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Abstract

In order to analyze random set processes, it is necessary to have simple statistics that can be used
to describe their outcomes. The cumulants and several other parameters can be used for this purpose,
but their estimates can be excessively variable if the most straightforward estimators are used. Through
exploitation of similarities between this estimation problem and a similar one for a point process statistic,
two modifications are suggested. Clear analytical results concerning the effects of these modifications
were found through use of a specialized asymptotic regime, whose form was related to certain geometrical
aspects of the modifications. Simulation results established that the modifications were highly effective
at reducing estimator standard deviations for several Boolean models. The results suggested that the
reductions in variance resulted from a balanced use of information in estimation of first and second
moments, through eliminating the use of observations that were not used in second moment estimation.
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1 Introduction

Random sets may be simple to simulate, yet their outcomes are difficult to describe. The law of the
process is not accessible, and the moments of the process may be difficult to relate to the interesting features
of the geometry of an outcome. Even so, standardized moments can be useful in determining the structure of
dependence in a random set, but the most intuitive estimators of these parameters possess greater sampling
variances than certain modified estimators. In a seeming paradox, these estimators may make use of much
less information than the most intuitive estimators. Careful examination of the structure of the modified
estimators explains this paradox away by demonstrating that these estimators make much better use of the
available information, and disregard information that proves to be extraneous to the estimation problem in

. question.



2 Notation and Terminology

In the most general case, a realization of a random set ® in R? can be represented by the indicator
g y

functions defined at all z € R? by

1 if z€@
Iq>(.’17)=

0 if z¢o.

Matheron [1] demonstrated the existence of a probability measure that allows such processes to be considered
as stochastic processes in the conventional sense, but the laws of such processes have no convenient and
succinct analytical expressions. Instead, random sets in common use are defined in terms of the algorithm
that produces them and so are generally referred to as models. Classic examples of such models are the
Boolean Model [2] and the Dead Leaves Model (3], both of which belong to the more general category of
germ-grain models [4]. Much of this paper is concerned with these models, which use the points in the
realization of a point process (know as germs) as locations at which geometric objects of possibly random
shape, size and orientation (known as grains) can be attached.

Even if it is not possible to describe the laws of random sets easily, the moments of these processes can
be straightforwardly described and estimated. Since a random set process is a collection of random indicator

functions indexed by R¢, its first moment at any point z € R? will be
M, (z) = E[ls(z)] = Pr[z € @].
Similarly, the second moment of the function can be defined at any two points z, z+r € R¢ by
My(z,z + 1) = E[ls(z)Ie(z +1)] = Prlz,2 + 1 € 9] |
and in general the k*"* moment at points z,z + r1,...,z + rx—; € R? is defined by
Mi(z,z+711,... . +rk_1) =Prlz,2+71,... , 2471, € ®].

These moments will be meaningful only if the random set has positive measure. Although a point process
is also a random set according to the criteria given, analysis of this type of random set requires different
analytical methods which are described in Daley and Vere-Jones [5], Diggle [6], Ripley [7, 8], Stoyan et al.
[4], and Cressie [2]. While these methods are quite distinct from those given here, some ideas can carry over
from one type of random set to the other, as will be shown in the development of the modified estimators.

In order to use random set models in a statistical context, some notion of replication is required. One way

in which replication can occur is through the random set process being stationary. Abstractly, a stationary
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random set is one whose probability measure is invariant under translations acting on the index set, but for
the results here this invariance might only be required of the first few moment functions. For example, if a

process were k‘*-moment stationary, then for any vectors zi,... ,z;,y € R9,
Mk(xlv"' )Ik) = Mk(xl +y’ -3 Tk +y)

For the first moments of all stationary random sets, this translation invariance property implies that the
point at which it is considered is irrelevant. For this reason, that point is arbitrarily be chosen to be zero,

and so M;(z) can replaced by the reduced first moment, which is defined as
my = M;(0) = Pr[0 € 3].
By fixing at O one of the the points at which the k** moment is taken, the reduced kt* moment is defined as
m(T1, ... ,Tp-1) = My(0,24,... ,25k-1) = Pr[0,z1,... ,T4_1 € ?].

This is not the standard notation [4], which designates the first reduced moment as p and the second
reduced moment as C(r). There is no standard definition for higher moments, and the conventional notation
introduces unnecessary obscurity when third and fourth moments are considered.

