PM).

Figure 8 shows clearly that farther downstream, breakdown conditions begin earlier and
last longer. This pattern appeared on virtually all serious breakdowns, and was particularly
obvious in the evenings up to Friday, July 12, which without exception had long-lasting
breakdowns at the same locations. (Intriguingly, breakdowns at these locations became
much rarer beginning Monday, July 15.) The triangular pattern is also present, albeit less
dramatically, in morning breakdowns, which were generally less severe.

The triangular pattern is characteristic of congestion caused by an excessively high de-
mand| that is, of breakdown. Thus, evening breakdowns start at or downstream of milepost
176.73, and propagate upstream, eventually stretching all the way back to milepost 169.79.
Ultimately, cars are no longer joining the congested area as rapidly as they are leaving it,
and breakdown conditions dissipate in the downstream direction. In this case the \cause" of
the breakdown seems apparent: downstream of milepost 176.73, the freeway changes from
�ve lanes including an HOV lane, to three lanes with no HOV lane.

Also of interest (for example, for purposes of prediction) is the speed of propagation
of breakdown, which one may estimate using the slope of the line �tted to the starts of
the breakdowns. Figure 8 (left) indicates that this speed is on the order of 3 MPH: of 31
breakdowns appearing in afternoon data, 25 of them had propagated at speeds between 2.5
and 5 MPH.

By contrast with breakdown, Figure 8 (right) contains evidence of a temporary capacity
reduction (perhaps an accident) on June 12. Congestion appears at mileposts 169.79{168.3,
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Figure 7: Three detectors at the same location on I-40 in North Carolina on one breakdown-
ridden morning. The x-axis represents time in minutes after 6:00 AM. Within each of the
three graphs, the y-axis displays speeds, and a vertical column in a single graph gives the
speed distribution of the cars passing over the detector in that minute: a light color reects
a large count of vehicles traveling at that speed during that minute. Note that while the
lanes have di�erent speeds, they enter breakdown at the same time, to the nearest minute.
Speed bins are < 35 MPH, 35{40 MPH, . . . , 60{65 MPH, > 65 MPH.
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Figure 8: Left: recurring congestion on June 10. Right: recurring congestion (the triangle)
and nonrecurring congestion (the parallelogram) on June 12.

which is much less common than further downstream, and the recovery pattern is di�erent:
the breakdown shape is a parallelogram instead of a triangle. Moreover, the congestion
propagates more rapidly than recurring congestion| from milepost 169.79 through milepost
168.3 at about 7.5 MPH.

4 Development of Predictive Models for Breakdown

In this section we describe our algorithms for predicting when breakdown conditions are
likely to appear in the near future. After formulating the prediction problem (x4.1), we
discuss classi�cation trees, the methodology we used to build prediction rules, in x4.2, and
present our results in x4.3.

4.1 The Prediction Problem

We �rst predict breakdowns at a single location using only measurements at that location,
and then using spatial prediction techniques, which consider measurements from downstream
detectors.

The initial question was, \Is a breakdown going to begin here in the next �ve minutes?",
which makes sense only when a breakdown has not yet started. We divided time into �xed
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�ve-minute intervals (whose last digit was �ve or zero). For each interval that did not contain
a start or any other part of a breakdown, (call these potential alarm intervals), the problem
is to predict, using the �ve count, occupancy, and speed measurements from the �ve-minute

interval, whether there is (the start of) a breakdown.
As predictor variables we used not only the count, occupancy, and speed measurements

themselves, but also several functions of them, including mean, maximum, and minimum
and slope (computed using least squares). To capture variability in the �ve consecutive
measurements of a given variable, we used both the standard deviation and mean absolute
deviation

P4
i=1 jai+1 � aij; where a1; : : : ; a5 are the �ve measurements.

Slope and variability functions were meant to capture volatile conditions in tra�c, which
have been proposed [NCHRP, 1995] to lead to breakdown. However, at an early stage we
found that the variability measurements were not bene�ting the predictions, so they were
not included in the analyses described in x4.3.

It was also of interest to evaluate how important the aggregation interval is in making
prediction. Since many detectors report �ve-minute rather than 20-second data, we also
conducted analyses using only the data these detectors would have available, namely mean
count, mean occupancy, and a speed measurement derived from the ratio of mean count
to mean occupancy. We also tried to look farther into the future, predicting whether a
breakdown will begin in the next 6{10 minutes.

