
Does Code Decay?
Assessing the Evidence from
Change Management Data

Stephen G. Eick, Todd L. Graves, Alan F. Karr,
 J. S. Marron, and Audris Mockus

Technical Report Number 81
March, 1998

National Institute of Statistical Sciences
19 T. W. Alexander Drive

PO Box 14006
Research Triangle Park, NC 27709-4006

www.niss.org

NISS

100 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 1999

Does Code Decay? Assessing the Evidence from

Change Management Data

Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron, Audris Mockus

Abstract

A central feature of the evolution of large software systems is that change | which is necessary to add new
functionality, accommodate new hardware and repair faults | becomes increasingly di�cult over time. In this paper
we approach this phenomenon, which we term code decay, scienti�cally and statistically. We de�ne code decay, and
propose a number of measurements (code decay indices) on software, and on the organizations that produce it, that
serve as symptoms, risk factors and predictors of decay. Using an unusually rich data set (the �fteen-plus year change
history of the millions of lines of software for a telephone switching system), we �nd mixed but on the whole persuasive
statistical evidence of code decay, which is corroborated by developers of the code. Suggestive indications that perfective
maintenance can retard code decay are also discussed.

S. G. Eick is with Bell Laboratories.
T. L. Graves is with the National Institute of Statistical Sciences and Bell Laboratories.
A. F. Karr is with the National Institute of Statistical Sciences.
J. S. Marron is with the University of North Carolina at Chapel Hill.
A. Mockus is with Bell Laboratories.

EICK, GRAVES, KARR, MARRON, AND MOCKUS: DOES CODE DECAY? 101

I. Introduction

Because the digital bits that de�ne it are immutable, software does not age or \wear out" in the
conventional sense. In the absence of change to its environment, software can function essentially
forever as it was originally designed. However, change is not absent but ubiquitous, in two principal
senses. First, the hardware and software environments surrounding a software product do change: for
example, hardware is upgraded, or the operating system is updated. Second, and equally important,
the required functionality | both features and performance | changes, sometimes abruptly. For
example, a telephone system must, over time, o�er new features, become more reliable and respond
faster.
Necessarily, then, the software itself must be changed, through an ongoing process of maintenance.

As part of our experience with the production of software for a large telecommunications system, we
have observed a nearly unanimous feeling among developers of the software that the code degrades
through time, and maintenance becomes increasingly di�cult and expensive.
Whether this code decay is real, how it can be characterized, and the extent to which it matters are

the questions we address in this paper. The research reported here is based on an uncommonly rich
data set: the entire change management history of a large, �fteen-year old real-time software system
for telephone switches. Currently, the system comprises 100,000,0001 lines of source code (in C/C++
and a proprietary state description language) and 100,000,000 lines of header and make �les, organized
into some 50 major subsystems and 5,000 modules. (For our purposes, a module is a directory in the
source code �le system, so that a code module is a collection of several �les. This terminology is not
standard.) Each release of the system consists of some 20,000,000 lines of code. More than 10,000
software developers have participated.
We begin, in xII, with a brief discussion of the software change process and the change management

data with which we work. The handling, exploration and visualization of these data are important
issues in their own right, and are treated in [1].
In xIII, we propose a conceptual model for code decay: a unit of code (in most cases, a module) is

decayed if it is harder to change than it should be, measured in terms of e�ort, interval and quality.
Associated with the model is a compelling medical metaphor of software as patient, which enables one
to reason in terms of causes, symptoms, risk factors and prognoses.
The scienti�c link between the model and the conclusions is a series of code decay indices (CDIs)

presented in xIV, which quantify symptoms or risk factors (and so are like medical tests) or predict key
responses (a prognosis). The indices introduced here are directly relevant to the statistical analyses
that follow; many others could be formulated and investigated.
Our four principal results treat speci�c manifestations of decay. Three of these results are evidence

that code does decay: (1) the span of changes, which is shown to increase over time (xV-A); (2)
breakdown of modularity, which is exhibited by means of network-style visualizations (xV-B); (3) fault
potential, the likelihood of changes to induce faults in the software system { in xV-C, we show that
the distribution of faults is explained by the distribution of large, recent changes to the software. The
fourth quanti�es the impact of decay, in the form of (4) prediction of e�ort required to make a change,
using code decay indices that encapsulate characteristics of changes (xV-D).

Related Work

Early investigations of aging in large software systems, by Belady and Lehman [2], [3], [4], reported
the near-impossibility of adding new code to an aged system without introducing faults. Work such
as [5] on software maintenance for Cobol programs running on an IBM online transaction processing
system addressed program complexity, modularity and modi�cation frequency as explanatory variables,
but found that these variables accounted only for 12% of the variation in the repair maintenance rate.

1Numbers are approximate.

102 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 1999

Bendifallah and Scacchi in [6] consider software maintenance and its e�ect on cost, interval and
quality. Particularly noteworthy because of its historical summary of large scale software development
is [7]. Kemmerer and Ream survey empirical work on software maintenance [8].
Our conceptualization of code decay in medical terms was inspired by Parnas [9]. In work related

to our fault CDI, Ohlsson and Alberg [10] identify fault-prone modules in switching system software.
Two early fundamental papers relating software data collection and its analysis are [11], [12].

II. Changes to Software

Our de�nition of a change to software is driven by the data that are available: a change is any
alteration to the software recorded in the change history data base. The speci�c data with which we
deal are described in xII-B and xV.
The changes we study fall naturally into three main classes (see [13] and [14]) that de�ne the evolution

of a software product. Adaptive changes add new functionality to a system (for example, caller ID in
a telephone switch), or adapt the software to new hardware or other alterations in its environment.
Corrective changes �x faults in the software. Perfective changes are intended to improve the developers'
ability to maintain the software without altering functionality or �xing faults. Perfective maintenance
has also been called \maintenance for the sake of maintenance" or \re-engineering."

