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Sampling and prediction strategies relevant at the planning stage of the cleanup of en-
vironmental hazards are discussed. Sampling designs and models are compared using
an extensive set of data on dxaxm contamination at Piazza Road, Missouri. To meet
the assumptions of the statistical model, such data are often transformed by taking log-
arithms. Predicted values may be required on the untransformed scale, however, and
several predictors are also compared.

Fairly small designs turn out to be sufficient for mddel fitting and for predicting. For
fitting, taking replicates ensures a positive measurement error variance and smooths the
predictor. This is strongly advised for standard predictors. Alternatively, we propose a
predictor linear in the untransformed data,. with coefficients derived from a model fitted .
to the logarithms of the data. It performs well on the Piazza Road data, even with no

replication.
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INTRODUCTION

Piazza Road is an Environmental Protection Agency (EPA) Superfund site located in
Rosati, Missouri. In 1971 a waste oil mixture later found to be contaminated with dioxin
was applied to a dirt road as a dust suppressant. For the subsequent cleanup, the site
was divided into 150 rectangular exposure units (EUs) of approximately 5000 ft? each.
The layout of some of these EUs was shown by Ryti, Neptune, and Groskinsky (1992,
Figures 3-5). Prior to the cleanup, a pilot study with four EUs was carried out. The goal
was to provide information on the large-scale and small-scale variability of the contam-
~inant. A simulation study using these results showed that the size of the cost optimal
cleanup unit was 14 x 14 ft2 (Ryti, 1993). Based on this, the actual cleanup of the site was
described by Ryti, Neptune, and Groskinsky (1992). Cleanup units were remediated, if
necessary, in an EU to bring the EU average concentration below 1 ppb with a probability
of at least 0.95.

As observations faken at nearby locations typically show higher correlation than ob-
servations taken further apart, our statistical models will have a very flexible class of
correlation functions. Spatial correlations were not considered in the earlier works by
‘Ryti (1998) or Ryti, Neptune, and Groskinsky (1992). |

In this article we consider the problem of pointwise prediction of the dioxin concen-
tration. This is relevant when very highly contaminated areas are to be identified. Fur-
thermore, averaging a pointwise predictor can be a simple and computationally straight-
forward way to predict the average contamination over larger regions. We will return to
this point. |

Several diagnostics considered below suggest transforming the Piazza Road data by
taking logarithms to satisfy the model assumptions. To obtain predictions on the original
scale, however, this tra.nsformatjon needs to be reversed. We consider several methods.

We also investigate several issues in the design of the sampling scheme. Data are
typically used in two ways. First, they appear in the predictor implicitly in the estimation
of the covariance parameters in the statistical model, typically via maximum likelihood in

this article. For model fitting, including nearby observations or even replicates could be
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beneficial to estimate variability at different scales and is investigated. Secondly, data are
used ezplicitly, as we focus on predictors that are (transformations of ) linear combinations
of the (transformed) data. The effect the number of observations used in the predictor
has on prediction accuracy is also investigated.

For cost reasons, we might predict in an EU based on sparsely sampled data in that
EU. Covariance parameters could be estimated, however, from extensive sampling in only
a few representative EUs. We explore the impact on prediction accuracy from transferring
the covariance-parameter estimates from one EU to another.

In the next sectlon we discuss the Piazza Road data in greater detail. After demon-
strating the need for taking logarithms of the dioxin concentrations, we consider various |
models and predictors of concentration on the original scale. The predictors and the
design issues mentioned above are then investigated in a factorial experiment, which is
analyzed by graphical methods. We also compare the results from variogram estimation
of correlation properties and from some simpler approaches. Finally, we present some

conclusions.

THE PIAZZA ROAD PILOT DATA

The Piazza Road pilot data are unusual because of the extensive sampling undertaken.
Laboratory analysis was relatively inexpensive, enabling sampling at fine resolution. With
such data we can select subsets and explore many alternative sampling strategies.

Figure 1 of Ryti (1993) shows the location of the 2 X 2 arrangement of the four EUs
chosen for the pilot study. We use two of these EUs, named EU1 and EU? here. In
the data, dioxin concentrations at or below the detection limit of 0.3 ppb are reported
as 0.3 ppb. In EU1 and in EU2 the proportion of such observations is less than 5%.
Zirschky and others (1985) replaced the 0.3 ppb observations with 0.15 ppb. To be
conservative from a risk perspective, we leave the 0.3 ppb observations unchanged when
analyzing EUl and EU2. EU3 and EU4 have a larger proportion of observations less
than or equal to the detection limit (38% and 74%), and are therefore excluded from our
analysis. |
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The four pilot EUs are 100 ft long and 50 ft wide. Two types of sample were taken in
each. First, station markers were laid out on a regular 10 by 5 grid, spaced 10 ft apart.
Then, 1 ft either side of each station marker, pairs of tablespoon samples were taken 1 /2in
apart. This gives 10 x 5 X 2 x 2 = 200 observations in each EU. We will refer to these
as the grid samples. Figure 1 shows the locations of the grid samples in EUL. Secondly,
samples were obtained at 50 randomly selected locations in each pilot EU. These are also
shown in Figure 1 for EU1. At each random location, nine tablespoon samples were taken
within a 1 ft sampling frame on a 4 in square grid. These nine samples were mixed and
three separate aliquots were selected for analysis. The resulting 50 x 3 = 150 observations
per EU will be called random samples below. ‘

Table 1 summarizes some characteristics of the data. EU1 shows a higher average

concentration of the contaminant along with higher variability.

