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Abstract

The current “Ex-Ex” criterion for ozone and two possible secondary criteria
(“Area over threshold” and “SUMO06”) are discussed within a general framework
of compliance criteria obtained as functions of excess values over threshold levels.
Their basic statistical properties are obtained from the theory of [6] which obtains
Poisson-type and normal approximations for such “exceedance statistics” above
high and moderate threshold levels.

The roles of level height, and the clustering of exceedances are discussed along
with the distributional results obtained, in relatively non technical terms. The
Poisson and normal type results given provide a basis for calculation of probabilities
of correct compliance classification. Numerical results will be presented in Part II
based on 1980-90 ozone data from selected U.S. cities.

*Research supported by the EPA Cooperative Agreement CR 819638 01 0 with National Institute for
Statistical Sciences, and Office of Naval Research Grant N00014-93-1-0043.



1 Introduction

E‘nvironmental compliance is typically determined from the size of some function of ob-
served or measured values - here referred to as a compliance statistics (CS)- large values
typically indicating lack of compliance. The CS may simply be an average of observed
values (as for coal sulfur criteria), when no exceedance level for the observed variables
enters the calculation of the CS itself. On the other hand the types of CS considered
here are directly ezceedance based in that they are obtained from the excess values of
concentrations above a specified (high) threshold level, out of a total of n measured

concentrations. Specifically the three cases considered are

(1) Expected exceedances (Ex-Ex), (the current ozone criterion) for which the
CS is N,, the number of exceedances of the level u, = .12 ppm in a three

year period.

(ii) Area over threshold (AOT), the CS being the sum A, of values above a

threshold in a specified period.

(iii) SUMO06 proposed secondary criterion, where the CS is the sum S, of
total concentrations (rather than just excesses) during periods of threshold
exceedances. Since this comprises both excess values above the level u, and
the height u, itself during exceedance periods (see also Fig. 2), (iil) may be

obtained simply from (i) and (ii), viz.

Sn = A, + Nu,.

These three criteria may be set in a statistical framework. For the existing current ozone
criterion (Case (i)) compliance is defined to mean an ez;pected exceedance rate of no more
than one per year (i.e. 3 per 3 years) of the .12 ppm standard. As noted above, this is
tested by the actual number of exceedances N, in 3 years, non compliance being declared

if N, > 3. This is thus a classical test for the mean of an observed r.v. Properties of the
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procedure (e.g. misclassification probabilities) are discussed in [1] along with possible

modifications to the procedure.

The AOT and SUMO6 criteria may be similarly regarded as tests for the expected

values of the respective areas, based on the observed values in a given period.

The required statistical properties may be simply obtained from general theory of [5]
by identifying each CS as a special case of exceedance measures considered there. More
specifically, denote the n measured values by X;, X5, ..., X, and their excess values above
the threshold u, by (X; — u,)+ (= X; — u, if X; > u, and zero if X; < u,) as indicated

in Figure 1:
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Figure 1: Excess Values (X; — uy,)4

Each of the above criteria can be expressed simply by the general mathematical form

for the CS (considered in [5]. See also [6], [3])

(1.1) Zy = i'ﬂbn((Xt - un)+)

for an appropriatély chosen function ,. Specifically it is easily checked that for each

case P (z) = 0 for z < 0 and
(1) Ex-Ex(Z,=DN,), vn(z)

(i) AOT (Zn=A.), n(2)
(i) SUMOB (Z, = S,), ¥n(z) =z + un.
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The three cases are illustrated in Figure 2 below:
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Figure 2: Contributions to values of CS Z, = N,, A,, S,.

The statistical properties of each CS (e.g. misclassification probabilities) may thus be
obtained as special cases of asymptotic distributions of Z, of the general form (1.1) given
in [5] for high and moderate levels u,. This theory makes only very general assumptions
about the statistical nature of the environmental variables X; and shows that two types

of model for the CS are well founded:

(i) (Compound) Poisson (CP) models for “very high” thresholds
(i1) Normal models for “moderate” thresholds.

