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Abstract

This paper discusses a general framework common to some varied known and
new results involving high values of stationary stochastic sequences. In particular
these concern

(a) Probabilistic modeling of infrequent but potentially damaging physical events
such as storms, high stresses, high pollution episodes, describing both repeated oc-
currences and associated “damage” magnitudes

(b) Statistical estimation of “tail parameters” of a stationary stochastic sequence
{X;}. This includes a variety of estimation problems and in particular, cases such
as estimation of expected lengths of clusters of high values (e.g. storm durations),
of interest in (a).

“Very high” values (leading to Poisson-based limits) and “high” values (giving
normal limits) are considered and exhibited as special cases within the general
framework of central limit results for “random additive interval functions”. The
case of array sums of dependent random variables is revisited within this frame-
work, clarifying the role of dependence conditions and providing minimal conditions
for characterization of possible limit types.

*Research supported in part by the Office of Naval Research Grant No. N00014 93 1 0043 and EPA
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1 Introduction

The purpose of this paper is to present a unifying framework and viewpoints for several
apparently quite distinct areas, including the modeling of extreme events, statistical tail
inference, and central limit theory for (dependent) array sums. It is hoped that thereby

useful insights will be provided for the known and new results discussed.

By way of specific example consider r.v.’s X;,X>,..., X, (from an iid or stationary

sequence) and write

Zn= i(Xz - un)+

i=1

where {u,} is a sequence of constants (“levels”), u, — co. From a modeling viewpoint
events {X; > u,} (“exceedances”) may represent “damage”, (e.g. from storms, structural
stresses, pollution in excess of a regulatory threshold) measured as the excess value
X; — u,. Z, is the total accumulated damage from X, X,,...,X,. On the other hand,
Z, is an array sum and, as a statistic, provides the heart of the so-called “Hill estimator”
for the parameter of an exponentially decaying tail distribution, its variants for regularly

varying tails, and tail and quantile estimation.

In modeling, Z, arises from a point process of exceedance locations each “marked”
with associated damage X; — u,. For fast rates of convergence u, — oo this converges
in distribution (under suitable normalizations) to a Compound Poisson Process and in
particular the total damage Z, has a Compound Poisson distributional limit. This models
damage at very high levels. For lower levels, (with u, — oo more slowly), a normal
limit may be obtained for Z,. These latter limits seem particularly relevant to practical

modeling, though little investigated to date.

As a statistic for tail inference, it is the normal limit for Z, which has received

considerable study - providing the asymptotic distributions needed for tail estimation.



Most of this activity (as evidenced by other papers in this volume) has focussed on iid
assumptions, but with attention ([4], [14]) on dependent cases. Interesting connections
between the very high level (Poisson based) and lower level (normal) limits concern the
necessity to use lower levels for estimation of parameters relevant to the very high level

behavior, for estimation consistency. These are explored in Section 5.

The asymptotic distributional results needed for modeling and statistical estimation
fall within the “central limit problem” for array sums (of dependent r.v.’s). The devel-
opment of this theory is outlined in Section 2 using the framework of “random additive
interval functions” which are equivalent to such array sums for discrete time problems,
but which also permit application (as very briefly indicated in Section 6) to continuous

time cases.

Following the general framework of Section 2, specific application to array sums of
dependent r.v.’s is made in Section 3 with the aim of providing a perspective and clarifi-
cation of dependence assumptions of earlier literature, and covering an apparent gap in

that literature regarding characterization of possible limits.

Section 4 concerns the modeling problem - exhibiting three specific models for “dam-
age” from high level exceedances (including that (Z,) introduced above. Emphasis here
is on very high levels and corresponding models from “Poisson-based” distributional con-

vergence.

Section 5 contains a discussion of lower level modeling and tail inference based on
slower convergence rates u, — 00, and relationships between the fast and slow conver-
gence rates in inference problems. Finally related continuous time problems are very

briefly indicated in Section 6.



2 General framework and a central limit theorem.

The underlying theory is briefly described here without proofs — full details may be found

in the recent paper [11].