DATA TRANSFORMATIONS

The dependence of the variability in concentration on the mean suggested by Table 1
is typically not accounted for in simple linéar statistical models or in those we will use
below. Therefore, data transformations are applied to separate the standard deviation 7
functionally from the mean p. In many applications, a dependence of the approximate
form 7 = yp® is observed. Taking logarithms on both sides, this relation turns into the
linear equation logn = log«y + logu. Using the combined grid samples in EUl and
EU2, let s; be the empirical standard deviation computed from the two observations in
the i-th 1/2 in pair and let §; be the cbrresponding average for i = 1,...,200. Figure 2
shows log s; plotted against log 37, Fitting the regression model log s; = logy + & log #;
by least squares gives § = 1.013 + 0.073. With § = 1, the functional dependence of the
standard deviation on the mean can be removed by taking logarithms (Box and -Draper,
1987, p. 284). Figure 2 also shows a plot of the standard deviation within each 1/2 in
pair against the mean after taking logarithms. No functional relationship is apparent. An
analysis based on the 100 triplets of random samples similarly indicates taking logarithms.

The skewness ¢ and the kurtosis & can provide further diagnostics of the need for a

(Fig. 1)

(Table 1)

(Fig. 2)
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transformation (Howarth and Earle, 1979). The models in the following section involve
Gaussian stochastic processes. Thus, the standardized data should have ¢ close to 0 and
K close to 3, the values for the standard normal distribution. Table 2 shows the estimated
skewness and kurtosis from the grid data, for the untransformed concentrations and after
taking logarithms. In both EUl and EU2, the estimates show much better agreement
with the theoretical values after transformation.

Further diagnostics supporting the need for taking logarithms are presented in the

next section.

MODELS AND PREDICTORS

Let Y'(t) be the dioxin concentration at a location ¢ = (z,y) in a given EU. We will fit a

model to the logarithm of concentration,
W(t) =logY(t) = B+ Z(t) + «(2), (1)

for each EU. Here, Z(t) and (t) are assumed to be independent zero mean Gaussian
stochastic processes. The stochastic pro@és Z(t), through its correlation structﬁre de-
scribed below, represents large scale variability due to systematic departures of the con-
taminant from thé mean [, whereas €(t) reflects uncorrelated measurement error and
very local variation (nugget effect). The mean B is assumed to be constant within an
EU. By Arepla.cing B with a more general regression in ¢, we could allow the mean of the
process W(t) to be a function of ¢ as well. However, some preliminary experimentation
with the data showed that this does not improve the fit of the models.

For t; = (z1,71) and t3 = (z3, 32), the spatial correlation of the contaminant is modeled

by the family of generalized exponential covariances given by
Cov[Z(t1), Z(t2)] = 0 exp(—b, |21 — z2[*~°=) exp (=, |tr — va|*~*), (2)

with 6.,6,,0% € (0,00) and a,,o, € [0,2). Values for . and a, equal to zero lead
to smooth surfaces for Z(t), whereas values greater than zero lead to a more erratic

structure. Large or small values of 6, or 0, represent weak or strong correlations of the

(Table 2)
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contaminant, respectively. This covariance family thus allows much flexibility in modeling
spatial dependence. The errors €(t) are assumed to have constant variance 72 > 0, with no
correlation between distinct observations, including replicates. Note that the covariance
structure in (2) can alternatively be defined in terms of a variogram (e.g., Cressie, 1993,
p. 67). '

Let Wp = [log Y (t1),...,log Y (¢.)]” denote the vector of logarithms of dioxin concen-
trations obtained from taking measurements at the n sites in the design D = {t1,...,t,}.
The best linear unbiased predictor (BLUP) W (¢) of the logarithm of dioxin concentration
W (t) at site ¢t under model (1) is given by

W(t) = " (6)Wo o (3)

with ,
c(t) = T7'0%r(t) + 71, (175 711,) Y1 — 172202 (1)),

Here, the n X n matrix ¥ is given by 02R + 72I,,, the n X n matrix R has element (i, j)
given by Corr[Z(t:), Z(t;)] from (2), I, is the n x n identity matrix, r(¢) is the n x 1
vector of correlations with element i given- by Corr[Z(t;), Z(t)] from (2), and 1, is the
n X 1 vector of 1’s. The derivation of the BLUP and its standard error is described
by Sacks, Schiller, and Welch (1989), for example. In the geostatistical literature (e.g.,
Cressie, 1993, p. 119-123), W(t) is called ordinary kriging.