Since we saw in x3.2 that recurring congestion tends to propagate downstream at speeds
between 2.5 and 5 MPH, and since detector locations are on the average one-half mile
apart, breakdown conditions should require 6{12 minutes to propagate from the downstream
detector to the detector of interest. Therefore, the downstream detector should be at its most
useful for prediction of breakdowns starting in the second �ve minute interval from now (i.e.
six to ten minutes in the future).

4.2 The Prediction Methodology: CART

To identify values of count, occupancy, and speed in the potential alarm interval particularly
likely to precede breakdowns, we used classi�cation tree methodology (see [Breiman et al., 1984]
and [Clark and Pregibon, 1992]). Tree-structured classi�cations divide the set of possible
values of predictor variables (in this case, functions of counts, occupancies, and speeds) into
subsets, and predict a binary result (in this case, breakdown or no breakdown) depending
on which subset the predictor variables fall into. The subsets allowed by the S-Plus imple-
mentation (and most others) of classi�cation trees are hyperrectangles, as shown in Figure
9.

An hypothetical example of a tree-based classi�er is shown in Figure 9. Here the x-
axis denotes the mean count in the potential alarm interval, and the y-axis is the mean
occupancy. Each dot corresponds to a single potential alarm interval in the data set, and
the dot is colored black if a breakdown occurred, and white if one did not. The dotted lines
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describe the classi�er: the four subsets are

Occupancy > 40%;

Occupancy <= 40% and Count <= 1000;

Occupancy <= 40% and Count > 1000 and Count <= 2000;

Occupancy <= 40% and Count > 2000:

If count and occupancy fall into the third subset, then the classi�er predicts no breakdown;
otherwise it predicts a breakdown.

Another way of depicting the classi�er is the tree shown in the bottom view in Figure 9.
A critical part of a tree algorithm is an \impurity measure," which measures how much

variability there is in the response variable (here, breakdown or no breakdown) within a
node. One begins with a tree which consists of only one node and all the data. Then one
looks for ways of splitting the data into two subsets, whose impurity measures | when
summed | are as much as possible less than the impurity measure of the entire data set.
Allowable \splits" are those into high and low values of one of the predictor variables, such
as Occupancy <= 40%. After splitting into two subsets, the algorithm turns to making
further re�nements of these subsets. The impurity measure used here was binomial deviance,
computed as

�2fb log(
b

b + n
) + n log(

n

b + n
)g;

with 0 log 0 interpreted as 0, when the data consist of b breakdowns and n non-breakdowns.
This measure is a constant multiple of the log of the maximized likelihood function

(b + n)!

b!n!
pbbp

n

n;

maximized when pb = 1 � pn = b

b+n
, up to the factorial constant which does not depend

on pb and pn. It equals zero when all the data are identical (here, all breakdowns or no
breakdowns), and increases as the data become less \pure."

A troublesome question to tree \growers" is how many splits should be allowed and how
leafy the tree should grow. A popular choice is to grow a tree with a clearly excessive
number of splits and then \prune" back using a method such as cross-validation, for which
see either [Breiman et al., 1984] or [Clark and Pregibon, 1992].

4.3 Results

To assess prediction methods, the data were divided into two halves, the �rst used to con-
struct trees and the second to evaluate the trees (with data not used to construct them).
The \training set" for the AM data was simply the �rst half of the days, while that for the
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Figure 9: Top: graph view of tree-based classi�er. The shaded subset consists of those
conditions which the tree predicts that a breakdown will follow. The hollow icons correspond
to (synthetic) observations where breakdowns did not follow the count-occupancy conditions
shown, so that hollow icons inside the shaded area are false alarms. The �lled-in icons
correspond to conditions that preceded breakdown, so that if there were any �lled-in icons
in the unshaded area, they would represent failed detections. Bottom: tree view of same
classi�er. Nodes that terminate in a \BD" are those in which we predict breakdown.
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PM data was more complicated: the �rst one-half of the days up to July 12, and the one-�rst
half of the days after July 15. Each tree was constructed using data from roughly 30,000
�ve-minute intervals, 300 of which preceded breakdowns, and then tested on a data set of
similar size.

We use three measures of the success of a tree model. First, detection rate is the fraction
of breakdown starts that we predict successfully. We also use two di�erent false alarm rates:
the fraction of alarms which are not followed by breakdowns, and the fraction of potential
alarm intervals not followed by breakdowns but in which we set o� alarms. Since starts of
breakdown follow only about one percent of the potential alarm intervals in the data set,
the �rst false alarm measure is typically large while the second is small.

To compare di�erent trees as informatively as possible, we strive to set the second false
alarm rate to the arbitrarily chosen value 5%, and we introduce another element to tree-
based prediction: if the conditions are in the hyperrectangle which would bring the false
alarm rate over 5%, execute an auxiliary randomization so that an alarm is set o� with some
probability, the probability chosen to set the false alarm rate to exactly 5%.