As noted by Bergstrom (1] it is natural to regard an array sum S, = Y%, X,,; as a

random additive function of intervals I C (0, 1] viz.
(2.1) Zo(I) =) {Xni:i/n eI}

Formally a random additive interval function (r.if.) may be defined as a family of
random variables Z,([) for intervals I = (a,b] C (0,1], satisfying for 0 < a < b < c <
1, n=1,2,...,

Zn(a,c) = Zn(a,b] + Zn(b,c].

It will be assumed that the r.i.f. is (array) strongly mixing in the specific following sense.

Define the o-fields

BR = o{Z,(a,b]:s<a<b<t}, 0<s<t<l1

(22) one = sup{|P(ANB)—P(A)P(B)|: AcB{),BeB™,  s+t<1}

That is in this the events A belong to the “past” and B to the “future” from s + £ to 1,

separated by £. Then {Z,} will be called strongly mixing if

(2.3) Qny, — 0, some £, — 0

Note that the future ends at 1, and the gap ¢, between past and future tends to zero
rather than infinity, as more customary. These are due to time normalizations, as will
be seen in applications. It should also be noted that (a) strong mixing is a much weaker

restriction than many other forms of mixing commonly used and (b) in applications where



Z, is obtained from an underlying stochastic sequence {X,}, strong mixing for {Z,} can

be implied by weaker conditions for {X,}.

The effect of the mixing is substantially through a standard sequence {k,} defined to

be any integer sequence k, = o(n) with

(2.4) kn(€n + ang,) — 0

This holds for bounded sequences k, but also for k, — oo up to the rate limited by
(2.4). The less the long range dependence the faster the possible rate for k, — oo up to

the limit k, = n applicable under independence with o, , = ¢, = 0.

The importance of a standard sequence {k,} is that if I, I5,..., I, are disjoint
intervals (which can change with n), then the &, quantities Z,(I;) are asymptotically

independent, i.e. for real t; (which can also change with n),
kn kn
Eexp{i)_t;Za(1)} = [ E{expit; Za(1;)} — 0.
1 1

This is shown in [11], using the classical method of “clipping” an amount £, from

each I; to give separated intervals and hence approximate independence.

The main underlying result is most conveniently stated in terms of associated inde-
pendent arrays. To that end a k,-partition of an interval I is any partition of [ into k,
disjoint subintervals. If {{,;} are independent, 1 < j 5 kny, &nj 2 Za(I;), then {{.;}

will be termed an independent array associated with Z,(I).

Further the partition {[;} will be called uniformly asymptotically negligible (u.a.n.) if

Jax P{|Z.(I;)] > €} — 0, each e >0, ie {&.;} isuan.

The main result follows simply from the asymptotic independence of Z,(I;) (see [11] for

proof details):



Theorem 2.1 Let {X,;} be an independent array associated with Z,(I), Z, being
a (strongly mizing) r.i.f. and I a fized interval. Then Z,(I) has the same limit in
distribution (if any) as Z:f;l €nj. In particular if {I;} is u.a.n., any limit is infinitely

divisible.

This result shows that limiting distributions for Z,(I) under strong mixing are just
those for iid array sums. The classical criteria (cf. [10]) may be applied to distributions
of Z.(I;) 2 Xn,j to determine which limit holds. For example the “normal convergence

criterion” of [10] has the following form here.

Corollary 2.2 If Z,(I) 4 7, a r.v. then n is normal and {I;} is u.a.n. if and only if
Y P{|Z.(I;)| > €} — 0, each ¢ > 0. Then n = N(a,c?) with

a = nl‘i_,rgloz.an,j(f), T>0
ani(t) = E{Z.(L;) U|Z.(L;)] < 7)}

o = lim 3 [EZ3(;) 1{|Za(L)| < 7} = a} 5(7)]

3 Strongly mixing array sums.

Central limit theory for arrays of dependent r.v.’s { X, ;} saw strong activity in the late
1960’s and early 1970’s, (see e.g. [12], [1], [2], [6]) and some more recent revisitations
([15], [3], [16]). A good deal of this work was directed towards finding sufficient conditions
on the distribution of X,; under which Y, X, ; has the same limiting distribution as if
the X, ; were independent. As a result stringent conditions - typically involving uniform
types of mixing assumptions - were imposed. It was also often assumed that the X, ;

had finite second moments.