Cross validation provides a diagnostic check of model (1). We again consider the
grid data. For each EU, maximum likelihood estimates 6,, 8,, &,, 6, 42, and #2 of
the covariance parameters are obtained using the logarithms of the 200 observations.
For cross-validation, each observation is then left out in turn and its predictor W(t) is
computed from (3) using the remaining 199 observations. The first normal probability
plot in Figure 3 shows the standardized residuals from cross validating in EU2 against
quantiles of the standard normal. The points lie roughly on the straight line of unit slope
also shown. Thus, there is good agreement with the normal distribution. Moreover, the
approximate unit slopé shows that the standard errors used to normalize the prediction

errors are realistic. Thus, model (1) is consistent with the data.

(Fig. 3)



MS# 96-78 7

For comparison, Figure 3 also shows the analogous normal probability plot when cross

validating the model

Y(t) =08+ 2(t) +¢(2), (4)
with the assumptions for Z and ¢ as in model (1). Discrepancies between the standard-
ized residuals and the quantiles of the standard normal are apparent, providing further
evidence of the need for transformation. Leaving out and predicting both observations in
each 1/2 in pair leads to the same conclusions, as do analogous diagnostic plots for EU1.

A model of the logarithm of concentration seems to be more appropriate, yet we are
typically interested in predicting the contamination on the original scale. We consider var-
ious strategies. They are characterized by the use or not of the logarithm transformation
in the model and in the linear predictor. | , v

A standard approach is to fit the model using the logarithms of the observed data,
compute the BLUP W (t), which is a linear pfedictor in the logarithms of the data, and
then exponentiate the BLUP. A multiplicative correction for bias is described in the
Appendix. This is known as the ordinary lognormal kriging predictor in the geostatistical
literature (Journel, 1980 or Rendu, 1979). Here, we refer to it as the log-log (or LL)
predictor as vthé transformation is applied in model fitting and in the linear predictor.
Among linear predictors, the LL predictor minimizes the mean squared error of prediction
on the logarithm scale under the constraint of unbiasedness. Accordingly, Dowd (1982)
suggested a predictor whi_ch‘ is of the same form as the LL predictor, but minimizes the
prediction error on the untransformed scale. We refer to it as the LL-D predictor. The
optimization rhust be carried out numerically, a potential ‘disadva.ntage in applications.
Rivoirard (1990) gives a summary of these predictors. Some further details are in the
Appendix.

As an alternative to the above predictors, we propose fitting the more appropriate
model (1) for the logarithm of concentration but predicting the untransformed concen-
tration Y'(¢) using a predictor linear in the untransformed data. We therefore call it the
log-untransformed (or LU) predictor. In the Appendix we derive the optimal coefficients
in‘the predictor from the first and second moments of the lognormal distribution. Thus,

under model (1) for the logarithm of concentration, this predictor of Y () is the best (i.e.,
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has minimum mean squared error) amongst predictors linear in the untransformed data.

For comparison we also consider using untransformed data for the fitted model and
for prediction. This is called the UU predictor here. Its derivation (based on assumptions
inappropriate for the Piazza Road data) and computation are analogous to those for W (t)
under model (1).

For the LL predictor, the LL-D variant, and the LU predictor, maximum likelihood es-
timates of the covariance parameters a.fe obtained from the logarithms of concentration.
The same estimates serve for all three predictors. The UU predictor requires different
maximum likelihoqd estimates from the untransformed data. Computations for modgl
fitting are carried ‘out' using the software GaSP (Gaussian Stochastic Processes) devel-
oped by the second author. Unless mentioned otherwise all remaining computations,
including optimization of the Dowd (1982) LL-D predictor, are performed with GAUSS
(Aptech, 1996). |

If average contamination over an area is of interest, a global estimator (also called
block kriging) can be employed (Journel and Huijbregts, 1978, p. 320-324). Averaging
pointwise predictors provides a numerically easy implementation (e.g., Istok and Cooper,
1988 or Weber and Englund, 1992, 1994). A best linear predictor results when using a
best linear pointwise predictor such as the LU predictor. When the region of interest is
of simple geometry, numerical integration of the predictor with a single variance estimate
might be possible. Dowd’s (1982) predictor can be modified to give a best log-linear

predictor of the average that requires only one numerical minimization.

A FACTORIAL EXPERIMENT

The Piazza Road pilot study data provide a rich opportunity to investigate several issues
that might arise in the planning stage of a cleanup of a contaminated site. We will assume
below that primary interest is in pointwise prediction of the contaminant at unsampled
locations. _

There are two types of data: grid and random samples. The grid data will be used

for model fitting and predicting, while the random data will be reserved for assessing the
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accuracy of prediction. Predictions from the grid samples will be made at each of the 50
random locations within an EU, and the 50 averages across replicates from the random
samples will be taken as true concentrations.