Aside from allowing simpler definitions for moments, reduced moment estimates for stationary processes
are easily estimable. The first moment is estimated by the fraction of a window of observation A covered by

the process:

~ vg(® N A)
V= 0
T T w(@)

where v, is Lebesgue measure on RY. This estimate is an idealization, but avoids complicating the analysis
by introducing discretization.

In order to have the estimator 171 converge to its desired limit m; by a law of large numbers, it is also
necessary to assume that the random set is ergodic. A related assumption, called the mixing condition,
is required to resolve some difficult mathematical issues, but ergodicity as formally defined is not directly
required in any further discussion of estimator covariances.

For higher order moment estimation, it is necessary to define the translate of a set 4 c R¢ by a vector

r € R% as
Ar={z:z-re A}

The second moment of a stationary random set associated with r € R? can be estimated by looking at all

pairs of points 2 € AN A_, and z +r € AN A, and then determining the fraction of the points in AN A_,



for which both z and z + r belong to &:

dNd, NANA,)

& v
Va(r) = va(ANA,)

Estimators for higher moments can be constructed in a similar fashion. For example, for r, s € R¢

va(BN@,. NE,NANANA,)
vi(ANA-NAy) '

Va(r,s) =

If a random set process is stationary and its law is invariant under rotations of its coordinate system,
then the process is isotropic. For such a process, its second moment mq (r) depends only on the length of
the vector r, not on the orientation of r. In the case of a k** moment for an isotropic process considered
for the configuration of points 0,z1,...,Zk_1, isotropy implies that the moment has the same value if that

configuration is subjected to an arbitrary rotation.

3 Measures of Dependence in Random Sets

In the study of random sets, the reduced second moment of a stationary random set process mq(r) can

be used to identify certain patterns present in those sets. In particular:

e The distance at which the dependence structure becomes negligible. In many processes of general
interest, it is reasonable to expect that if two points z,y € R? are separated by a great distance, then
the events r € ® and y € ® should be independent. For example, in a Boolean model whose grains

are circles of diameter p, the second moment will satisfy

ma(r) =m} whenever |r|> p.

In other types of ergodic random set processes, one would expect to find that ms (r) ~ m? when |r| is

very large.

e The presence of repulsion. If the random set tends to produce realizations which have discrete, dis-
connected components that are forced to be somewhat isolated from each other, then this may result
in my(r) < m} for some values of r and damped oscillation of the second moment function around the
line my(r) = m? for larger values of 7. Such a process would result if a germ-grain model had grains

of fixed size and shape, but germs that were not allowed to overlap.

While these attributes can be seen directly in the second moment, it is also possible to standardize the
second moment so that the condition of independence manifests by having the second moment take on a

fixed value. For my(r), there are three standardizations:



o The second ordinary cumulant, or covariance.

Ka(r) = mgy(r) — mf

e The second spatial cumulant.

ma(r)
22(7') = mf
e The correlation.
ma(r
plr) = 20

- m1(1 —ml)

Of these three, the x2(r) is of interest both as a classical standardization and as one whose estimators can
be most easily analyzed for their asymptotic properties. The ordinary cumulant functions are not as subtle
at describing the structure of random sets as are the spatial cumulants [9], and so these are of potentially
greater interest in the context of standardized higher moments of random sets. The covariance cannot be

generalized to higher order moments, and so will not be discussed in depth.

4 Strategies For Variance Reduction
The estimation of the x2(r) and X3(r) appears to be a straightforward task. Their most intuitive
estimators are

Ra(r) = Ma(r) — V2

and
a ma(r
$a(r) = ‘g/(z )’

1
both of which would appear to make the best use of the information in the window. Since these estimates
would be used primarily to locate the distances at which the dependence structure vanishes, it can be
shown that this is not the case. While the exploitation of isotropy presents one method for improving these
estimators, it is also possible to exploit a second idea known as balancing that allows further improvements

to be made.



4.1 Modification Through Isotropy

The most obvious method for reducing variance in an estimator is to use as much available information as
possible. If the random set is isotropic, then the estimator of ms(r) that best exploits the extra information

that isotropy can provide is

fcd(R) Vd((b N Qr N A N Ar)dr

~1
my(r
2(r) fC.g(R) Vd(AﬂA,-)dT

where C4(R) is the sphere of radius R in R?. This estimator is superior to one which averages mo(r) over
all r € Cq(R), since unless A is a sphere in R?, the latter estimator will weight estimates equally, unaffected

by the changes in the size AN A, that occur with changes in the direction of r.