While sufficient conditions for particular limits will necessarily be complicated, much



can be said and the problem illuminated simply from Theorem 2.1, without any moment
conditions and without dependence restrictions beyond strong mixing alone. Specifically
let the array {X,;} be strongly mixing, and the r.if. Z, defined by (2.1), i.e. Z,(I) =
Y (Xni:ti/n €I). Let {k,} be a standard sequence (Eqn. (2.4)), r» = [n/k,]. Writing
I; = ((j = 1)ra/n, jra/n] and defining independent r.v.’s Y, ; < E{;?j—l)r,. +1 X it
follows simply from Theorem 2.1 that S, = =1 Xn,j = Zn(0,1] has the same limit in
distribution (if any) as the independent array sum ¥ Y, ;.

It thus follows that, under strong mixing alone, the possible limiting distributions
for array sums are the same as under classical independence assumptions. Further the
particular limiting distribution which applies is determined from the distributions of

Y, ;’s via the classical domain of attraction criteria. All this holds under strong mixing

alone, and exhibits its central role in the theory.

Thus sufficient conditions for particular domains of attraction involve the distributions
of the Y, ;, which are sums of groups of (r,) consecutive X, ;. Hence the provision of
sufficient conditions in terms of the original X, ; must obviously require more restrictive
dependence assumptions. As noted this problem is considered in the literature (e.g. [12])
under finite moment restrictibns. While clearly domain of attraction conditions on the
original X, ; are desirable, the above recognition of the component parts of the problem
does seem to us to shed light on the roles of the conditions as well as providing the

characterization of possible limits, under strong mixing alone.

4 Exceedance modeling.

We now consider special r.i.f.’s based on high values of a stationary sequence X, X, ....
This section focuses on their interpretation as models e.g. describing occurrence and

magnitude of damage, and Poisson-based limits at very high levels. Lower levels — giving
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normal approximations and their use in tail inference will be discussed in Section 5.

4.1 Clustering of exceedances.

Typically positive dependence between neighboring terms of a stationary sequence

X1, Xa,. .. leads to the clustering of exceedances X; > u, of a level u,, since one high
value tends to “attract” another. Clusters are naturally regarded as runs of consecutive
exceedances and may be so defined, but a (typically asymptotically equivalent) definition

is more convenient for our purposes.

Specifically let {k,}, k., — oo k, = o(n), be a sequence (to be chosen) of integers,
rn = [n/ky] and divide the integers 1,2,...,knrn(~ n) into k, consecutive groups (or
“blocks”) ((¢ = 1)rn + 1,(i = 1)rn + 2,...3r,) 1 < ¢ < k,. Then the exceedances (if
any) in such a block will be called a cluster. These “block clusters” may differ from “run
clusters” in that they may have gaps with X; < u,, a run cluster may be split into two
block clusters by an endpoint ir,, or a block cluster may consist of two or more run
clusters (occurring in the same block). However judicious choice of k, (as a standard
sequence in the sense of Section 2) will ensure asymptotic equivalence of the deﬁnitioné,
and its asymptotic independence of choice of k, beyond a maximal rate of convergence

of k, — oo.

Corresponding to this (block) definition, the cluster size distribution 7,(r), r =
1,2,... is defined to be the probability of r exceedances in a block given at least one.

Stationarity implies that this is independent of the particular block chosen.

4.2 Exceedance point process.

For modeling of exceedances it is convenient to normalize their occurrence times

{t: Xi > un, 1< 1< n} by the factor n to obtain a point process N, on (0, 1] consisting



of the points i/n for which X; > u,. That is for B C (0,1] N,(B) is the number of such

normalized exceedance points i/n € B, i.e.

Nn(B)=#{-:l-eB:X;>u,,, 1<i<n}=#{i€nB:X;>u, 1<i<n)

N, will be referred to as the ezcecedance point process on (0,1], consisting of the
(normalized) exceedances among X;,X>,...,X,. Note that its intensity EN,(0,1] =
n(l — F(un)) where F is the d.f. of each X;.