A. The Change Process

For the system we study, changes to the source code follow a well-de�ned process. Features (for
example, call waiting or credit card billing) are the fundamental requirements units by which the
system is extended.
Changes that implement a feature or solve a problem are sent to the development organization

as Initial Modi�cation Requests (IMRs); implementation of a feature typically requires hundreds of
IMRs. The supervisor responsible for the IMR distributes the work to the developers. Developers
implementing parallel changes (as in [15]) must wait for unavailable �les.
Each IMR generates a number of Modi�cation Requests (MRs), which contain information repre-

senting the work to be done to each module. (Thus, an IMR is a problem, while an associated MR
is all or part of the solution to the problem.) To perform the changes, a developer \opens" the MR,
makes the required modi�cations to the code, checks whether the changes are satisfactory (within a
limited context, i.e., without a full system build), and then submits the MR. Code inspections and
integration and system tests follow.
An editing change to an individual �le is embodied in a delta: the �le is \checked out" of the

version management system, edited and then \checked in." Lines added and lines deleted by a delta
are tracked separately. (To change a line, a developer �rst deletes it, then adds the new version of the
line.2)
A major organizational paradigm shift (see [16]) for one of the organizations working on the system

during its lifetime has been a transition from developer ownership of modules (with a feature imple-
mented by all developers who own modules that are touched) to developer ownership of features, with
the feature owner(s) making changes wherever necessary. Implications of this are discussed in xV-A
and xV-D.

B. Change Management Data

Data pertaining to the change history of the code itself reside in a version management system,
which tracks changes at the feature, IMR, MR and delta levels. Within the version management
system, the structure of the changes is as follows (see Figure 1).

2This preserves the capability to build earlier versions of the software.

EICK, GRAVES, KARR, MARRON, AND MOCKUS: DOES CODE DECAY? 103

Time Date delta

IMR

Feature

MRDescription

File, Module

Developer #lines add., del.

Fig. 1. Changes to the code (bold boxes) and associated data �elds.

TABLE I

Summary of Change Data

Data Element Delta MR IMR Feature

What/How Many D A A A
Who D D
Why D* D*
When D D D D
How Long D D A
How Much E�ort D

Each IMR has an extensive record containing priority, date opened and closed, point in the devel-
opment process when it was initiated (requirements, design, coding, testing, �eld operation), and a
number of other �elds (89 in all).
Data for each MR include the parent IMR, dates and a�ected �les, and an English text abstract

describing the change and the reasons for it. There is no explicit format on how and what information
is entered in the abstract; the purpose is for other developers to understand what change was made
and why.
The data for each delta list the parent MR and the date and time when the change was submitted

to the version management system as well as numbers of lines added, deleted, and unmodi�ed by that
change.
Desirable questions for change data to answer are: WHAT �les were changed, and which lines were

added and deleted? HOW MANY modules, �les, and lines were a�ected? WHO made the change?
WHY was the change made | did it add new functionality to the code or �x a fault? WHEN was
the change made? HOW LONG did the change take, in calendar time? HOW MUCH EFFORT did
the change require, in developer-hours?
The extent to which the version management database satis�es these requirements, and at which

levels of aggregation of changes, is shown in Table I. In this table, \D" indicates items directly in
the database, while \A" denotes items obtained by aggregation over constituent software sub-units.
Elements denoted by \D*" have problematic aspects discussed in [1].

104 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 1999

III. A Conceptual Model for Code Decay

In this section, we explore a medical metaphor: software su�ering from decay can be thought of as
diseased. After de�ning code decay in xIII-A, we list some causes of the decay disease in xIII-B. The
software \patient" may exhibit the symptoms (xIII-C), which, as with medical symptoms, suggest that
code decay is present. Risk factors (xIII-D) are reasons for concern about decay, even in the absence
of symptoms.

A. What is Code Decay?

Code is decayed if
it is more di�cult to change than it should be, as reected by three key responses: (1) COST of
the change, which is e�ectively only the personnel cost for the developers who implement it; (2)
INTERVAL to complete the change | the calendar/clock time required; and (3) QUALITY of the
changed software.
In the system we study, the interval and quality responses are constrained | schedules must be

met and quality standards must be attained, so to a signi�cant extent the key question becomes the
cost (e�ort) necessary to achieve the requisite interval and quality. Even so, interval and quality merit
study. Prediction of interval, for example, is crucial in resource allocation decisions. Similarly, quality
during the maintenance process is measurable, in terms of errors or unexpected behavior introduced
into the system (but later removed).
Several points should be noted. First, code decay is a temporal phenomenon, and it may be useful

to add a \more di�cult to change than it used to be" phrase to the de�nition.
Second, not all increase in di�culty results from decay: it is possible that the inherent di�culty of

the desired changes is increasing.
Third, decay is distinct from the ability of the software to meet requirements: code can be \correct"

and still be decayed, if it is excessively di�cult to add new functionality or make other changes.
Fourth, software that is decaying may nevertheless be increasing in value. Indeed, the very changes

that \cause" decay also increase the value of the software.
Fifth, implicit in our de�nition is the idea that code decay is the result of previous changes to the

software.3 Thus, there are \actionable" means to prevent, retard or remediate code decay. The \no
decay without change" concept, however, operates only at a high level. That a region of the code can
decay as the result of changes elsewhere is entirely possible.
Finally, the \harder to change than it should be" aspect of code decay, while central, is also elusive.

Some code is simply inherently hard to change, and to attribute this to decay is misleading. Many of the
code decay indices in xIV adjust for this by means of scaling, for either the size of code units or time. In
addition, di�culty of change is a function of the developer making the change. A de�nitive adjustment
for developer ability has not been devised, and usually we must relegate developer variability to \noise"
terms in our models.