Before continuing we need to justify this use of the random samples. Recall that at
each of the 50 random locations, nine tablespoon samples were taken within a 1 ft sam-
pling frame on a 4 in square grid and composited. From the mixture, three replicates
were analyzed. We assume that the true contamination is roughly constant over the rela-
tively small sampling frame at a given location and that averaging the three observations
provides a good approximation to the true concentration. To check the approximation,
let s? be the sample variance of the three replicates at location i. If the three replicates
are statistically independent, their rhean has estimated variance s?/3. The root of the

average of these estimated variances across the 50 locations in an EU, i.e.,

is 2.46 ppb in EU1 and .461 ppb in EU2. These values are fairly small relative to the root
mean squared errors of prediction reported in the next section. Thus, the impact of not
knowing the true dioxin concentration on the results of the factorial experiment is fairly
small (and constant for all the methods compaied).

Minirnizing the root mean squa.red error (RMSE) of prediction over the 50 averages
at the random locations will be the criterion for assessing the various sampling designs
and predictors. It is computed from

1. .
\]%E(K )

i=1

where Y is the estimated dioxin concentration at location ¢ and #; is the average of the
three replicates. |

The factors investigated and their levels are listed in Table 3. The first three factors
relate to the sampling design for fitting the covariance péxa.meters in the models. All
designs considered are subsets of the grid data. Recall that in each EU, 50 station markers

were laid out at 10 ft spacing. Factor DF-10 is the number of these station markers used:

(Table 3)



MS# 96-78 10

either all 50 or 25. Figure 4 illustrates for EU1, where a station is denoted by ‘1°, ‘2’, or a
pair of ‘1’ symbols, distinctions that will be explained shortly. The subset of 25 stations
is arranged as a Latin hypercube (McKay, Conover, and Beckman, 1979), i.e., there are
five in each column and five in rows 1 and 2, in rows 3 and 4, etc. The same patterns are
used in EU2. Factor DF-2 is the number of stations with a pair of 2 ft samples. Both
designs in Figure 4 have 15 such pairs, denoted by two ‘1’ symbols close together. The
2 ft pairs are also arranged as a Latin hypercube. Factor DF-R refers to the number of
1/2 in (or replicate) pairs included. We call them replicate pairs as the coordinates within
a pair are not distinguished in the data. Both designs in Figure 4 have 10 replicate pairs,
denoted by the plotting symbol ‘2’. They are at two stations in each column and at one
in each row. None of the designs considered has a replicate pair and a 2 ft pair at a single
station.

Factors DF-10, DF-2, and DF-R relate to estimation of long-range, intermediate-range,
and measurement error (or nugget effect) variability. By looking at all combinations of
these factors we will be able to assess the importance of these components for prediction
accuracy. |

The next factor in Table 3, DP, is the number of samples in the design for predicting.
These data appear explicitly in the predictors. The five levels considered are illustrated
in Figure 5 for EU1 (with the same patterns in EU2). The five designs are generated by
using all the grid data (level 200), then removing at random one of the replicates from
each pair (level 100), then removing at random ohe of the 2 ft samples from each pair
(level 50), then thinning the 50 stations (levels 24 or 15). These designs aim to spread
the samples as uniformly as possible (within the limitations of the existing grid data) over
the EU. There is particular interest in seeing whether sparse designs (levels 24 or 15) are
adequate.

Factor P is the predictor used: The LL, LL-D, LU, and UU predictors outlined in the

previous section are investigated.
Factor EUF is i;he EU used for fitting the model. Data from the fitting design in this
EU will be used implicitly in maximum likelihood estimation of the covariance parameters.
Factor EUP is the EU for which predictions are made. Level EU1, for example, means

(Fig. 4)

(Fig. 5)
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that data from the prediction design in EU1 are used explicitly to predict at the 50 random
locations in EUL.

Combining the levels of the seven factors leads to a full factorial experiment with
2XxX4x3%x5xX4x2x2=1920 statistical analyses. As an example, run 1295 reads

Run |[DF-10 DF2 DFR DP P EUF EUP |RMSE
1205| 25 15 10 24 LU EUL BU2 | 2.683

The fitting design has 25 stations, 15 pairs of 2 ft samples, and 10 pairs of replicates
(it is the second in Figure 4). The prediction design has 24 observations (the fourth in
Figure 5). As the LU predictor is used, estimates of the covariance parameters in the
model (1) are required. Fitting is carried out using data from EU1, whereas the LU
predictor is a linear combination of data from EU2. The resulting RMSE is for the 50

" - random locations in EU2.

Evaluating the RMSE for each of the 1920 analyses requires maximum likelihood
estimation of the covariance parameters for 24 different fitting designs, in both EU1 and
- EU2, and for models with and without the logarithm transformation.