4.2 Modification Through Balancing

A second strategy often used in the reduction of estimator variance involves adding some statistic & to
2 (r), chosen so that E[H] ~ 0 and cov[H , iy (r)] < 0 This strategy was used to modify a point process
estimator which had a similar form to that of f)g(r), and the structure of that modification suggested the

form of a modification for the random set estimator.

4.2.1 Heuristic Argument For The Development of A Balance Modification

Suppose that N is a stationary, ergodic, isotropic point process on Rd. The second moment of a point
process indicates the degree to which the points tend to avoid each other or form clusters, but this is not
immediately reflected in the formal definition of the second moment, which for V4, B C R is E[N(A)N(B)].
Ripley [10] was able to decompose this formal expression so that the aspects of the second moment related
to clustering and repulsion could be described by a function related to the distances between pairs of points,

known as the K-function:

K(R) = <:1\~) E [ number of points within R of z | z is a point in the process ] ' (1)
where A is the intensity of the process. The K-function is a standardized measure of second moment
behaviour, and its simplest estimate has a form very similar to that of flz(r). If N (A) is the number of

points observed in a window A, then this estimate is:

Rm) — TR/NGA) _ T(R)
M= T ey = (ﬁ(A)2> )



where

S #(zy) 3)

z,ye NNA

and

1 if 0<|z-y/<R
¢(z,y) =
0 if |t—y/>R or z=y

Estimators of functions based on the second moment of a point process are generally U-statistics such as (3),
even after they have been modified by the addition of edge corrections [8]. For any estimate of this form,
Stein [11] demonstrated that it is possible to use the Hajek Projection Lemma to dévelop a modification
that optimally reduces asymptotic variance. If Xy,..., X, are i.i.d. and uniformly distributed on a subset

A of R, then for a given symmetric function (-, -),
= 1
var X, X;) - X-———/ zd)
;¢( /) j;(g( 2 va(A) Ag( Jda

is minimized by
9(z) = (n - 1) (B¢ (X1, X2) | X1 = 2] + E[¢ (X1, X2) | Xy = 2]) . (4)

When a second moment estimator that has been modified by (4) is used in an estimator of K (r), Stein [12]
was also able to show that the degree of reduction in the asymptotic variance is quite large.

To construct a similar estimator for random sets, it is necessary to find a parameter whose estimator is
of the same structure as (3), but which is an integral with respect to Lebesgue measure rather than counting

measure. On a stationary, isotropic random set this parameter is

/ ma (r)dr (5)
S4(R)

where Sy4(R) is the ball of radius R in R¢, rather than its surface C4(R). An estimator of (5) which exploits

the isotropy is

Iona(z)Iona () |z—yi<r(2,Y)
d —/ dzdy. 6
/ 3 (s)ds re Jra Joa Joa T A (s—i<ry (5, O)dsdt — © ©

for which the numerator of its integrand is exactly that found in (3). With a change of variables, this can

be rewritten as

Isna(z)Ipna(T + u)
dzdu.
u€Sqe(R) JR4 fs (R) Vd(AnA )
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The numerator of the integrand can be rewritten as the sum of the numerically identical but formally distinct

functions
$1(z) = Iena(z)lona(z + u)
and
¢2(z) = Ipna(z — u)lona(z)
with the two forms reflecting the symmetry of the original numerator in (6). The equivalent version of the

conditional expectation in (4) is thus

El¢1(z) |z € 2N A]+ E[p2(z) |z € 2 N A]
=Pr{z +u € ®|z € ®|Ipnana,(z) + Prlz —u € Bz € ®)lsnana_, ()

=Prz +u € ®|z € 8] (onana, () + Ionana_, (7)) - (7

In (4), the finite number of observations involved are required to be independent. For random sets, the
analogous condition would be that for points separated by a distance |u|, the event z € ® is independent
of the event z + u € ®. This suggests that the conditional probability in (7) should be replaced by m;.
Replacing the sum in (4) with integrals over all relevant values of z and u in (7), the analogue of Z_?=1 9(z;)

is

my (W[ 0,r ]+ [0,7]) (3)
where
A0, 7] = Juesu(my va(@NANAL)du o
fsesd(n) va(AN Aq)ds
771‘1)[0,?] — fueSd(R) vag(®, NANA_,)du w0

fSESd(R) ve(AN Ag)ds
The analogue of the correction is found by subtracting from (8) a quantity that will give the bracketed term

an expectation close to 0 and by replacing the parameters in this expression by their estimates, to yield:
my (M [0, 7] + @2 [0,7] — 27y ) . (11)
Given this, it suggests that the appropriate modification for the isotropic estimator 4 (r) would be