Results from eight trees are shown in Table 1. The eight trees represent all combinations
of three two-level factors: the length of time into the future that we are trying to predict
breakdown, the aggregation of the predictor variables and which detectors are used. The
entries in the Table are the case identi�er, showing which detectors are used (LD = local
and downstream; L = local only), aggregation of predictor variables (1 = one minute; 5 =
�ve minutes) and the prediction interval (1{5 = next �ve minutes; 6{10 = six to ten minutes
in the future); the training set detection rate; the test set detection rate; and the test set

false alarm rate. Details of the associated trees are in Table 2, in the Appendix.
The false alarm rates we found for the test data sets were very close indeed to the 0.05 of

the training set: all but one (0.058) of the eight were within 0.02 of 0.5. The other measure of
false alarm rate, the fraction of alarms which do not precede breakdowns, is also not shown,
because these measures tended to be very similar, ranging from 86 to 90 percent.

Our results show that breakdown speeds are normally preceded by speeds that are slow
but possibly not quite breakdown level, both at the current detector and downstream. High
occupancies have similar e�ects to low speeds. Low counts (the bottom segments of the
curves in Figure 1) are more predictive of breakdown than high counts; exceptions are in the
�rst and third cases of Table 1, when large downstream counts can increase the likelihood of
breakdown beginning six to ten minutes from now, given that no breakdown begins in one
to �ve minutes.

In terms of time aggregation of predictor variables, comparing relevant entries shows that
the loss of predictive power from aggregating one-minute data to the �ve-minute level is not
large.

Comparing the �rst two cases (or the third and fourth) in Table 1 demonstrates that
readings from the downstream detector add little predictive ability to readings from the
current detector in terms of predicting breakdowns beginning in only one to �ve minutes.
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Training Set Test Set Test Set
Case Detection Rate Detection Rate False Alarm Rate

(LD, 1, 1{5) .68 .64 .048
(L, 1, 1{5) .58 .61 .051
(LD, 5, 1{5) .66 .60 .058
(L, 5, 1{5) .57 .57 .050

(LD, 1, 6{10) .72 .61 .049
(L, 1, 6{10) .51 .52 .050
(LD, 5, 6{10) .65 .59 .049
(L, 5, 6{10) .48 .47 .048

Table 1: Summary of Prediction Results. The case identi�er shows which detectors are used
(LD = local and downstream; L = local only), aggregation of predictor variables (1 = one
minute; 5 = �ve minutes) and the prediction interval (1{5 = next �ve minutes; 6{10 = six
to ten minutes in the future.)

However, for predictions 6{10 minutes into the future (the last four cases), data from the
downstream detector do improve predictions; in fact, predictions six to ten minutes in the
future are very nearly as successful as predictions one to �ve minutes into the future, provided
we have downstream detector information available. This �nding is also consistent with our
observations in x4.1 about the speed of propagation of breakdown.

A number of other variables proposed in the literature as indicative of incipient congestion
failed to enter our classi�cation trees. These include Count�Occupancy and Count�Speed

and all measures of variability.
It should be noted that the false alarm rates and detection rates are actually underesti-

mates of the success of the predictions. Many of the false alarms occurred when breakdowns
did not begin in the immediately following interval, but near-breakdown conditions persisted
for several minutes (often as long as half an hour) before a breakdown began. Arguably such
events should be evaluated as greater successes than the events we classi�ed as successful
prediction, because they predict breakdowns farther in the future and are thus more useful
for implementing countermeasures.

5 Conclusions

This research has a number of implications. First, it made use of the Internet to obtain
data from a remote location. Since the data were available in real time, it would have been
possible to observe from North Carolina the conditions on Seattle roadways, and even to
apply control measures if we had the capability.
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Included in this research is a study of the quality of detector data. We found it necessary
to discard roughly 40% of our data. Future researchers should be under no illusions about
the amount of e�ort that will be required to sort out poorly functioning detectors.

This research provided signi�cant insights regarding di�erences between recurring and
non-recurring congestion, including visualization tools for identifying both types. Both types
of congestion propagate from downstream to upstream, and while recurring congestion clears
upstream �rst, the opposite is true for non-recurring congestion. This leads to triangular
patterns for recurring congestion in graphics such as Figure 8, while non-recurring congestion
appears as a parallelogram. Our data also indicate that non-recurring congestion propagates
more rapidly than recurring congestion.