These will be described in Sections 5 and 6. As a rule of thumb one expects the CP
models (i) when the exceedance events are rare (e.g. for very high levels relative to the
bulk of observed values X;). This is typically the case for compliant (or “moderately”
non-compliant) situations with the Ex-Ex criterion. For the lower (moderate) levels used
in the potential AOT and SUMO6 criteria or for grossly non-compliant Ex-Ex cases, the

normal models are appropriate.

Figure 3 below illustrates the two situations with a plot of a typical summer ozone

record for Los Angeles. Levels of .27 ppm and higher exhibit the rare occurrence of
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exceedances for CP modeling, and lower levels (e.g. .2 ppm shown) lead to normal
models. This will be discussed more explicitly in Sections 5 and 6, following indications
in Sections 2 of the more precise meaning of “high” and “moderate” levels, the notion of

exceedance clusters in Section 3, and general results of Section 4.
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Figure 3: Ozone levels in Los Angeles, summer 1989
2 High and moderate levels

As noted, the CP and normal modeling cases are substantially distinguished by the
heights of the threshold u,. The precise distinction arises from different rates of increase
of threshold u, with n, the number of observed values, in underlying limit theorems.

This is indicated very briefly here — full details may be found in [5].

Specifically if F' denotes the distribution function (d.f.) of the environmental r.v.’s
X;, F(z) = P{X; < z}, the levels u, are regarded as high if the individual “exceedance
probability” (1 — F(u,)) is small and the expected number of exceedances ¢,
=n(1—F(u,)) has a “moderate” value. On the other hand if the exceedance probability

(1 — F(uy)) is small but the expected number of exceedances ¢, is large, the level u,



is regarded as “moderate”. These correspond in the underlying limit theorems to the

requirements n(1 — F(u,)) — 7 (some fixed finite 7) and n(1— F(u,)) — oo, respectively.

From this it follows that high levels have relatively few exceedances (the expected
number in fact approaching 7). On the other hand for moderate levels the expected
number of exceedances is large, though small as a proportion of n, the total number of

observed values. This is summarized as follows

Level Limit theorem requirement Practical implications

for threshold u,

Very high l1-F(u,) =0 n(l = F(u,) = 7 < oo. Small or moderate

(CP Model) number of threshold
exceedances.

Moderate l1—-F(u,) =0 n(l —F(u,)) » o Large number of threshold

(normal model) exceedances but small as

a proportion of number of
number of observed X;

This of course fits the situation illustrated in Figure 3.
3 Exceedance clusters

Any realistic model must be able to account for statistical dependence between nearby
observed values X;. Very often this involves high positive correlation between neigh-
boring values, so that one high value tends to attract another, resultiﬁg in clusters of

exceedances.

For very high levels clusters are often well defined in the obvious way from the first
to the last exceedance in a group (“run clusters” of [2]). For lower levels or highly “os-
cillating” cases, the clusters are less obviously defined in this way, but a useful definition
is that of a “block cluster”. This is obtained by choosing a “block size” r, and divid-

ing the observed values Xi, X, ... X, into successive groups or “blocks” of length r,,
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This is illustrated in Figure 4, consisting of the portion of the ozone data values of
Figure 3 lying above .2 ppm with a block size r, = 30 days. For the (very high) level
u, = .27 ppm clusters occur in blocks 5, 6, 8 (of size 1, 2, 1 respectively). These block

clusters happen to be the case as run clusters, which need not necessarily be the case,

but typically become increasingly so at high levels.

On the other hand for the level u, = .20 ppm, block clusters occur in all but the first
block and often consist of more than one run cluster. This illustrates the contrast with
the high level case (e.g. u, = .27) where clusters are infrequent and identifiable as single

exceedance runs above the threshold.