B. Causes of Code Decay

In a sense, change to code is the cause of decay. As change is necessary to continue increasing the
value of the software, a useful concept of a cause must allow it to be present or absent in a project
under active development. Causes of decay reect the nature of the software itself as well as the
organizational milieu within which it is embedded. Examples include:4

1. Inappropriate architecture that does not support the changes or abstractions required of the system.
2. Violations of the original design principles, which can force unanticipated changes to violate the
original system assumptions. Changes that match the original design tend to be comparatively easy,
while violations not only are di�cult to implement, but also can lead future changes to be di�cult

3That is, there is no \natural" or \physical" decay.
4There is no implication every cause is present in any given situation.

EICK, GRAVES, KARR, MARRON, AND MOCKUS: DOES CODE DECAY? 105

as well. In switching systems, for example, many of the original system abstractions assume that
subscriber phones remain in �xed locations. The changes required to support wireless phones that
roam among cell sites were unanticipated by the original system designers. Note that this cause can
be di�cult to distinguish from inappropriate architecture.
3. Imprecise requirements, which can prevent programmers from producing crisp code, causing devel-
opers to make excessive numbers of changes.
4. Time pressure, which can lead programmers to take shortcuts, write sloppy code, use kludges (see
xIII-C), or make changes without understanding fully their impact on the surrounding system.
5. Inadequate programming tools, for example, unavailability of computer-aided software engineering
(CASE) tools.
6. Organizational environment, manifested, for instance, in low morale, excessive turnover or inade-
quate communication among developers, all of which can produce frustration and sloppy work.
7. Programmer variability, for example, programmers who cannot understand or change delicate, com-
plex code written by their more skilled colleagues.
8. Inadequate change processes, such as lack of a version control system or inability to handle parallel
changes [15]. (This cause is particularly pertinent to today's world of Web distribution of open source
software.)
Bad project management may amplify the e�ects of any of these causes.

C. Symptoms of Code Decay

In our conceptual model, symptoms are measurable manifestations of decay, in the same way that
chest pains are a symptom of heart disease. Some of the code decay indices in xIV are measurements
of symptoms.
Below we list plausible symptoms of decay.

1. Excessively complex (bloated) code is more complicated than it needs to be to accomplish its task.
If rewritten, bloated code could become easier to understand and simpler to maintain. Standard
software \metrics" are potential means to measure complexity, but they are designed to measure de
facto complexity, rather than the di�erence between de facto and inherent complexity. Based on
discussions with developers, one promising candidate is nesting complexity : the nesting complexity of
a line of code is the number of loops and conditionals enclosing it.5 An alternative form of complexity,
which is especially troublesome to developers, is treated in item 6 below.
2. A history of frequent changes, also known as code churn, suggests prior repairs and modi�cations.
If change is inherently risky, then churn signi�es decay.
3. Similarly, code with a history of faults may be decayed, not only because of having been changed
frequently, but also because fault �xes may not represent the highest quality programming.6

4. Widely dispersed changes are a symptom of decay because changes to well-engineered, modularized
code are local. As discussed in xV-A, this symptom produces clear scienti�c evidence of code decay.
5. Kludges in code occur when developers knowingly make changes that could have been done more
elegantly or e�ciently.7 While not an \o�cial" categorization, kludged code is often identi�ed literally
as such in MR abstracts. That kludged code will be di�cult to change is almost axiomatic.
6. Numerous interfaces (for example, entry points) are cited frequently by developers when they de-
scribe their intuitive de�nition of code decay. As the number of interfaces increases, increasing attention
must be directed to possible side-e�ects of changes in other sections in the code.

D. Risk Factors for Code Decay

Risk factors, as in medicine, increase the likelihood of code decay, or exacerbate its e�ect. By
themselves, they are not necessarily indicators or causes of decay, but are cause for concern even in

5Nesting complexity would capture the addition of features to the system by means of conditionals.
6Of course, fault-prone code may also simply be inherently complicated.
7For example, in response to schedule pressure.

106 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 1999

the absence of symptoms.
1. Size. The size of a module m, in our analyses best measured by NCSL(m), the number of non-
commentary source lines,8 is clear cause for concern. The larger the module, the more likely essentially
any of the symptoms in xIII-C is present.
2. Age of code is a clear risk factor, but intuition regarding age is complicated. On the one hand, aged
code may be a risk factor for decay if the code is neglected, or simply because older code units have
had more opportunity to be changed, and their original environment is less likely to have persisted.
On the other hand, code that is so stable that no change is necessary may not be decayed at all.
Indeed, because of conicting pressures, variability of age within a code unit may be the essential
characteristic.
3. Inherent complexity is a risk factor for decay despite our de�ning code decay in a manner that
adjusts for complexity (\harder to change than it should be"). Inherent complexity is also relevant
when comparing one system to another: because it is inherently more complex, real-time software is
more likely to decay than standard MIS applications.
4. Organizational churn (for example, turnover or reorganization) increases the risk of decay by de-
grading the knowledge base, and can also increase the likelihood of inexperienced developers changing
the code (see item 7). Organizational churn is not readily discerned from the version management
database; however, a parallel organizational study, reported in part in [16], links decay to events in
the history of AT&T and Lucent.
5. Ported code was originally written in a di�erent language, for a di�erent system, or for another
hardware platform. Both the porting process itself and the new milieu are risks for decay.
6. Requirements load, when heavy, means that the code has extensive functionality and is subject to
many constraints. Multiple requirements are hard to understand, and the associated functionality is
hard to implement, resulting in a higher risk of decay. In addition, a heavy requirement load is likely
to have accreted over time, so that the code is doing things it was not designed to do.
7. Inexperienced developers can be either new to programming or new to particular code. They increase
the risk of decay because of lack of knowledge, a lack of understanding of the system architecture, and
(for those early in their careers) potential for lower or less-developed skills.