-~

HI

iy (1 [0,r] + mi [0,7] — 27, )



where

quC’d(R) vg(®NANA,)du
fsecd(R) Vd(A N As)ds

quC.g(R) va(®u NAN Ay)du
stCd(R) va(AN A,)ds

7'77,{ [(), r] =

mi [0,7] =

and Cy(R) is the surface of the sphere in R? of radius R. In the case of a non-isotropic random set process,

choosing a single direction and length for r would suggest that the modification would be
H =y (g [0,7] + 7 [0,7] — 2m3)

where

~ a1 va(®NANA,)
(0] = = ey
va(®, NANA,)

™m0 == e A

Since s3(r) and X(r) have first order Taylor series expansions that are equivalent, it is reasonable to
conjecture that the use of the additive modifications would also improve the performance of the ordinary

cumulants as well.

Given these forms of the additive modification, the modified second cumulant and second spatial cumulant

estimators can be defined as

= = ~ S mi(R
RIR)=mi(R) -m2 SIR)= %
1

when the isotropic modification is used,
Rl* 7 Bl _m2 S mi(R) — A
R(R) =R - B -y Spr) = B
1

when the isotropic modification and additive modification are used, and

. _ PO, ma(R) — H
R(R) = ma(R) - B i Sy =2 H
1

when an additive modification is used alone. For the estimates of the correlation, similar estimators can be

constructed by use of an appropriately modified second moment estimator.



4.2.2 The Intrinsic Modification And The Idea Of Balance

To interpret the action of the additive modification, it is useful to partition a window A into three disjoint
sets:

Ag=ANAINAS,

A= (ANANAS JUANASNA,)

As=ANANA_..
On Ay, no points in the window are considered in the estimation of the second moment. Each point in A,
is used twice in the estimation of mz(r), once as a member of AN A_, and once as a member of AN A,,
while the points in A; are only used in one of these two roles. By restating H as

ﬁ=ﬁl1 (ﬁo +71«1 +Tlg)

where

By = (Va (A2) (2va (Ao) +va (Al))) va (® N A3)

vg (AN A ) vy (A) vgq (Az)
77, — (Vd (A1) (va (Ao) — vg (Ag))) Vg (<I>OA1)
! va (AN A,) vg (A) va (A7)
> _ _ (vd (A0)\ va (PN Ap)
o= (58) “ati

This suggests that the modification works by reweighting 7i2(r) by means of first moment estimates on a
partition of A whose form is determined by the manner in which the points in A are used in the estimation
of ma(r). By assuming that ® is on R and that A has length 1, it follows that H = 0 not only when r = 0
but also when r = 0.5, which correspond respectively to A = A5 and A = A;. Thus, if the modification has
no effect when every point in the window is used in the estimate the second moment in the same way, then
this suggests that it is correcting the imbalance in the way that points in A4 are used to estimate ms(r). In
the sequel, k3(r) and f;(r) will be referred to as additively balanced estimators.

If the modification H is correcting for some sort of imbalance, then this suggests a second st‘rategy for
modifying the estimates. Instead of adding a term to modify the estimator, one could estimate the first

moment only on the parts of the window used to estimate the second moment by means of

22@) = ﬁlz(r) bt ﬁll[O,T]T?ll [0,7‘]

Mg (r)

d Se-__"2/
e = = B0, o, 7]
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Such estimates will be referred to as intrinsically balanced estimators. Intrinsic balancing can be much more
easily extended to higher order spatial cumulants additive balancing. It may also be combined with the

isotropic modifications as follows:

#3® = mj(r) — mi[0,r}mi[0, 7]
sIe vﬁl:{(r)
2 mi[0, r}mi[0, 7]

5 Asymptotic Analysis of Estimator Variance

In order to determine the effect of these modifications, it is necessary to make use of asymptotic methods.
Analytical expressions have not been found for the moments of most random set models, and even for the
simplest Boolean models these functions can often be extremely difficult to use. Again, the most intuitive
asymptotic regime produces little improvement, but clearly interpretable asymptotic results can be found

through use of a regime that accommodates balancing.