BLOCKS B] B2 3 B4 B5 BB B7 B8 B9 Day

Figure 4: 1989 LA daily max 1 hour ozone levels above .2 ppm

The importance of the block clusters is that they tend to exhibit certain statistical

independence properties even at moderate levels, which is not necessarily the case for



run clusters. Of course at very high levels where the concepts coalesce, the run clusters

are typically also block clusters and thus have the same independence properties.

In all cases therefore, block clusters provide the appropriate and tractable entities for
statistical modeling. As will be seen in the following section the high and moderate level

cases are contrasted by:

(1) In the high level case the cluster locations are described by Poisson occurrences, and
their individual CS contributions (duration, area above threshold etc.) by independent

random variables, with “general” distributions, whereas

(i1) For moderate levels exceedances can occur in many blocks and the sum of CS

contributions is approximately normal.

Finally from a theoretical viewpoint a wide range of block size sequences are possible,
subject only to a mild “growth” rate restriction in the limit theorem. In practice where
the number n of observed values and level u,, are fixed it can be desirable to use several

block sizes in performing statistical analyses (cf [4]).
4 Dependence, and a general result

As indicated, statistical dependence (e.g. serial correlation) is an essential ingredient in
any realistic model for an environmental sequence X;. This takes two forms — possible
“long range dependence” between widely separated X values and “local” or “short range”
dependence between nearby X; and X;. It is assumed that the former (long range)
dependence falls off appropriately at long distances through a so called “strong mixing”

condition discussed in detail in [5] while the local dependence may be quite high.

From the mixing condition one may obtain constants r, to be used as block sizes.
The blocks and clusters thus defined have useful approximate independence properties -

described in the following informally stated result (see [5] for precise details and condi-



tions).

Proposition 4.1 Under the strong mixing condition the contributions to the CS Z,
given by (1.1) from each block (i.e. ;¢p, ¥n(Xj—un)+) are approximately independent.
Hence Z, may be modeled as the sum of independent contributions from each block
(i.e. each block cluster, since blocks without exceedances do not contribute). Thus the
distribution of Z, may be obtained (to a good approximation) from classical theory for

sums of independent terms, namely the added contributions from each block (cluster).

The precise implications of the result for high and moderate levels are contained in

the next two sections

5 High levels, CP models and the Ex-Ex criterion

For high levels u,, exceedances tend to occur in widely separated clusters. The expected
cluster size (i.e. number of exceedances in a cluster) is “customarily denoted by -1,
(0< 8 <1). fn(l— F(us)) = 7 the number C of clusters is an approximately Poisson

r.v. with mean 7 by the theory of [5] i.e.

(5.1) P(C =r)=~e(07)/r!

Again from [5] the contributions to the CS Z, of (1.1) from each cluster are approx-
imately independent with some distribution function G. Hence the total CS Z, is the
sum of the Poisson (mean 67) number of independent r.v.’s with common d.f. G. That is
Z, is Compound Poisson based on the Poisson mean 67 and the d.f. G and we write
for brevity Z, = CP(0r,G). The distribution function for Z, is easily written down in
terms of 07 and G:

(5.2) P{Z, <z} =¢e"") (07)°G,(z)/s!

s=0

where G, denotes the s-fold convolution of G with itself.



The above discussion applies especially to the Ex-Ex criterion since the threshold .12
ppm is high according to our definition, at compliant or near-compliance situations. In
this case Z,, is modeled as C P(f7,G) where now G is the distribution of cluster size and

6-1 is its mean. Z, is integer valued and for an integer z the sum in (5.2) runs just from

0tozx.

It should be noted that the parameter 6 and distribution G are typically unknown
and require estimation. Some guidance concerning the general form of G is available from
dependent central limit theory but the very high dependence possible within a cluster
can invalidate the assumptions and it seems likely that quite general forms for G may be
possible. Obvious estimates for G (and 6) are available, although extensive data may be

required for their application (cf. [4])

Similar results hold for other criteria (e.g. AOT and SUMO06 type) if used at high levels
- the only difference being the replacement of G by the d.f. of the cluster contribution
to the CS —i.e. the sum of values in the cluster period for the SUMO06 case, and the sum
of excess values for AOT, and of course 67! is still the mean cluster size and not now the
mean of G. However the main application of these criteria is anticipated to be at lower
levels. Indeed we believe that there are strong reasons in terms of “stability” to consider
application of the Ex-Ex criterion at lower levels also. These will be discussed with the

underlying normal theory in the next section.