IV. Code Decay Indices

In the software engineering literature there is a rich history of studies involving software measurement
and measurement theory (see, for example, [17]). Our code decay indices follow in this tradition, by
being both quanti�ed and observable in the version management data base. Pursuing the medical
metaphor, CDIs may be interpreted as quanti�ed symptoms, quanti�ed risk factors, or prognoses,
which are predictors of the responses (cost, interval, quality). Ordinarily, prognoses are functions of
quanti�ed symptoms and risk factors.
In order to de�ne actionable priorities to remediate decay, indices must encapsulate developer knowl-

edge and discriminate over both time and location in the software. Also, several of the indices can be
visualized in compelling ways, as we illustrate in xIV-B.4 and xV-B.

A. General Considerations

When de�ning a CDI, one confronts three critical issues.
The �rst issue is to select appropriate levels of aggregation for both changes and software units. Of

the levels of changes described in xII, MRs seem in most instances to be the most informative: the
associated data sets are rich enough to be interesting, but not so large as to create intractability.
For most of the system we study, software can be aggregated to any of three levels.9 Files are the

atomic unit of software. Modules are collections of related �les, corresponding physically to a single

8Obtained by summing over all �les f belonging to m.
9Lines, even though tracked in the version management data base, simply lack su�cient structure to be appropriate.

EICK, GRAVES, KARR, MARRON, AND MOCKUS: DOES CODE DECAY? 107

directory in the software hierarchy. A subsystem is a collection of modules implementing a major
function of the software system. In our studies, modules typically yield the most insight.
The second issue is scaling: in some cases it is helpful to scale a CDI to convert it into a rate per

unit time or per unit of software size (usually, NCSL, the number of non-comment source lines). In
addition to being scaled for time, indices may also be functions of time, in order to illuminate the
evolution of code decay.
The third issue is transformation: an index can sometimes be improved by transforming a variable

mathematically, for example, by taking logarithms, powers or roots. In some cases, the rationale may
be physical, while in others it will be statistical, in order to improve the \�t" of models.

B. Example CDIs

Here, we present example CDIs that appear in the analyses in xV. They represent symptoms, risk
factors and prognoses of decay. Candidates for other symptoms and risk factors will be presented in
future papers.
We use the following notation: c denotes changes (as noted above, most often MRs); ` denotes lines

of code; f denotes �les; m denotes modules; d denotes developers. None of these objects is subscripted,
so that (for example)

P
c denotes a sum over all changes.

We employ jSj to denote the number of elements in a set S, and for a change c and software unit
m, c ; m means that \c touches m:" some part of m is changed by c. Also 1 fAg, the indicator of
the event A, is equal to one if A occurs and zero otherwise.
In addition, several of the CDIs (all computable directly from the version management data base)

depend on characteristics of changes:

FILES(c) =
X
f

1 fc; fg ; the number of �les touched by c

DELTAS(c) = number of deltas associated with c

ADD(c) = number of lines added by c

DEL(c) = number of lines deleted by c

DATE(c) = the date on which c is completed, which we term just the date of c

INT(c) = the interval of c, the (calendar) time required to implement c

DEV(c) = number of developers implementing c.

B.1 History of Frequent Changes

The historical count of changes is expressed by the CDI

CHNG(m; I) =
X
c;m

1 fDATE(c) 2 Ig ; (1)

the number of changes to a module m in the time interval I, appears in xV-B. In other settings, the
frequency of changes may be more relevant, as quanti�ed by

FREQ(m; I) =
1

jIj
X
c;m

1 fDATE(c) 2 Ig : (2)

B.2 Span of Changes

The span of a change is the number of �les it touches (Here �les yield a more sensitive index than
modules.), leading to the CDI

FILES(c) =
X
f

1 fc; fg : (3)

108 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 1999

Fig. 2. The SeeSoft view of one module. Color represents the age of a source code line. Rainbow colored boxes represent
frequently changed �les, while boxes with a single hue represent �les that changed little since their creation.

In xV-D we will provide evidence that FILES(�) predicts the e�ort necessary to make changes. There
are three primary reasons why changes touching more �les are more di�cult to accomplish, and hence
that span is a symptom of decay. First is the necessity to get expertise about unfamiliar �les from
other developers; this is especially vexing in large-scale software, where each developer has a localized
knowledge of the code. Second is the breakdown of encapsulation and modularity. Well-engineered
code is modular and changes are localized. Changes spanning multiple �les are more likely to modify
an interface. Third is the size: touching multiple �les signi�cantly increases the size of the change.
In the subsystem we study (xV), FILES(�) increases over time, so that this CDI produces clear

scienti�c, symptomatic evidence of code decay, as discussed in xV-A.

B.3 Size

The size of a module m has already been de�ned as NCSL(m), the number of non-commentary
source lines, obtained by summing over all �les f belonging to m. Although we do not elaborate in
xV, extensive analyses show most standard software \complexity" metrics ([18]) are nearly perfectly
correlated with NCSL, so that size is e�ectively synonymous with complexity.

B.4 Age

We de�ne the age of a software unit as the average age of its constituent lines. For a module m,
this is given by

AGE(m) =
1

jmj
X
f2m

X
`2f

AGE(`); (4)

where f 2 m means f is a �le in module m and ` 2 f means ` is a line in the �le f . Use of AGE in a
predictive CDI is illustrated in xIV-B.5.
Also interesting is the variability of the ages of the lines in a code unit, The SeeSoft view [19] in

Figure 2 shows the variability of age in one module. The �les are represented by boxes (labels have
been changed for con�dentiality) and the source code lines are represented by colored lines within the
boxes. The color of a line represents its age: �les in which age is highly variable stand out with most
of the rainbow colors. The �les that changed little since their creation contain mostly a single hue.