5.1 Asymptotic Regimes and Assumptions

The most straightforward method of increasing the information available is to increase the size of the
window, and then examine the bias or variance of the estimator as the size becomes infinite. This method,
which could be referred to as ezpanding window asymptotics, is not well suited to any estimator that involves
a balancing effect. If the window A is partitioned into the sets Ay, A;, and A, then as the window expands
A2 comes to dominate A and the effects of balancing are pushed out of the leading term of any asymptotic
result. In addition, these non-leading terms are often extremely complicated and intractable integrals, and
this makes it difficult to assess if the asymptotic results indicate that the modifications improve or impair
estimator performance.

In contrast, if ® is considered to be scaled down in every dimension by some factor 1/3 while the window
A and the vector r used to define my(r) is kept intact, then this will keep the relative sizes of the Ag, A4; and
A, constant as the ® is reduced. This regime, called the shrinking process asymptotics, is based on a similar
regime used by Stein [11] in the investigation of the modifications to the K-function in point process theory.
It is equivalent to letting the length of r expand in proportion to the increase in A4, and if the dependence
structure of ® does fade away at great distances, then this ensures that the estimate of k2(r) or Zy(r) is
being undertaken under conditions where the events £ € ® and z + r € ® are essentially independent.

Since estimating the region where k2(r) or Xo(r) take on constant values is one of the primary uses of these

11



functions, the asymptotic bias and variance under this regime at great distances may provide a hint as to
how these function estimates behave at shorter distances.

The notion of the dependence structure breaking down over a large distances can also be formulated
more precisely for higher order moments by means of the following condition, which is most clearly stated

in terms of the ordinary moments of ®:

- Mixing Condition 5.1. Let ® be a stationary random set process, defined on R?. Then for any k € N>°,
any zi,...,7x € R? and any ! such that 1 < | < k, if the minimum distance between the points in

{z1,...,zi} and in {zi41,... ,z} is 6, then
le(xla e ,.'Ek) - ]\/[l(zlv e )xl)Mk-l(zH-lv' . ,.'Ek)l = 0(6—(d+1))

Such a condition was first used by Mase to establish bounds on the fourth cumulant of a point process

[13].

5.2 Effects of the Modifications

Through use of the shrinking process asymptotics and the mixing condition, an easily interpretable result

concerning the effectiveness of the modifications can be found.

Proposition 5.1. Let ® be a stationary random set process, ezamined using the SP asymptotic regime.
Assume that the Mizing Condition holds for the 2nd through 4th moments. The asymptotic variance of the

unmodified estimator Rz(r) for any r € R? is then

1 1 -
,ﬁ {m - K.»2(27)2d$ + 2Q0 /Rd K«%I‘Q(Z)dﬂ?} + 0] (,8 (d+1)) (12)
where
_va(ANA) +va(ANANAL,) 2
Qo= va(AN A2 Ay =% (13)

With the balance modifications, the asymptotic variances of both 83(r) and K2 (r) are

% {m R ”2(9’)2d:c} +0 (5—(d+1)) .

The asymptotic variance will be reduced by the balance modification, save in the case where A consists of two
components of identical shape, size, and orientation separated by the vector r; in that case there will be no

improvement. With the isotropic modification, the asymptotic variance of K5(R) is

3 (92t Lm0 (o) w9
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where

B fc.,(R) vi(AN Ay, N A,,)dridrs

Qr 5 (15)
( Jeuimy va(AN A,)dr)
For the balanced and isotropic estimators K5 (r) and R£®(r) the asymptotic variance is o(3~%).
Proof of Proposition 5.1
The variance of the second cumulant estimator K3 (r) will be
(E [#a(r)?] = ma(r)?) + (E [a(r)f] — ma(r) E [3]) + (E [4] - E [73]°) (16)

but the E [m3] terms will cancel out in the SP asymptotics and these can be regarded as equivalent to m? in
the context of that regime. Each of these differences can be rewritten as an integral and each of these integrals
will be finite if the mixing condition is true. When the shrinking process asymptotics are implemented, the
multiplier 3 is applied to each argument of the moments in the integrands of these integrals:

Vg (AN Ay NA_y N Aurr)

/Rd (m4(—,6r, Bu, Bu — fr) — mg(ﬂr)z) va (AN A,.)2 du (17)
- — — 2\ Vd (AmArﬂA-ul ﬂA_uz)
2 [,y oo (a8 B, ) = magorynd) 2R T a9
ANA_y, NA_, NA_,,
i /R /Ra /W (ma(Bus, Bus, Bug) — mf) YL AT w?A)4 0 Aus) o sy, (19)