We showed, further, that CART is an e�ective technique for constructing models to
predict breakdown. Key predictors are speed and occupancy. No evidence was found that
measures of variability or volatility in tra�c lead to improved predictions.

The results from the trees demonstrate that using more than one detector station can
lead to large bene�ts. In particular, by observing detectors downstream from the detector
of interest, one may predict the onset of breakdown farther into the future.

We also compared the usefulness of detector data aggregated to �ve minute averages to
�ner, one minute data. The gains from using one minute data were small, but the data
strongly suggested that there is a gain: in Table 1, there are four pairs of trees that di�er
only in the degree of aggregation, and in all four pairs, the one minute data beat the �ve
minute data in both training set and test set detection rate. The margin was only about 3%
on the average, though.

Appendix

Here we present the speci�c classi�cation trees associated with the results presented in x4.3,
using the case identi�ers in Table 1. The variable names appearing here typically consist
of three parts: they end with either Count, Occ, or Speed; this identi�er is preceded by
the function applied to the �ve count, occupancy, or speed observations (the possibilities
are Max, Min, Mean, and Slope); and if the name begins with Down, the readings from the
downstream detector are required instead of those from the current detector. The italicized
lines incorporate the randomization described in x4.3.
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(LD, 1, 1{5)
(MinSpeed � 49) AND [(DownMaxOcc>24) OR (DownSlopeCount � -109) OR (MeanSpeed � 29)]
OR [(49 < MinSpeed � 60) AND (DownSlopeOcc>1.7)]
OR [(MinSpeed � 49) AND (DownMaxOcc � 24) AND (DownSlopeCount > -109) AND (MeanSpeed > 29)]
(L, 1, 1{5)
(MinSpeed � 49) AND (MeanSpeed � 33)
OR [(MinSpeed � 49) AND (MeanSpeed > 33) AND (SlopeOcc > 1.3) AND (MeanCount � 1889)]
OR [(MinSpeed � 49) AND (MeanSpeed > 33) AND (SlopeOcc � 1.3) AND (MinCount � 1757)]
(LD, 5, 1{5)
(Speed � 55) AND (DownSpeed � 34)
OR [(Speed � 55) AND (34 < DownSpeed � 44) AND (Count � 1529)]
OR [(Speed � 29) AND (DownSpeed >44)]
OR [(Speed > 55) AND (DownSpeed � 59) AND (Occ > 14) AND (Count � 1910)]
OR [(Speed � 55) AND (34 < DownSpeed � 44) AND (Count > 1529)]
(L, 5, 1{5)
(Speed � 37)
OR [(37 < Speed � 55) AND (Count � 1669)]
(LD, 1, 6{10)
(DownMinSpeed � 19) AND (MaxSpeed � 62)
OR [(19 < DownMinSpeed � 36) AND (MaxSpeed � 62) AND (DownSlopeSpeed � 1.7)]
OR [(DownMinSpeed � 36) AND (MaxSpeed > 62) AND (DownSlopeSpeed � -7.8) AND (DownMeanOcc � 24)]
OR [(DownMinSpeed > 36) AND (MeanOcc > 24) AND (DownMinCount � 1830) AND (MeanSpeed � 29)]
OR [(DownMinSpeed > 36) AND (MeanOcc > 24) AND (DownMinCount > 1830)]
OR [(DownMinSpeed > 36) AND (MeanOcc � 24) AND (MaxSpeed � 64) AND (DownSlopeSpeed � -2.7)]
(L, 1, 6{10)
(MeanSpeed � 33)
OR [(33 < MeanSpeed � 55) AND (SlopeSpeed � -1.8) AND (MaxCount � 2120)]
OR [(55 < MeanSpeed � 62) AND (MinCount � 1250) AND (SlopeSpeed � -2.5)]
OR [(33 < MeanSpeed � 55) AND (SlopeSpeed > -1.8) AND (MinCount � 1750)]
(LD, 5, 6{10)
(DownSpeed � 27) AND (Speed � 55)
OR [(27 < DownSpeed � 45) AND (Speed � 55) AND (Count � 1950)]
OR [(DownSpeed � 45) AND (Speed > 55) AND (DownCount � 960)]
OR [(DownSpeed > 45) AND (Speed � 58) AND (Occ > 24) AND (DownCount > 2030)]
OR [(DownSpeed � 45) AND (55 < Speed � 62) AND (DownCount > 960)]
(L, 5, 6{10)
(Speed � 37)
OR [(37 < Speed � 55) AND (Count � 1920) AND (Occ > 11.7)]

Table 2: Classi�cation trees corresponding to Table 1. Italicized nodes invoke the random-
ization described in x4.3.
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