EICK, GRAVES, KARR, MARRON, AND MOCKUS: DOES CODE DECAY? 109

B.5 Fault Potential

Predictive CDIs are functions of CDIs that quantify symptoms or risk factors, and are intended to
predict the key responses of e�ort, interval and quality. We present three such indices, two dealing
with quality and one with e�ort, which are discussed at more length in xV-C{V-D.
Predictors of the number of faults that will have to be �xed in module m (and, thus, of the quality

response) in a future interval of time, taken from [20], include the weighted time damp model

FPOTWTD(m; t) = a
X

c;m;DATE(c)<t

e��[t�DATE(c)] log [ADD(c;m) + DEL(c;m)] ; (5)

where a and � are determined by statistical analysis, and the generalized linear model

FPOTGLM(m; t) = a�X
c2�

1 fc;mg � b
AGE(m); (6)

where � is the entire set of deltas10 up to time t and AGE is given by (4).
Both of these indices illuminate change as the primary agent creating faults (Even though faults do

not arise spontaneously, this is not a tautology: the absence of other terms such as size and complexity
is highly informative.), but depict di�ering temporal e�ects. In (5), the e�ects of changes are \damped"
and attenuate over time, while in (6) faults are less likely in older code (provided b is estimated to be
less than one, as in our data). Statistical analyses of the models appear in xV-C.
B.6 E�ort

A predictor of the e�ort (person-hours) required to implement a change is

EFFORT(c) = a0 + a1FILES(c) + a2
X
f

1 fc touches fg jf j (7)

+a3ADD(c) + a4DEL(c) + a5INT(c) + a6DEV(c):

One motivation for (7) is to distinguish the dependency overhead associated with a change |
captured in the terms involving a0, a1 and a2 | from the nominal e�ort, represented by the terms
involving a3 and a4. The remaining terms incorporate interval and developer overhead. A statistical
analysis of this index appears in xV-D.

V. The Evidence for Decay

In this section, we discuss some of our major results to date. All of these analyses are based on
a single subsystem of the code, consisting of approximately 100 modules and 2500 �les. The change
data consist of roughly 6000 IMRs, 27,000 MRs and 130,000 deltas. Some 500 di�erent login names
made changes to the code in this subsystem.
The results yield very strong evidence that code does decay. First, in xV-A, statistical smoothing

demonstrates that the span of changes (see (3)) increases over time, which is a clear symptom of code
decay. This analysis is extended, in xV-B, by network-based visualizations showing that the increase
in span is accompanied by (and may cause) a breakdown in the modularity of the code.
Our other results show how decay a�ects two of the three key responses, namely quality and e�ort.

In xV-C, we present models involving the fault potential CDIs of xIV-B.5. Finally, in xV-D, we present
a statistically estimated version of the CDI EFFORT in (7), together with some intriguing implications,
including indications that changes with large spans tend to require large e�orts. This underscores the
importance of the preceding sections that demonstrate increasing span of changes.
Not all of the evidence is conclusive or complete, and in some cases, multiple interpretations are

possible. For example, some of the increase in span of changes (xV-A) and decrease in modularity

10Here changes are deltas rather than MRs.

110 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 1999

Date

Date

log
10

(w
ind

ow
 w

idt
h)

Pr
ob

 {
FI

LE
S(

c)
> 1

}

SiZer Map

86 87 88 89 90 91 92 93 94 95 96

−1

−0.5

0

0.5

1

86 87 88 89 90 91 92 93 94 95 96
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Highlighted smooths

Fig. 3. SiZer maps of numbers of �les touched by changes through time. The overall trend has been a signi�cant
increase in the di�culty of changes. At a �ner resolution, there was a decreasing trend during the developmental
phase of the subsystem, when changes likely involved multiple �les, but this trend reversed before long.

(xV-B) can be attributed merely to growth of the subsystem. Similarly, the fault potential analysis in
xV-C, identi�es change as a causal agent for faults, but does not di�erentiate decay among modules.
Collectively the results show that our change-based conceptual model of decay is the right one. That

change is the agent of decay is crucial is borne out by the data, which is crucial since there are then
actionable means to retard or reverse decay.

A. Temporal Behavior of the Span of Changes

The CDI FILES(c) of (3) measures the di�culty of a change by how many code units �les need
to be changed in order to implement it. An increase in the span of changes, then, is symptomatic of
decay, as discussed in x IV-B.2.
Figure 3 shows that span is increasing for the subsystem under study. There, we display the chance

that at any given time an MR touches more than one �le by smoothing data in which each point
corresponds to an MR. A point's x-coordinate is time represented its the opening date, and its y-
coordinate is one when more than one �le is touched, and zero otherwise. Three local linear smooths
(See, e.g., [21] and [22] for introduction and discussion.) are shown in the top plot. These smooths
are essentially weighted local averages, where the weights have a Gaussian shape, and the widths of
the windows (i.e., standard deviation of the weight function) are h = 0:3 (purple curve), h = 1:5
(multicolored curve) and h = 7:5 (blue curve).
The central curve, h = 1:5, shows an initial downward trend, which is natural because many �les

are touched by common changes in the initial development phase, followed by a steady upward trend
starting in 1990. This last trend reects breakdown in the modularity of the code, as we discuss further

EICK, GRAVES, KARR, MARRON, AND MOCKUS: DOES CODE DECAY? 111

in xV-B. That this is a substantial increase comes from the fact that values on the y-axis represent
probabilities (local in time) that a change will touch more than one �le, which more than double from
a low of less than 2% in 1989 to more than 5% in 1996.

In the absence of more detailed analysis, the results in the top plot in Figure 3 depend on the
window width h. The larger window width h = 7:5 shows only the upward trend, while the smaller
window width h = 0:3 shows a lot of additional structure, which may be \microtrends" or may instead
be spurious sampling artifacts. But how can we be sure? Furthermore, how do we know the features
observed in the h = 1:5 smooth, which contains the important lessons, are real?

