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Summary

This statistical method can compare in real time the sequence of commands given by each user to a profile
of that user’s past behavior.  We use a Bayes Factor statistic to test the null hypothesis that the observed
command transition probabilities come from a profiled transition matrix.  The alternative hypothesis is
formed as a Dirichlet mixture of multinomial command probabilities.  Based on a population of research
users on a single computer, data from some users are inserted into the histories of other users to simulate
intrusions. The Bayes factor based on the observation of a block of 100 commands had a false alarm rate
of about 6.6% while detecting about 78% of blocks from simulated intrusions.  We integrate the test into a
detection scheme using control charts.

Description of Statistical Methodology

Introduction.  In computer intrusion detection one attempts to identify unauthorized accesses to computer
accounts.  There are two main approaches to intrusion detection: pattern recognition and anomaly
detection.  Pattern recognition is the attempt to recognize general patterns in command usage that stem
from known attacks such as exploiting a software bug.  The approach has the disadvantage that it cannot
defend against previously unknown software bugs, or any unauthorized user with the knowledge of the
account password.  Anomaly detection, on the other hand, attempts to identify an unauthorized user by
identifying unusual, for the account holder, usage of the computer.  Usually, for each user a historical
profile is compiled and large deviations from the profile indicate a possible intruder.  Therefore it is also
referred to as the profile based approach. Intrusion detection systems like IDES (Lunt et al. 1992), NIDES
and Emerald (Porras and Neumann 1997) use both approaches, presumably because neither one is
uniformly superior to the other. In this paper we only consider the anomaly detection approach. This
approach lends itself to a statistical treatment. Ryan et. al. (1998) suggested that each user on a computer
system leaves a “print” that could be captured by training a neural network with historical data. When for
new data from any user the neural network predicts that the data is more likely to stem from another user in
the historical data, then an alarm for a possible intrusion is raised.  Forrest et al. (1996) consider anomalies
for unix processes (such as ftp, or root) rather than for users. In this paper we propose a test for anomaly
detection based on Bayesian hypothesis testing. We are able to test anomalies for unix processes and users
using the same methodology.

Command Transition Probabilities. Our method is based on comparing the sequence of each user’s
commands to a stored profile describing the probability distribution of that user’s command sequences.
Each command is one of K possible commands, where in our application K may be several hundred.
Sparse matrix techniques are used to minimize the computer storage requirements.  We represent each
user’s historical data in terms of a transition matrix of command probabilities

pjku = P(Next Command = k | Previous Command = j, User = u) (1)

The commands are arbitrarily numbered as j, k = 1, … , K and we assume that historical data are available
for U users, arbitrarily numbered u = 1, … , U.  We also assume that each user’s transition matrix may



evolve over time, and the methodology adjusts for such random evolution by means of an exponentially
weighted discount mechanism.  As discussed in some of the above references, other data such as the
number, duration or timings of logins, the rate of command generation, file or cpu usage, etc., might also
form part of a user profile to be checked as part of an anomaly detection effort.  This paper continues work
begun in DuMouchel and Schonlau (1998a, 1998b) on building models for detecting changes in command
frequencies, which could be used in conjunction with other data to form a more complete user profile.

Control Chart Framework. The probabilities (1) must be reliably estimated and updated over time.  We
measure time not by the clock but in units of T observed commands for each user being monitored.
Examples in this paper use T = 100 as a group size for computing our Bayes factor test statistic regularly,
in the manner of a statistical process control chart (see, e.g., Montgomery, 199x).  It is also important to
allow for more gradual changes in legitimate user behavior–that is, we must update the user profile on a
regular basis.  We propose a monitoring process consisting of the following steps:

a) Decide on a block size, T, for computing a measure of discrepancy, x, between current and profiled
behavior after every T user commands.  Also decide on a run size, B, the number of consecutive
blocks (B x-values, BT commands) that must be declared intrusion-free between possible updates of
the user profile.  Use pilot data (training data) to specify an initial center line µ and an offset, ∆, for
determining out of control points.  The initial upper control limit of the chart will be UCL = µ + ∆,
and an alarm is raised whenever x > UCL.  In our implementation, the values of µ vary for each user
account to be protected, while the value of ∆ is the same for every user.  Also use the pilot data
(assumed to be intrusion-free) to form estimates, denoted Pu, u = 1, … , U, of each user’s transition
probabilities.  Set the run counter to b = 0 and run the following process independently for each user:

b) Observe a block of T commands and evaluate them using P to form the test statistic x.

c) If x > UCL = µ + ∆, raise an alarm for a possible intruder and set the run counter to b = –1.
If x < UCL, augment the run counter b = b + 1.

d) If b = B + 1, use the previous BT commands before the most recent block of T commands to update
P and µ, and then reset b = 1.  The run of B alarm-free blocks is not integrated into the profile unless
there is an extra alarm-free block on each side of the run.

e) Return to step b) and repeat indefinitely.