}No numerical difficulties are encounteréd, even when the measurement error vari-
ance 72 is estimated to be zero or close to zero. As a referee pointed out, ill-conditioned
matrices can arise for small values of &, and &, in (2), especially when 6, and éy are small
as well. For applications whe_ré numerical difficulties arise, restricting the number of lo-
cations used for fitting or for prediction-to a smaller neighborhood around the location of

interest would improve the conditioning.

RESULTS

The issues mentioned in the Introduction will be addressed mainly by graphical analysis
of the results from the factorial experiment. All graphs show the RMSE of prediction
averaged over the levels of all factors not appearing in the graph. EUl, with larger
average dioxin concentration and variability, has much larger prediction errors than EU2.

‘Thus, we present the results for the two prediction EUs separately.
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An initial look at the RMSE values shows that the accuracies of the LL predictor and
the LL-D variant are very similar. Over the 240 combinations of design for fitting, design
for predicting, and EU for fitting, the maximum difference in the root empirical mean
squared errors between thwe two predictors is only 0.502 ppb when predicting in EU1
and 0.006 ppb in EU2. In Figufes 6 to 11, discussed below, the two predictors would have
almost identical average RMSE. Thus, we show only the LL predictor.

We first consider the factors describing the design for fitting the covariance parameters.
There is an important interaction between the number of 2 ft pairs (DF-2), the number of
replicates (DF-R), and the predictor (P) that uses the estimated covariance parameters.
Thus, we need to look at factors DF-2, DF-R, and P together.

Figure 6 shows the LL predictor’s average RMSE as a function of DF-2 for each level

of DF-R. It is seen that designs for fitting with no 2 ft pairs and no replicate pairs have
| much larger average RMSE, particularly when predicting in EU1. Performance is much
improved with either five 2 ft pairs or five replicate pairs. In EUl, fitting designs with
10 replicate pairs show a small further improvement, but there is no further gain from
more 2 ft pairs. In EU2, all ﬁ_tting designs with some 2 ft pairs or replicates have similar
prediction accuracy. | ‘

The analogous Figure 7 for the LU predictor demonstrates that it is much more stable
with respect to factors DF-2 and DF—R. Even with no 2 ft samples and no replication
there is little impact on average RMSE. There are minor gains from 10 replicate pairs in
EU1; the number of 2 ft pairs has little effect in either EU.

If we ignore the highly discrepant fitting designs with neither 2 ft samples nor replica-
tion, comparison of Figures 6 and 7 indicates that the LU predictor performs marginally
better than the LL predictor in EU1, and vice versa in EU2.

The UU predictor, which does not account for the necessary data transformations,
performs poorly in both EUs. Figure 8 shows that, like the LL predictor, with neither 2 ft
pairs nor replication a much higher average RMSE results. Comparison with Figures 6
and 7 indicates that for other levels of DF-2 and DF-R the UU prediétor typically has
the worst prediction accuracy.

The stability of the LU predictor even in the absence of 2 ft pairs or replicates is

(Fig. 6)

(Fig. 7)

(Fig. 8)
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explained by inspection of the covariance-parameter estimates for the various fitting de-
signs. With no 2 ft pairs or replicates the estimated measurement error variance 72 may
be zero. Consequently, all three predictors become interpolators following the measured
prediction-design concentrations exactly rather than smoothing them. Inspection ‘of some
of the predicted surfaces, however, indicates that the LU predictor, even when it is an
interpolator, has far less erratic behavior between the design points. This accounts for its
robustness.

The poor performance of the LU and UU predictors with neither 2 ft pairs nor repli-
cation in the fitting design obscures the results for the remaining factors. As replication
is the best guarantee of a nonzero estimated error variance, we henceforth drop level 0
for DF-R from the factorial experiment. 1

Figure 9 plots the average RMSE against the number of 10 ft station markers in the
fitting design. It is seen that 25 are as good as 50, except for the UU predictor in EUL.
Again, it is evident that the LU predictor marginally outperforms the LL predictor in
EU1, and vice versa in EU2. The UU predictor is always dominated.

Cost considerations might rule out extensive sampling in every EU for model fitting.
Ideally, we would like to obtain parametef estimates in one or a few EUs and carry
them over to compute predictions from sparser data in other EUs. Thus, the data used
implicitly and explicitly when constructing the predictor could come from different EUs.
Figure 10 shows the average RMSE when prédjcting_in EU1 is much the same when
using the parameter estimates from EU1 or from EU2. When predicting in EU2, there
is actually a reduction, probably just fortuitous, in average RMSE when the parameter
estimates come from EU1, with the LU predictor again showing more stability. Overall,
there is no evidence against transferability of the estimated parameters, even though the
two EUs are fa.irly-diﬁ'erent in terms of dioxin average level and magnitude of variability.
Note however, that this is only true as far as prediction accuracy is concerned and might
not hold when estimation of the prediction standard deviation is of interest.