N, obviously defines a r.i.f., {/N,(I)} which will be assumed strongly mixing. Clusters
will then be defined as above using any fixed standard sequence k, obtained from the
mixing condition as in Section 2. It will also be convenient to refer to clusters in the
normalized setting as the groups of (normalized) exceedances in intervals
I; = ((¢ = 1)rn/n,ira/n], 1 < ¢ < kn which, together with a small interval (k,r,/n, 1]

form a k,-partition of (0,1]. The cluster size distribution 7, then clearly satisfies

(4.1) Ta{r} = P{Na(J1) =7|Na(J1) >0}, r=1,2,...

4.3 Compound Poisson limits for the exceedance point
process.

The models for exceedances of high values result from limiting theorems as u, — oo.
For Poiséon-type models fast convergence (i.e. very high levels) is required, such that
n(1 — F(un)) converges to a finite limit. As noted, lower levels (with n(1 — F(u,)) — o)

will be considered in Section 5 giving normal limits which are relevant also for inference.
For iid X1, X3,... and n(1 — F(u,)) = 7, Na(0,1] is binomial, B(n,p, =1 — F(u,))
and has a Poisson distributional limit with mean 7. Similar consideration of the joint

independent distributions of N,(B;) for disjoint B;, show very simply that in fact the

exceedance point process NN, converges in distribution to a Poisson process with intensity
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7 on (0, 1].

For stationary sequences {X,} (with N, subject to the r.i.f. strong mixing condition)
one has clusters of exceedances each of which converges to a single point after the time
normalization (r,/n = [n/k;]/n ~ 1/k, — 0). Thus it may be expected that the
locations of the clusters tend to become Poisson and with size distribution being the
limit (if any) of w,. That is one may expect that IV, converges in distribution to a
Compound Poisson Process based on a Poisson Process of limiting cluster positions and
independent distributions # = lim=, for cluster sizes. Further if the limiting mean
cluster size limp—o 35° j1r,.(]; ) = 67! then 7/6~! = Or clusters may be expected (the
total expected number of exceedances being n(1 — F(u,)) — 7). This intuitive reasoning

is summarized more formally as follows:

Theorem 41 Let (Xa,n = 1,2,...) be stationary and u, levels with n(1 — F(u,)) —
7. Suppose the cluster size distribution m, — =, a probability distribution and let
the ezceedance point process N, be strongly mizing and the mean cluster size p, =
Y521 Jma(j) = 071, 0 < 0 < 1. Then the ezceedance point process N, converges in
distribution to a Compound Poisson Process N = CP(fr,7) based on a Poisson Process

with intensity 0T and event multiplicity distribution .

This result is a variant of Theorem 4.2 of [5] and is simply shown from that theorem.
The parameter § — which has important uses in extremal theory - is termed the “ex-
tremal index” of the sequence {X,}. The conclusion then is that the exceedances of a
- very high level are potentially well modeled by (limiting) clusters with independent size

distributions 7, located at the points of a Poisson Process with mean 67.

The quantity N(B) is the (limiting) number of (normalized) exceedances in the set B.

If unit damage is associated with each exceedance, then N(B) is also the total damage

10



in B. Put in another way, the magnitudes associated with each Poisson point (which has

distribution 7) can be regarded as the damage from individual clusters, in the limit.

4.4 Excess height damage measure.

Here we return to the example of Section 1, where the damage associated with an ex-

ceedance X; > u, is proportional to the excess value (X; — up)4.

The resulting damage @ay be regarded as a point process Z, with points at the
normalized exceedances {i/n : X; > u,} having multiplicities an(X; — u,) for suitably
chosen constants a,. It should perhaps be noted that in a point process with multiple
events the multiplicities are usually integers. However events may be permitted to have
non integer valued multiplicities provided the number of events (and therefore also their
total mass) in any bounded interval, is finite. Alternatively Z, may be regarded as the

exceedance “marked” point process with marks given by the damages a,(X; — u,).

Assuming the r.i.f. strong mixing conditions for Z,, let {k,} be a standard sequence
and define k, intervals J; C (0,1] exactly as above for the exceedance point process.