The bottom half of Figure 3 is a SiZer map,11 which addresses this issue. Each location corresponds
to a date, and also to a window width h, and is shaded blue (red) when the smooth at that window
width and date is (statistically) signi�cantly increasing (decreasing, respectively). Regions where there
is no signi�cant change are shaded in the intermediate color purple.

The smallest window width, h = 0:3, in the top plot is represented by the bottom white line in the
lower plot, and is shaded purple in the top plot, since this window width is shaded purple at all dates
in the SiZer map. This is interpreted as \when the data are studied at this level of resolution, there
are no signi�cant increases or decreases," i.e., the wiggles in the curve are not statistically signi�cant.

The intermediate window width h = 1:5 runs through both the red and blue shaded regions. This
same coloring is used in the curve in the top plot, which shows that the structure is statistically
signi�cant. In particular there is an important downward trend at the beginning, and upward trend
after 1990.

The large window width h = 7:5 runs through the region that is shaded entirely blue in the bottom
plot, and thus inherits this color in the top plot. This shows that when the data are smoothed nearly
to the point of a doing a simple linear least squares �t, the resulting line slopes signi�cantly upwards.

These conclusions are complementary rather than inconsistent, because SiZer shows what is hap-
pening at each scale of resolution. When the data are not smoothed too much, there can be a decrease
in one region, which when the data are smoothed very strongly, becomes overwhelmed by the increases
elsewhere.

B. Time Behavior of Modularity

A key tenet of modern programming practice is modularity: code functionality should be local,
so that changes will be also. In the system we analyzed, subsystems are divided into modules by
functionality, and this division is successful to the extent to which when working on one module a
developer need not devote signi�cant attention to the e�ects on other modules. Conversely, changes
that require modi�cations of many modules are likely to be more di�cult to make correctly.

Alone, the increase in span of changes described in xV-A does not imply breakdown of the modularity
of the subsystem. Some increase in span could reect simply the growth of the subsystem, and even
changes of wider span need not cross module boundaries. The network visualization tool NicheWorks
[24] allows us to address the question of whether modularity is breaking down over time, and leads to
the results in Figure 4, which suggest strongly that it is.

Each diamond-shaped icon in the upper left panel of Figure 4 corresponds to a module; the positions
of the modules have been chosen by NicheWorks in a manner that places pairs of modules nearby if
they have been changed together as part of the same MRs a large number of times. More precisely,
the weights are de�ned in terms of the \number of changes" CDI of (1), with that for modules m and
m0 being

w(m;m0) =
CHNG(m;m0; I)

4

q
CHNG(m; I)� CHNG(m0; I)

; (8)

11SiZer, its properties, and some variations are discussed in [23].

112 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 1999

1988 1989

1996

Fig. 4. Top left: NicheWorks view of the modules in one subsystem, using change data through 1988 to place modules
which have been changed at the same times close to one another. Two clusters of modules are evident; a module
within one of these clusters is often changed together with other modules in the cluster but not with other modules.
Top right: NicheWorks view of the modules in the top left, this time incorporating the change history through 1989.
The clusters that appear in the top left view are converging in on each other. This suggests that the architecture that
was previously successful in separating the functionality of the two clusters of modules is breaking down. Bottom:
the breakdown continued, and at the end of 1996, there was no suggestion of multiple clusters of modules.

where I is an interval of time (see below) and where

CHNG(m;m0; I) =
X

c;m;c;m0

1 fDATE(c) 2 Ig

is the number of MRs touching both m and m0. In the upper left panel, the diamonds show this
network view using all the change data through the end of calendar year 1988 (corresponding to one
choice of I), while the other ends of the segments connected to the diamonds display the same view
at the end of 1987 (an earlier choice of I).
In this way, one can see how relationships among modules evolved through time. In the top left

panel of Figure 4, there are two main clusters of roughly a dozen modules each. In the top right panel,
however, which displays the change data through the end of 1989 in the locations of the diamonds

EICK, GRAVES, KARR, MARRON, AND MOCKUS: DOES CODE DECAY? 113

(the 1988 data appear here as the locations of the segments' endpoints), these two clusters have
mostly merged. The merging process continued, and at the end of 1996, the clusters are no longer
visible. While the logic of the code was originally intended to see to it that some modules would be
essentially independent of each other, new and unanticipated functionality may have helped to destroy
this independence.
The weights in (8) constitute a compromise between simple counts

w(m;m0) = CHNG(m;m0; I);

which tend to place too close together pairs of modules that are touched together frequently only
because they are touched large numbers of times in total, and

w(m;m0) =
CHNG(m;m0; I)q

CHNG(m; I)� CHNG(m0; I)
; (9)

which can be interpreted as a correlation (It is dimensionless and lies between zero and one.), but
which can exaggerate relationships between modules that are rarely touched at all.
One shortcoming is that the weights of (8) (unlike those of (9)) are not invariant with numbers

of changes. The following dispersion analysis, however, provides further evidence of the decline of
modularity. In 1988, the mean square distance between points in the small, eleven-point cluster and
its centroid is 0.355, while the average distance between points in the larger, 26-point cluster and its
centroid is 0.526. The inter-cluster distance, or the distance between the centroids of the two clusters,
is 2.78. An intuitively appealing measure of distance between clusters, then, is 2:78=

p
0:355� 0:526 =

6:43. The analogous quantity for 1989 is 1:35=
p
0:306� 0:419 = 3:77. After the large decrease in 1989,

this measurement continues to shrink, albeit not as rapidly, reaching 1:40=
p
0:330� 0:469 = 3:56 in

1996.