Figure 11 explores the role of the size of the design for predictin'g (factor DP) that
provides data to be used explicitly in the predictor. (The five prediction designs are shown
in Figure 5.) There is a small improvement in average RMSE with design size in EU1

(Fig. 9)

(Fig. 10)

(Fig. 11)
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for the LL and LU predictors. In EU2, no systematic trends are apparent. For practical
purposes, a small prediction design consisting of 15 observations is adequate here. In
particular, including replicates or 2 ft pairs (DP at levels 100 or 200) in the design for
predicting seems unnecessary for any of the predictors.

The results of the factorial experiment can be summarized as follows. For the fitting
design, a much smaller pilot study would suffice for the model fitting stage of a similar
problem. As few as 25 station markers at 10 ft spacing would be adequate. The LU
predictor appears not to require replication or 2 ft pairs in the fitting design. For the LL
predictor, some replication (or 2 ft pairs) is advised. Similarly, a small prediction design
with about 15 samples suffices here. vThe LU predictor performs marginally better than
the LL predictor in the high-variability EU1, whereas the LL predictor performs slightly
better m EU2. In new applications, cross-validation could be performed to choose between
these two predictors. The UU predictor, which clearly violates the model assumptions, is

inferior here.

OTHER APPROACHES

The predictors considered in this article are based on fitting model (1) or model {4). The
factorial experiment necessitated each model to be fit 48 times. Accordingly, we used a
fairly automatic method, maximum likelihood estimation. Here we compare maximum
likelihood with estimation of the covariance parameters via variograms. We also compare
the predictors with simpler methods based on nearest neighbors.

Variogram estimation of the covariance parameters has been used in environmental
applications by, for example, Cooper and Istok (1988) and Zirschky and others (1985).
Details of the method can be found in the textbooks by Cressie (1093, p. 69-83, 90-104)
and Journel and Huijbregts (1978, p. 192-194). The latter authors recommended that at
least 30 distinct pairs of observations be available at each lag to obtain a reliable estimate
for the variogram. The smaller fitting designs amongst the 24 in the factorial experiment
do not satisfy this condition. Therefore, we estimate the variograms for EU1 and for EU2

using all 200 samples available. As the UU predictor performed poorly we consider only
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model (1) for the logarithm of concentration. Figure 12 shows the estimated variograms
in the z- and in the y-direction for EU2, for example. The spatial statistics package
available under S-Plus (Mathsoft, 1996) was adequate for these computations.

Various models can be fit to the empirical variograms by nonlinear least squares. In ad-

dition to the linear, spherical, and rational quadratic variogram models (Cressie, 1993, p. 61),

we also fit the generalized exponential model. In notation analogous to Cressie’s it is given

by
0, for h=0,

co + ¢g{1 — exp[—(h/ag)*¢]}, for h#0,
where h is a distance in a given coordinate, and 6 = (co, ¢y, ag, @) for co,cg,ay > 0

ﬂM®={

and oy € [0,1]. The exponential model (Cressie, 1993, p. 61) and the Gaussian model
(Cressie, 1993, p. 89) are included as special cases by putting oy = 1 or oy = 0, respec-
tively. Choosing the model with smallest residual sums of squares points to the generalized
exponential model in the z-direction (co = 0.249, ¢, = 0.352, a4 = 8.305, @, = 0.313) and
the exponential model in the y-direction (co = 0.017, ¢g = 0.476,a, = 9.956,0, = 1).
These fitted models are also shown in Figure 12.

Using the fitted variograms, we can again construct the LL and LU predictors. To
distinguish them from the earlier predictors from models fitted by maximum likelihood,
we call them the LL, and the LU, predictors. The RMSE for these predictors is reported
in Table 4 for the five prediction designs in Figure 5. For comparison, Table 4 also
gives results for the LL and LU predictors with maximum likelihood estimation of the
covariance parameters. For these predictors the RMSE is averaged over the levels of the
factors DF-10, DF-2, DF-R (excluding level 0), and EU-F, i.e., fitting designs with 30-75
samples. In contrast, recall that variogram estimation is based on all 200 samples in
an EU. Nonetheless, Table 4 shows that better prediction accuracy in EU1 follows from
maximum likelihood estimation of the covariance parameters. In EU2 the two methods
of estimation give similar results.

A numerically much simpler way to predict the dioxin concentration at one of the 50
random locations, say (o, o), is to average all observations in the prediction design that

are within a distance d of (zo, yo). ‘We refer to this nearest-neighbors approach as N-d.