For each of these integrals, an O(8~%) term can occur only when a pair of arguments in the fourth moments
in the integrands are constrained to be close. If more than two arguments are constrained to be close, the
resulting terms will be O(8~2¢) or O(87%¢) and so such interactions will not affect the leading term. By
considering each such interaction and by making use of the Mixing Condition and the Dominated Convergence

Theorem, the integral (17) has an asymptotic expansion with leading term

1 (—1 ) / Kk (u)du + 924 (And)+va(AnA N A-) K3kg (u)du) .
Rd

B\ vg (AN A, va (AN A4,)° Rd
Combining this with the O(3~¢) terms from the integrals (18) and (19), the asymptotic variance (12) is
obtained. The results for the balanced estimator are found by similar arguments.
When the isotropic modification is considered, the second moment estimators in (16) are replaced by

their isotropic versions, and the integral (17) is replaced by

/ / / (ma(=PBri, Bu, Bu — Bra) — ma(Bri)ma(Br2))
C4(R) JC4(R) JRY
v (ANA, NA_,NA_yir,)
2
(Joamy va (AN 4,)ds)

dudrydrsy
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where Cy(R) is the surface of the sphere of radius R centered at 0 in R?. In this case, the arguments of the
fourth moment are not constrained to form a parallelogram as they were in (17), and so the squared second
cumulant integral does not appear in the leading term of its asymptotic expansion. Instead, the leading term

is

V4 AﬂArl ﬂArz) / 2
dridr Kika(u)du.
64 ./Cd(R) /Cd(R) va(ANA ) va(AnA,) 2 Jpa t 2()

The other two integrals produce leading terms identical to those in the non-isotropic case, and so when put

together yield (14). The results for the balanced isotropic estimator are found by similar arguments. MW

Similar results can be found for the modified estimates of X3(r) and p(r), but these results are purely
formal. They are based upon Taylor series expansions of the ratios involved in these statistics, but no bounds
can be placed on the size of the remainder term in these expressions since tractable analytic expressions for

the moments are not available.

The modifications also have a distinct effects on the bias of the estimates.

Proposition 5.2. Let ® be a stationary random set process, ezamined using the SP asymptotic regime.
Assume that the Mizing Condition holds for the 2nd through {th moments. Then the leading term of the

asymptotic bias of the second cumulant has the form

%Ad Hz(t)dt

where

_vg(AN4,N4,)

for &3 (r)

va (AN A4,)?
K=-Q; for ®I®(r)
=_thA) for Fa(r),Ry(r),RE(r), and RL*(r)

14



Proof of Proposition 5.2

In the case of the second cumulant function, it is straightforward to show that

E[R2(r) — k2(r)] = — var[f]

E[R3(r) — k2(r)] = var[f,] — cov[y, M1 [0, r]] — cov[fy, M, [0, 7]]

B[RS (r) — ra(r)] = — covlu [0, r], A0, 7]] (20)
E[R;(r) — k2(r)] = — var[mi]

E[RL*(r) = ka(r)] = var[y] — cov[my, m! [0, r]] = cov[my, i [0, 7]

E[RI®(r) — k2(r)] = — cov[mi[0, 7], mi[0, #]].

From asymptotic expansions of these variances and covariances, the leading terms given above follow. W

6 Simulations

In order to establish that the asymptotic results of Propositions 5.1 and 5.2 are actually indicating an
effect of useful size, it is necessary to determine how modified estimators perform on simulated data. To this
end, realizations of a simple Boolean model were used. These realizatidns were generated to fill a 10 unit by
10 unit window, with grains that were circles of u = 1 unit in diameter.

Estimation of the moment was undertaken by an algorithm that was designed to make accurate esti-
mates of moments from each realization [14]. Each of the 50 realizations generated was discretized into an
array of thin strips which were then divided into covered and uncovered regions. By using carefully chosen
orientations, it was possible to accurately calculate m?(r) for 16 different directions of r while using only
two discretizations of the realization, thus ensuring that the majority of the estimated standard deviation

came from the process, rather than from the determination of the estimate.

7 Discussion

So far, a result for point processes has suggested a modification that might reduce the variance of
estimators of Xp(r). This in turn suggested a second form of the modification based on considerations
specific to random sets, and both of those modifications could be modified to act on estimators of x3(r). For
the modified estimators of k,(r), rigorous asymptotic results were found that suggested that the modifications
would have a beneficial effect on estimator variance, and formal results suggested that these results would

carry over to estimators of ,(r). Having accumulated all of these suggested results, the simulations indicate
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that the modifications do have a significant and understandable effect on estimator variance for estimators

of both functions.