C. Prediction of Faults

In xIII-A, we identi�ed quality as one of three key responses to code decay. Here we summarize
research linking faults in the software to symptoms of code decay, using the predictive CDIs FPOTWTD

of (5) and FPOTGLM of (6). More complete discussion of this fault potential modeling appears in [20].
The thrust of these models is to predict the distribution of future faults over modules in the subsys-

tem from the modules' change history. The best models predicted numbers of faults using numbers of
changes to the module in the past, the dates of these changes (i.e. the negative of their ages, measured
in years), and their sizes, as in (5):

FPOTWTD(m) /
X
c;m

e0:75�DATE(c) log [ADD(c;m) + DEL(c;m)] ; (10)

with the parameter � = :75 determined by statistical analysis (see [20]). Thus, large, recent changes
add the most to fault potential, and the number of times a module has been changed is a better
predictor than its size of the number of faults it will su�er in the future. That � 6= 0 is the primary
(and direct) evidence that changes induce faults: were � = 0, past changes of the same size would be
indistinguishable from one another, and hence none could be posited to have any speci�c e�ect.
The model (10) does provide evidence that some modules are more decayed than others. In principle,

this issue could be addressed by allowing � to be module dependent, but we have not yet done this.
An alternative (and less powerful) model, using the CDI of (6) and the same data as (10), is a

generalized linear model, is

FPOTGLM(m) = :017�X
c

1 fc;mg � :64AGE(m): (11)

114 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 1999

This model implies that code having many lines that have survived for a long time is likely to be
relatively free of faults. More precisely, according to (11), code a year older than otherwise similar
code tends to have only two-thirds as many faults.
One way to evaluate these models is by comparison with a \naive" model that predicts the number

of future faults in given locations to be proportional to the number of past faults. As discussed in
[20], in some cases, (11) is only marginally superior to the naive model (as measured by a Poisson
deviance). Nevertheless, this still means that a model suggesting causality (deltas cause faults) has
the same explanatory power as a model positing simply that the distribution of faults over modules is
stationary over time.
Simulations of deviances provide strong evidence that the model (10) is superior to that of (11). In

particular, this means that treating changes individually improves the predictions.
Equally important is that other variables did not improve the predictions, once size and time of

changes are taken into account. In particular, predictions do not improve by including either module
size or other measures (metrics) of software complexity (which in our data are correlated essentially
completely with size). Thus, changes to code are more responsible for faults than the complexity of
the code.
Moreover, the number of developers touching a module had no e�ect on its fault potential.12 One

possible explanation is that strong organization programming standards attenuate any such e�ects.
The change from code ownership to change ownership ([16]) is a confounding factor in this regard.
Finally, concurrent changes with large numbers of other modules did not contribute to fault potential.

In one sense, this suggests that the decline of modularity described in xV-B may not be harmful, but
since the size of changes is correlated with their span, it is more likely that we are simply seeing the
size variable mask the e�ect of span.

D. Models for E�ort

Here we assess the evidence for \bottom line" relevance of code decay: can the e�ort required to
implement changes be predicted from symptoms and risk factors for decay? The analysis employs a
variant of the predictive CDI EFFORT of (7), with the \sum of touched �le sizes" term in (7) omitted.
The results are suggestive but, because of the small sample size, not de�nitive.
The model was �t using data from a set of 54 features. As noted in xII-A, features are the units of

system functionality (e.g., call waiting) by which the system is extended, and are too aggregated for
most purposes. However, e�ort data (person hours) are available only at this level. (Imputation of
disaggregated e�ort is addressed in [25].)
Extreme variability of the feature-level data necessitated taking logarithms of all variables. (The

actual transformation | log[1 + �] | avoids negative numbers.) The resultant model is

log(1 + EFFORT(c)) = :32 + :13� (log[1 + FILES(c)])2 (12)

�:09� (log[1 + DEL(c)])2

+:12� log[1 + ADD(c)]� log[1 + DEL(c)]

+:11� log[1 + INT(c)]� :47� log[1 + DELTAS(c)]

All coe�cients shown are statistically signi�cantly di�erent from zero; the multiple R2 value is .38.
Despite the danger that this model is \over�t," removal of any of the variables decreases the �t
dramatically.
Some interpretations of (12) seem clear. First, dependence on FILES(c) con�rms that the span of

changes is indeed a symptom of decay; that the dependence is quadratic hints that moderate span

12One might expect that modules modi�ed by many developers would have confused logic as a result of the di�erent styles, and
hence be di�cult to change.

EICK, GRAVES, KARR, MARRON, AND MOCKUS: DOES CODE DECAY? 115

may not be serious. Second, as hypothesized in xIV-B.6, dependency overhead (in (12), embodied in
EFFORT(c)) can be distinguished from nominal e�ort (terms involving ADD(c) and DEL(c)).
Other interpretations seem more problematic. For example, the negative coe�cient for (log[1 +

DEL(c)])2 deletions are accomplished relatively quickly (which makes sense), but can also be inter-
preted as simply �tting cases in the data where large numbers of lines are deleted. Similarly, the
interaction term between additions and deletions (log[1 + ADD(c)] � log[1 + DEL(c)]) may suggest
that the hardest changes are those requiring both additions and deletions, but the high level of aggre-
gation mandates caution when trying to extrapolate this to, say, the delta level.
The negative coe�cient for log[1+DELTAS(c)] is puzzling, since it is di�cult to believe that features

containing large numbers of editing changes are somehow easier to implement. But removing this single
term decreases R2 nearly by one-half, so there is no doubt that the e�ect is present in the data. Detailed
examination of the data suggests that the negative coe�cient is picking up the approximately 5 cases
(10% of the data) in which e�ort is large (close to the maximum) e�ort, but the number of deltas is
very small.

E. Con�rmatory Evidence

The results reported in this paper are derived primarily from statistical analysis of change manage-
ment data. They are corroborated by results reported in [16], which is part of the same code decay
project.