(Fig. 12)

(Table 4)
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Table 4 gives the RMSE of prediction, again using the five prediction designs in Figure 5,
with d taking the values 10, 15, 20, 25, and oo ft. Allowing d to be infinity means
that, for every one of the 50 random locations, the predicted value is just the average
of all the prediction-design samples in the exposure unit. In EU1, the N-d predictor
typically performs worse than the LU predictor based on maximum likelihood, the best
of the kriging predictors considered. Smaller distances d tend to give smaller RMSE,
presumably because the local behavior of the contaminant is better captured. For four
out of five of the prediction designs, even in the best value of d is chosen, the N-d predictor
has larger RMSE than the LU predictor. Therefore, modeling the spatial correlation seems
' 'adva.nt_ageous. A disadvantage of the N-d approach is that for small distances there may
be no neighboring observations to average (NA in Table 4). In the lower variability EU2,
there is little difference between the best N-d predictor and the LL predictor or its LL,

counterpart.

CONCLUSIONS

We have used the Piazza Road pilot data to provide guidance on sampling and analysis
strategies for point prediction of contamination. For similar sites the main recommenda-
tions are as follows.

For fitting the covariance parameters, we found that 25 sampling stations at 10 ft
spacing are as good as 50. The main advantage of replicate (1/2 in) pairs seems to be
to ensure a positive estimate for the measurement error variance, and hence smooth the
predicted surface. Five such pairs are adequate. With some replication, 2 ft pairs do not
appear to be necessary.

For prediction in a given EU, 15 sampling stations at 10 ft spacing seem adequate.
Increasing the number of sampling stations or including 2 ft or replicate pairs provides
little advantage for prediction. A fairly small sampling design could be augmented by
further sampling in regions of high prediction uncertainty in a second stage, if necessary.
Such sequential strategies will be reported elsewhere.

There is little impact on prediction accuracy when transferring covariance parameter
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estimates from one EU to another. This allows the relatively extensive sampling needed
for model fitting to be confined to a limited area.

In many environmental applications, a data transformation, often logarithmic, is re-
quired to justify the distributional assumptions of the statistical model. Predictions are
usually required on the original scale, however. The LL predictor was found to be slightly
superior in the low concentration EU, whereas the LU predictor performed better in the
higher concentration EU. The LU predictor is based on a model for the loga.rithm of con-
centration, but uses linear combinations of the untransformed data. Thus, exponentiating
to return to the original scale is unnecessary. Avoiding the potentially unstable exponen-
tiation may be the reason why the LU predictor performs well even when no replicates
are included in the fitting design. We would tentatively recommend the LU predictor if
prediction on the untransformed scale is required. To check this choice, cross validation
could be used to compare the LU predictor with, say, the LL predictor.

Although the Piazza Road pilot data are extensive, they did not allow exploration
of other reasonable sampling designs. For example, none of the designs for fitting or for
predicting had, say, 5 ft spacing.

Estimating the correlation parameters via maximum likelihood performed well even
with only 25-30 samples. In contrast, variogram estimation requires more data, at least
if standard practice is followed, yet performed worse. Furthermore, maximum likelihood
estimation is more automatic for less experienced practitioners.

The generality of all these findings should be explored by investigating other sites and
contaminants.

Further work is in progress. Here we have investigated actual prediction accuracy. In
practice, one often needs to estimate accuracy by computing a standard error for each
prediction. The impact of design and analysis strategies on the reliability of standard
errors is of interest. We have also chosen EUs with minimal data at the detection limit.
Other EUs in the pilot data have a considerable proportion of data censored by the
detection limit, and new methods of model fitting and predicting are required. Ultimately,
cleanup decisions are based on average exposures, and the impact of design and analysis

on estimating averages should be investigated.
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APPENDIX

We describe a linear and two nonlinear predictors for the dioxin contamination Y (t) at
site £ under model (1). The discussion assumes the covariance parameters to be known.
To compute the predictors, these parameters are replaced by estlmates Notation is as in
'the section entitled Models and Predictors.
The LL predictor is obtained by exponentiating W(t) = ¢*(t)Wp and applying a
multiplicative bias correction, K (t). This leads to

Y11(t) = explK (£) + T (t)Wp),

where K(t) = [o® + 72 — " (t)Zc(t)]/2. This is the ordinary lognormal kriging predictor
suggested by Cressie (1993, p. 135-136), Journel (1980), and Rendu (1979). Among
predictors of the form Y'(t) = expla(t)+b7 (t)Wp), the LL predictor minimizes Ellog V' (t)—-
log Y'(t)]? under constraints on a(t) and b(t) to ensure unbiasedness. Retaining the form
of the predictor, we can also minimize E[¥(t) — Y (t)]? with respect to a(t) and b(t), as
suggested by Dowd (1982). This minimization must be carried out numerically.