Finally the Poisson properties of high level exceedances are sometimes ascribed to
independence of the underlying X;. However as seen above for dependent cases (the
usual situation) the cluster positions now become Poisson and the d.f. G for the
contribution of a cluster to the CS describes the feature of individual cluster structure

relevant to that CS.
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6 Moderate levels and normality; AOT, SUMO06, and Ex-Ex
at lower levels

As noted at lower levels u, the expected number of exceedances ¢, = n(l — F(u,))
is large and the “run clusters” are too frequent to exhibit Poisson occurrences through
independence. However the block clusters are asymptotically independent, and this leads

to normal models for the CS.

Specifically if r, denotes the block size used before, it may be seen from Proposition
4.1 that the CS (1.1) has the same asymptotic distribution as it would if the contribu-
tions from individual blocks were independent. For these lower levels this distribution is
normal under standard classical conditions (including an appropriate “Lindeberg con-

dition”). More precisely the CS Z,, is approximately normal
(6.1) Zn = N(ln,0n)

where p, and o, are its mean and standard deviation.

Criteria based on expected values (e.g. Ex-Ex, Expected AOT or SUMO06) involve in-
ference concerning p,. This may be done through a modification to the above asymptotic

normality obtained ([5]) by replacing ¢, by an estimate s, defined by

kn
(6‘2) 3121 = Z( z ¢n(Xj - un)+ - Tnmn)2

i=1 j€B;
where
(6.3) my, =n"! Z Gn(Xj — un)t
The more specific results for the individual cases are:
(1) Ex-Ex

As noted the CS Z{!) = N, the number of exceedances of u,, is usually modeled as a

Poisson r.v. for very high levels u,. However its behavior at more moderate levels is of
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interest (a) as a component of the SUMO6 criterion and (b) in its own right for possible

implementation of Ex-Ex at lower levels with enhanced criterion “stability”.

The limiting approximation (6.1) for the distribution of N, becomes (again writing

¢n = n(l — F(u,) for the expected number of exceedances),

(6.4) N, = N(cp,05)

with 02 = var(NV,). More usefully o, may be replaced in this by its estimate s, where
kn

(6.5) sz =) _Ni(Bi) = N;/kn
i=1

where N,(B;) is the number of exceedances in the sth of the &, blocks (of length r, used

for defining clusters).

This modified form of (6.4) clearly enables estimation (and testing) for the expected

number of exceedances c,.
(i) AOT
The AOT criterion may be couched in a similar way to the Ex-Ex in restricting the

expected area rather than expected exceedances above the threshold. The expected

area is given by

Br=nE(Xi = ua)s =1 [ (1= F(z +un))da

Then the AOT CS A, has the approximately normal distribution

(6.6) A, = N(f,,0,)

where now o? is the variance of A, and may be replaced in (6.6) by its estimate
kn

(6.7) Y ANB) — AL/kn
=1

A,(B;) being the contiribution (T;¢p,(X; — ta)+) to the total AOT statistic A, arising
from the sth block B;.
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(iii) SUMO06

As noted earlier the SUMO06 criterion involves the CS S, = A, +u, N,, with expected

value

(68) Tn = ,Bn + UpCnp.

Again this criterion may be regarded as a statistical test, 7, < cindicating compliance

for appropriately chosen c. Corresponding to (6.6) we have
(6.9) Sn = N(Yn, 0n)
where now o2 = var S, and which may be replaced by
kn
(6.10) S SX(B) — S2/k,
i=1

in which correspondingly S,(B;) is the contribution to the total CS S, arising from the
block B;.
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