Write now =/, for the cluster damage distribution defined by the d.f.
P{Z.(h) £ z|Z.(J1) > 0} = P{Z.()1) £ z|Na(J1) > 0}
The following result then corresponds to Theorem 4.1.
Theorem 4.2 Let {X,, n=1,2,...} be stationary and u, levels with n(1 — F(u,)) —
T. Let the r.i.f. Z, defined above be strongly mizing, the mean ezceedance cluster size

pn — 071, and the cluster damage distribution 7, = 7', a probability distribution. Then

the damage point process Z, converges in distribution to a Compound Poisson Process

CP(fr,=").

11



This result may be proved by similar methods to the previous one. Note that strong
mixing for Z, implies strong mixing for NV, and consequently a standard sequence {k,}

for Z, is also a standard sequence for NV,.

4.5 Peaks over threshold modeling.

The two previous damage mechanisms, viz. unit damage and damage X;—u,, respectively,
impose potentially complicated estimation requirements to determine the limiting cluster
size and cluster damage distributions 7,,7.. The third example is much simpler in
this regard, and in fact the limiting damage distribution involves only the marginal

distribution F' and has a parametric (Pareto) form, requiring estimation of only two

parameters.

In further contrast to the previous cases the damage here does not arise from indi-
vidual exceedances but from assumed proportionality of cluster damage to the maximum
height above the level in the cluster i.e. W; = max{X; — u,; j € C;} for a cluster C;.
The corresponding point process Z is not defined at all exceedance points but rather
simply plots a,W; (for some constant a,) at the location of the cluster. This location
may be any cluster point - e.g. the first - since the (normalized) cluster coalesces to a
single point as n — co. The model has been tra.ditipnally used widely without complete

justification in hydrology — where the damage may represent e.g. flood depth.

It will be assumed that the marginal d.f. F satisfies the tail condition (F = 1 — F).
(4.2) F(u+zg(u))/F(u) » G(z) as u— oo

for some function g(u) > 0, some d.f. G and all positive z in the range where 0 < F(z) <

1. This includes a very wide class of d.f.’s F. Further it is known [13] that any such limit



G must have “generalized Pareto” form viz.

(4.3) G(z) =Gap(z) = 1=(1+az/B)™* >0 a#0

= 1—e/P B>0 a=0

the range of z being (0,00) if @ > 0 and (0, —a~!f8) if @ < 0.

Assuming that Z; is strongly mixing, intervals J; corresponding to a standard se-
quence are defined as before, leading to the cluster damage distribution =7 defined as the

distribution of Z3(J;) given N, (J;) > 0.

The following result then holds (cf. Theorem 3.2 of [7])

Theorem 4.3 Let X, be a stationary sequence with marginal d.f. F satisfying ({.2) and
un levels with n(1 — F(un)) — 7. Let the r.i.f. Z defined above with a, = g(u,) (g from
(4.2)) be strongly mizing, and the mean ezceedance cluster size p, — 071, 0 < 9 < 1.
Then the cluster damage distribution 7% = g, the probability distribution with d.f. G
from (4.2), and the “peaks over thresholds” point process Z converges to a Compound

Poisson process C P(0t,7g).

Thus in this case the limiting cluster damage distribution has Pareto form and is

determined by two parameters.

5 Lower levels and test statistics.

The previous sections exhibit Compound Poisson models for damage by exceedances of
very high levels, obtained as limits as the level u, — oo at the fast rate dictated by the
existence of a finite limit for n(1 — F(u,)). In practice one may be concerned with levels
that are high, but not sufficiently high for a good Compound Poisson approximation.

For example, environmental regulation may be written in terms of a lower level for
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particularly harmful pollutants, or it may be convenient for enforcement monitoring to

regulate by allowing more exceedances of a lower level.

Further it is often the case that one wishes to model X;, X3,... as a (stationary)
normal sequence. However normal sequences do not exhibit clustering at the very high
levels required for Poisson exceedance behavior. In fact it can be shown that the limiting
mean cluster size §~! of Section 4 is 1 for such sequences under commonly used Adepen-
dence conditions. Hence clustering is incompatible with normality at those high levels
even though e.g. serial correlation at unit lag may be very high. Hence to use underlying
normal models for the sequence X;,Xs,... it is necessary to consider lower exceedance

levels if clustering is an essential feature.