As an alternative to the above predictors which are nonlinear in the data, we propose
a linear predictor for Y (t) of the form Y1(t) = d7(t)Yp. The optimal coefficients d(t) are
based on the log-transformed model (1). From properties of the lognormal distribution,
Y (t) has expectation A = exp[8 + (0% + 72)/2]. Thus, for unbiasedness, we need the
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constraint d7(t)1,, = 1. Similarly, the property
Cov[Y (t1), Y (t2)] = A*{exp[Cov(Z(t1), Z(t2))] — 1}

leads to a mean squared error of prediction. Some algebra applying the constraint

dT(t)1. = 1 several times is required. We find that
MSE[Pzy (8)] = A [d7 ()Td(t) — 2d" (£)a(t) + exp(o® + 77)] , (5)

where ¢(t) = explo?r(t)] and I’ = exp(X), and exponentiation of the vector and matrix
is element-wise. Introducing a Lagrange multiplier for the constraint d(¢)1, = 1, the

constrained minimization of (5) with respect to d(t) gives
d(t) =T"q(t) + I 1a(17T 1) [1 = 1.T g (1)),

which has a form similar to (3).
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Mean Median SD IQR
EU1|13.130 9.790 14.456 16.215
EU2 | 2779 2315 2.036 2.015

Table 1: Mean, Median, Standard Deviation (SD), and Interquartile Range (IQR) of

Dioxin Concentration (ppb)
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Skewness Kurtosis
Transformation | EUL EU2 | EU1 EU2
None 3.18 2.0821.60 10.08
Log -0.73 -047] 2.54 3.33

Table 2: Skewness and Kurtosis of the Grid Concentrations
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MS# 96-78
Factor | Description Levels
DF-10 | Number of 10 ft station markers in the design for 25, 50
fitting
DF-2 | Number of 2 ft pairs in the design for fitting 0, 5, 10, 15
DF-R | Number of replicate pairs in the design for fitting 0, 5,10
DP Number of observations in the design for pfedicting 15, 24, 50, 100, 200
P Predictor LL, LL-D, LU, UU
EUF | EU for fitting EU1, EU2
EUP | EU for predicting EU1, EU2

Table 3: Factors Investigated in the Factorial Experiment



MS# 96-78

25

Number of observations for predicting
in EU2

200 100 50 24 15

2.564 2.524 2.392 2.654 2.670
2.603 2.557 2.481 2.707 2.641

2.544 2.481 2363 2.597 2.617
2.688 2.598 2.531 2.665 2.606

2.589 2.580 2.739 NA NA

2.565 2.527 2.417 2.639 2.620
2.726 2.688 2.597 2.828 2.782
2917 2.886 2.817 3.051 3.008
2988 2.964 2.884 2.934 2.867

Number of observations for predicting
in EU1
Predictor | 200 100 50 24 15
LL, 17.976 17.312 17.577 17.366 17.291
LU, 16.876 16.556 17.266 16.443 16.573
LL 16.318 15.935 16.709 16.741 16.971
LU 15.463 15.179 16.213 15.843 16.416
N-10 17.942 17.758 16.635 15247 NAt
N-15 17.907 17.044 17967 16.082 NA
N-20 19.502 18.813 19.971 19.485 19.817
N-25 20.177 19.618 20.486 19.198 18.954
N-oo 22.131 22.079 22.340 21.929 21.863
T Not Available

Table 4: Root Mean Squared Error (ppb) for Various Predictors
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Figure captions:

Figure 1. Locations of grid samples and random samples in EU1. One pair of observations
was taken 1/2 in apart at each of 100 grid locations; three replicated samples were obtained

at each of 50 random locations.

Figure 2. Left: Logarithm of standard deviation versus logarithm of mean for untrans-
formed 1/2 in pairs. Right: Standard deviation versus mean for logarithm-transformed

1/2 in pairs.

Figure 3. Normal probability plots vof standardized cross-validation residuals in EU2.
- Left: model (1). Right: model (4). -

Figure 4. Two designs with 50 and 25 grid stations used for model fitting. In both, there
are 15 locations with 2 ft pairs and 10 locations with replicate pairs (plotting symbol ‘2°).

Figure 5. Five designs for fitting in EU1 with 200, 100, 50, 24, and 15 samples, respectively
(2’ denotes a replicate pair).

Figure 6. Average RMSE of prediction for LL predictor versus number of 2-foot pairs in
design for fitting (DF-2), by number of replicates (DF-R).

Figure 7. Average RMSE of prediction for LU predictor versus number of 2-foot pairs in
design for fitting (DF-2), by number of replicates (DF-R).

Figure 8. Average RMSE of prediction for UU predictor versus number of 2-foot pairs in
design for fitting (DF-2), by number of replicates (DF-R).

Figure 9. Average RMSE of prediction versus number of 10 ft station markers in design
for fitting (DF-10), by predictor (P).

Figure 10. Average RMSE of pi'ediction versus EU used for fitting (EUF), by predictor
(P).

Figure 11. Average RMSE of prediction versus number of observations in design for
predicting (DP), by predictor (P).



MS# 96-78 27

Figure 12. Estimated variograms from grid-sample logarithms of dioxin concentration in
EU2. Left: z-direction. Right: y-direction. Solid lines show the variogram models fit by

nonlinear least squares.
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