7.1 Effects on Estimator Variation

The effect of the balance and isotropic effects are best seen when considering estimates of x,(|r|) for a
single realization. Two randomly chosen examples of estimates of this function are provided for the Boolean
model with m; = 0.1 in Figure 1, illustrating how both modifications draw the estimated function in closer
to the line £2(|r[) = 0 when R > p. Since identification of this portion of 2 (|r|) is essential to being able
to establish the limits of the dependence structure, the improvements that the modifications can induce are
of potentially great use in the analysis of single samples. In excess of thirty realizations were examined
for this particular model, and in every case markedly improved estimates of xs(|r|) = 0 were found. For
m; = 0.1 the isotropic modification had the dominant corrective effect but this dominance was reversed
when m; = 0.9. The modifications had no obvious beneficial or detrimental effect when the dependence
structure was present.

The second use of x3(|r|) involves the detection of repulsion between the grains or, equivalently, between
the underlying germs. Since the window was relatively small, it was possible that the local behaviour of the
Boolean model could exhibit some repulsive behaviour purely by chance, especially when m; was small. This
was often observed and is present in the second plot of Figure 1, but the modifications were found to make
this worse as often as often as they were found to reduce it. It is conjectured that this type of behaviour
could only be removed through use of larger windows, rather than through the modifications suggested here.

When the average behaviour of modified estimates is considered, the improvements brought about by
the balancing and isotropic modifications are equally dramatic. As can be seen in Figures 2-4, the degree of
sampling variance reduction depends upon both m; and the between r and the size of AN A, both of which
are indications of the amount of information available for standardized moment estimation. The effects of
both factors must be considered separately on the regions where |r| < x and |r| > u for this sort of Boolean
model, as the dependence structure fades away entirely when |r| = p.

On the region where the dependence structure does exist, the balance modification has very little effect
on estimator variation for small |r|. This is not surprising, as the heuristic construction of the balance
modification required an absence of any dependence structure. The isotropic modification also has little
effect at short distances since an alteration in direction of |r| does not radically change that which is being

compared. As |r| increases, the event that the points £ € ® and z +r € ® is more likely to involve two
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points that lie in distinct grains, and so the modifications begin to have an effect.

On the region where the dependence structure has vanished, the modifications have significant and
explicable effects. Here, k2(r) becomes a comparison between two different methods of estimating m? in
which different amounts of information are used for the two estimates. As the value of |r| increases, estimator
variance increases as less information is available for estimating m»(r), but this increase is not uniform. While
7 in these examples is not parallel to the side of a window, there is a slight decrease in the variance as |r|
approaches half of the maximum distance that can be used in the estimation of ma(r) in the direction of r. At
that point, vg (A;) is maximized for all distances at which v4 (A;) = 0, which suggests that the elimination
of A2 produces a beneficial effect. This effect occurs at different distances depending on the orientation of
r, and so the dip in the variance of the unbalanced isotropic estimator occurs at a greater value of R. No
such dip occurs in the balanced estimates, where compensation for imbalances has already occurred.

The isotropic modification reduces estimator variance by making use of more available information. When
m; is small, this effect is relatively large, as it allows many more comparisons of 7is(r) and Mm? to be made,
since the grains of @ are sparse. When they are plentiful, as when m; = 0.9, the effect is much less significant
until the value of |r| becomes large. Under those conditions, the increased size of A; for vectors r whose
orientation is close to the diagonal of the window produces an increased degree of variance reduction.

The balance modification, at least in the intrinsic case, works by forcing the estimates of m; used in
estimating x2(r) to be determined only on those parts of the window used to estimate my(r). These first
moments estimates have greater variance than m,, but they are much more correlated to mo(r) than m; is,
particularly when |r| is large. The extra information available in 77, lends nothing to the comparison of My (r)
and m? on A;, and so contributes only excess variation. In each of the three cases considered, the balanced
estimators had noticeably less variance than the unmodified estimators. The degree of variance reduction
increased as m, increased, on account of the larger number of comparisons of estimators of ma(r) and m?
that occurred. It must be noted that while SD[RI®(r)] variation in Figure 4 seems almost constant for the
balanced and balanced isotropic estimators, in all cases this is almost a rescaling of the dependence of the
estimate of SD[Rz(r)] on |r|. The simulations showed no real difference between intrinsically and additively
balanced estimates, both of which have the same SP asymptotic behaviour in spite of their different functional
forms.