VI. Discussion

Using tools developed to handle change management data, a conceptual model of code decay (asso-
ciated concepts of causes, symptoms and risk factors), code decay indices and statistical analyses, we
have found evidence of decay in the software for a large telecommunications system.
Four speci�c analyses were performed. They demonstrate (1) Increase over time in the number

of �les touched per change to the code; (2) The decline in modularity of a subsystem of the code,
as measured by changes touching multiple modules; (3) Contributions of several factors (notably,
frequency and recency of change) to fault rates in modules of the code; and (4) That span and size of
changes are important predictors (at the feature level) of the e�ort to implement a change.
At the same time, evidence of dramatic, widespread decay is lacking. Retrospectively, this is not

surprising: the system studied is a �fteen-year old, successful product to which new features can still
be added.
The tools, concepts and analyses are transferable to any software project for which comparable

change management data exist. We anticipate that all projects of su�ciently large scale will exhibit
decay to some extent: that is, code decay is a generic phenomenon.
Current investigations are focusing on the e�ectiveness and economic e�ciency of means to prevent

or retard code decay, such as perfective maintenance. Whether (in the medical metaphor), code decay
can ultimately be fatal is not clear. There are, however, anecdotal reports of systems that have reached
a state from which further change is not possible.

Acknowledgments

We gratefully acknowledge conversations and contributions from Mark Ardis, David Parnas, Harvey
Siy, Lawrence Votta, and David Weiss.

References

[1] A. Mockus, S. G. Eick, T. L. Graves, and A. F. Karr, \New roles for change management data in software engineering,"
Technical Report, National Institute of Statistical Sciences, 1999.

[2] L. A. Belady and M. M. Lehman, \Programming system dynamics, or the meta-dynamics of systems in maintenance and
growth," Tech. Rep., IBM Thomas J. Watson Research Center, 1971.

[3] L. A. Belady and M. M. Lehman, \A model of large program development," IBM Systems Journal, pp. 225{252, 1976.
[4] M. M. Lehman and L. A. Belady, Program Evolution: Processes of Software Change, Academic Press, 1985.

116 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH 1999

[5] I. Vessey and R. Weber, \Some factors a�ecting program repair maintenance: An empirical study," Communications of the
ACM, vol. 26, pp. 128{134, 1983.

[6] S. Bendifallah and W. Scacchi, \Understanding software maintenance work," IEEE Transactions on Software Engineering,
vol. 24, pp. 311{323, 1987.

[7] W. S. Scacchi, \Managing software engineering projects: A social analysis," Transactions on Software Engineering, vol. 10,
no. 1, pp. 49{59, January 1984.

[8] C. F. Kemerer and A. K. Ream, \Empirical research on software maintenance: 1981{1990," Tech. Rep., Massachusetts
Institute of Technology, 1992.

[9] D. L. Parnas, \Software aging," in Proceedings 16th International Conference On Software Engineering, Los Alamitos,
California, 16 May 1994, pp. 279{287, IEEE Computer Society Press.

[10] N. Ohlsson and H. Alberg, \Predicting fault-prone software modules in telephone switches," IEEE Transactions on Software
Engineering, vol. 22, no. 12, pp. 886{894, December 1996.

[11] V. R. Basili and B. T. Perricone, \Software errors and complexity: An empirical investigation," Communications of the
ACM, vol. 27, no. 1, pp. 42{52, January 1984.

[12] V. R. Basili and D. M. Weiss, \A methodology for collecting valid software engineering data," IEEE Transactions on Software
Engineering, vol. 10, no. 6, pp. 728{737, 1984.

[13] E. B. Swanson, \The dimensions of maintenance," in Proc. 2nd Conf. on Software Engineering, San Francisco, 1976, pp.
492{497.

[14] K. H. An, D. A. Gustafson, and A. C. Melton, \A model for software maintenance," in Proceedings of the Conference in
Software Maintenance, Austin, Texas, September 1987, pp. 57{62.

[15] D. E. Perry, H. P. Siy, and L. G. Votta, \Parallel changes in large scale software development: An observational case study,"
in Proceedings of the 1998 International Conference on Software Engineering, Kyoto, Japan, April 1998.

[16] N. Staudenmayer, T. L. Graves, J. S. Marron, A. Mockus, H. Siy, L. G. Votta, and D. E. Perry, \Adapting to a new
environment: how a legacy software organization copes with volatility and change," in 5th International Product Development
Conference, Como, Italy, 1998.

[17] S. L. Peeger, R. Je�ery, W. Curtis, and B. Kitchenham, \Status report on software measurement," IEEE Software, pp.
33{43, March/April 1997.

[18] H. Zuse, Software Complexity: Measures and Methods, de Gruyter, Berlin, New York, 1991.
[19] T. A. Ball and S. G. Eick, \Software visualization in the large," IEEE Computer, vol. 29, no. 4, pp. 33{43, April 1996.
[20] T. L. Graves, A. F. Karr, J. S. Marron, and H. P. Siy, \Predicting fault incidence using software change history," IEEE

Transactions on Software Engineering, 1999, To appear.
[21] M. P. Wand and M. C. Jones, Kernel Smoothing, Chapman and Hall, London.
[22] J. Fan and I. Gijbels, Local polynomial modelling and its applications, Chapman and Hall, London, 1996.
[23] P. Chaudhuri and J. S. Marron, \Sizer for exploration of structures in curves," Journal of the American Statistical Association,

1999, To appear.
[24] G. J. Wills, \Nicheworks { interactive visualization of very large graphs," in Graph Drawing '97 Conference Proceedings.

Springer-Verlag Lecture Notes in Computer Science, Rome, Italy, 1997.
[25] T. L. Graves and A. Mockus, \Inferring change e�ort from con�guration management databases," Metrics 98: Fifth

International Symposium on Software Metrics, November 1998.