The Poisson-type approximation relies on the convergence rate of u, — oo to yield a
finite limit 7 for n(1 — F(uy,)). If u, — oo more slowly, so that n(1 — F(u,)) — oo, a
normal limit may be expected for damage measures Z,(B) of the types considered. (This
is certainly intuitively clear in the simplest iid cases from Poisson and normal convergence
for binomial r.v.’s). In such cases one of course does not have point process limits, but
rather a normal limit for a standardized version of N,(B) and independent normal limits

for such r.v.’s evaluated for disjoint sets B.

It is of course not automatically true that a normal approximation will be better
for modeling at lower levels. Certainly for a given n (sample size or time period of
interest) the corresponding u, will tend to be much higher for the Poisson vis-a-vis
normal approximation, but it may be that normal limits require much larger values of n
to provide good, finite n approximations. However unless this is known to be the case
it would seem sensible to try the normal approximation in practical cases involving less

extreme levels.

The use of such normal approximations does not seem to be as extensive as is per-

14



haps desirable in high level exceedance modeling. Some cases have been investigated
for statistical purposes and could be used in the modeling context. Specifically in [14]

asymptotic statistics of the form

Zn. = Z'l,b(X, - un)-l-

for strongly mixing X; and levels u, satisfying n(1 — F(u,)) — oo, are investigated for a
class of functions 1. Specialization to ¥(z) = z yields the Hill estimator and equivalently
the damage model of Section 4.4, and specialization to ¥(z) = 1{z > 0} gives again the

exceedance point process (and its limiting distribution for the lower u,-levels).

This latter choice of v is also important for tail inference. The asymptotic mean
cluster size §~! for very high level exceedances (n(l1 — F(u,)) — ) is, as noted, an
important parameter. The simplest estimate of # is simply the ratio of the number of
observations clusters to the number of exceedances of the level u,. However this is not
a consistent estimator, due to the fact that as n increases the number of “observations”
(e-g. exceedé,nces) does not tend to infinity but has a non degenerate (approximately

Poisson) distribution with mean 7.

Consistency can of course be attained by replication to consider exceedances of u,
(rather than unm,) by say nm, X;'s where m, — co. But this is equivalent to the use of
the original n X,’s and a lower level u,, satisfying n(1 — F(u,)) — co. That is while 8 is
a parameter relevant to exceedance properties at very high levels, exceedances at lower

levels must be used for its ‘consistent estimation.

Finally we note that the field of tail inference for dependent sequences is a developing

one, and refer to [14] and [4] for currently available techniques and results.
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6 Continuous time.

It is perhaps worth indicating, without detailed discussion, the relevance of the r.i.f.
framework to corresponding continuous time problems. The analog of the exceedance
point process for a stationary continuous parameter process {X;,t > 0} is the ezceedance

random measure

Z7(B) = /T U > ur)t

i.e. the time in the set T.B (B C (0,1]) which the process spends above ur. This
defines (replacing T by n, at least) an r.i.f. to which the limit theory again applies under
strong mixing. Specifically for appropriately high levels, this random measure converges
in distribution to a Compound Poisson Process, where the Poisson events correspond
to high level upcrossings (normalized by T'), marked by the (asymptotic) extent of the

excursion above ur from that upcrossing to the next downcrossing.

This provides a convenient model for e.g. occurrence and damage from storms where
damage is measured as storm duration. The replacement of 1{X; > ur} by (X; — ur)+
would give a similar model where the damage from an excursion by X; above ur is the

area formed above ur in that excursion.

Results of this type for exceedance random measures have been obtained in [8]. For
Gaussian processes more explicit results can be found ([8]) and this is also true for a
potentially useful class of processes with “deterministic peaks” studied in [9]. Potential
uses fof statistical inference have not been investigated but these and similar statistics

will clearly be relevant for estimation of tail properties for continuous time processes.
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