When both modifications are used, the estimated standard deviation of the cumulant estimates is further
reduced, providing the greatest benefit in all cases examined. There appears to be no deleterious effect of

using both together, although the combined effect when m; is small may not be so different from when the
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isotropic modification is used alone.

Although it was not possible to prove a rigorous asymptotic result for the bias and variance of Xo(r),
simulation results showed a very similar dependence of estimator variance on r and m;. The only major
difference occurred when m; = 0.1, as shown in Figure 5, and this related to the different effects of intrinsic
and additive balancing. When |r| was relatively large, very small values of m, [0, 7] or m;[0, 7] can increase
the variance of the intrinsically balanced estimator through inflating the value of the ratio estimate. Given
that the spatial cumulant X2(r) may belong to class of dependence measures better suited than ordinary
cumulants to the description of random sets [9], these modifications will prove useful in any simulation-based
studies of their behaviour.

Examination of certain covariances between estimators lends support to the explanations given for the
improvements caused by the balance modifications. If covariances between estimators of x3(5) and k(5 + s)
are considered as in Figure 6, then the use of balance modifications decreases the correlation between
other estimates as |s| increases. For the unbalanced estimators, the same information would be used to
estimate m; regardless of the value of s, and so cov[Rz(r),R2(r + s)] would be higher than for balanced
estimators. If covariances between estimators of ko (r) and m; are considered, Figure 7 shows that the use
of balance modifications increases the degree of correlation between these estimators. In a Boolean model,
the dependence of my(r) on the intensity of the underlying Poisson germ process is not removed by either

of the two standardizations. In the case of this particular Boolean model,

Kka(r) = (1 —my)? (ml— S - 1)

where 1(|r|) is the area of the intersection of two discs of diameter u whose centres are separated by a
distance |r|. Any estimator of x2(r) that includes information about m; that is not used in the estimation
of ma(r) would then be expected to yield a poorer estimate of this function. This effect is greatly reduced
for balanced estimates of ¥2(r) as shown by Figure 8, but this cannot be explained by any formal results

involving Taylor series.

7.2 Effect of Modifications on Other Estimator Properties

The bias results indicate an additional subtle aspect to the notion of balancing. When the intrinsic
modification is used alone, 20 indicates that the bias disappears entirely when |r| becomes sufficiently large
that the estimates on the two components of A; become independent. Under these conditions, both of the

intrinsically balanced estimates will be unbiased. This will not be true for intrinsically balanced estimators
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of Z3(r), but it is expected that similar reductions in bias will be found. The bias in the simulations was so
small as to be hidden by discretization errors in the calculation of the moments.

The distributions of the six estimators of x2(r) were compared to normal distribution functions by means
of Q-Q plots, but no systematic differences were found between modified and unmodified estimators. While
there were occasional signs of non-normality, these were mostly in the form of tendencies towards skewness
that followed no clear pattern. This is in marked contrast to the case of point processes, where Stein [12]
demonstrated that the analogous modified K-function involved a degenerate U-statistic. As indicated by
Hall [15], degenerate U-statistics often possess non-normal sampling distributions whose limiting laws are

often very difficult to determine.

8 Summary and Conclusions

Given the theoretical and simulation results above, intrinsically balanced estimators of x5 (r) are the best
ones to use with respect to minimizing estimator bias and variance. While not intuitive, they do make the
best use of available information when estimating x3(r), excluding extraneous information that would add
nothing to the basic comparison implicit in the cumulant function. While the asymptotic results involving
estimators of ¥z(r) are formal, the simulation results suggest that intrinsic balancing is also very effective
for estimates of this parameter.

From the point of view of methodology, the arguments used here indicate a useful way in which ideas
from point process theory can enable results to be found for general random set processes. An asymptotic
method that is mathematically convenient for point processes becomes one that makes geometric sense for
random sets, while a modification to a point process estimator that is based on the theory of U-statistics
becomes one that produces a notion of balanced estimator, an idea which makes no sense at all in the point
process context. Boolean models were not required in any of the theoretical results, and were used only
as a method for producing simulation results that could be easily interpreted. In the further study of the
otherwise mathematically intractable germ-grain models, these heuristic methods may prove to be effective
at producing useful statistical techniques for engineering applications in situations where exact analytical

results are impossible to obtain.
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Figure 1: Estimates of x;(R) for two simulations of the Boolean Model with m; = 0.1.

Solid line is a graph of k2 (R).
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