This paper focuses on a Bayesian scheme for estimation of Pu and computation of a test statistic x.  We lay
out the steps a)–e) above to put our methods in context and to show their potential utility.  We have not
tried to optimally adapt control chart methodology for this application, but rather merely strive for a simple
procedure.  Of course computer intrusion detection methods that avoid control charts altogether can be and
have been devised.  We introduce control charts here both because they are a standard method in industrial
statistical practice for controlling false alarm rates, and as a way to encourage control chart use for
computer intrusion detection.

The Bayesian Dirichlet-Multinomial Model

The most general and commonly used model for categorical data is the multinomial distribution, and
Bayesian inference involving multinomial probabilities often uses a Dirichlet prior distribution (O’Hagan
1994, Ch. 10; Johnson and Kotz, 1969, Ch. 11.8.1), because they form a conjugate family of distributions.
We use two separate applications of the Dirichlet-multinomial family, once to estimate the distribution of



marginal command probability vectors from different users, and once to allow estimates of transition
probabilities to “borrow strength” from marginal probabilities.  These two applications are combined in the
computation of our Bayes factor test statistic.

Let p = (p1, … , pK) be a random probability vector constrained to the simplex pk > 0,  Σk pk = 1.   The
vector p has a Dirichlet distribution if its probability density is given by

f(p) =  Γ(Σk αk)  Πk pk
αk – 1/Γ(αk) [α1 > 0, … , αK > 0]  (2)

For a fixed sample size n., suppose one of the K commands is drawn independently at random n. times with
respective probabilities (p1, … , pK), and let nk be the number of times command k is drawn, where Σknk =
n.  Then the multinomial probability of the count vector n = (n1, … , nK) is

Prob(n | p) =  n.! Πk pk
nk/nk! (3)

If one first draws p from (2), and then uses the result to draw n from (3), the marginal distribution of n is
the Dirichlet compound multinomial distribution

Prob(n) =  [n.!/α.(α. + 1)⋅⋅⋅(α. + n. – 1)] Πk [αk(αk + 1)⋅⋅⋅(αk + nk – 1)/nk!] (4)

where α. = Σk αk.  After observation of n, the posterior distribution of p is also Dirichlet with the
parameter αk replaced by αk + nk.  If a very large sample n. has been observed, all the values of αk + nk
will be large and the Dirichlet posterior distribution will be highly concentrated around the posterior mean
values, E[pk | n] = (αk + nk)/(α. + n.), which are sometimes called shrinkage estimates of p, since they
move the observed proportions nk/n. from different users toward the common prior means αk/α..

Empirical Bayes Model for Marginal Probabilities

Before discussing the estimation of command transition probabilities, we discuss the estimation of marginal
probabilities as an intermediate step.  We assume that data are available on command frequencies for each
of U users, and that it is desired to estimate quk, the proportion of times that user u uses command k.  The
data consist of a count matrix Muk, the number of times user u was observed to use command k.  For this
estimation of q, we ignore dependencies within command sequences and use methods based on an
independence model.  Although the per-user sample sizes Mu. are fairly large, the natural estimates quk =
Muk/Mu. will contain many 0 values because K is large and many commands are infrequent.  To avoid this
we use empirical Bayes shrinkage estimates of the form

quk = (Muk + αuk)/(Mu. + αu.) (5)

where the Dirichlet parameters αuk must be estimated from the matrix Muk.  The standard Dirichlet model
assumes that each user’s vector of probabilities was drawn from a common Dirichlet distribution, which
would require that αuk not depend on u.  We are using an extension of this model, in which we first
estimate a common parameter α0k, and then modify that estimate differently for each user.

Estimation of the common Dirichlet Parameter.  We use a method of moments estimate of α0k.  Let πk =
α0k/α0. and let α0 be a preliminary estimate of α0. = Σk α0k.  Then, assuming that the variance of each
Muk/Mu. is approximately proportional to 1/α0 + 1/Mu., a natural estimate of πk is to weight inversely
proportional to variance, namely



πk =  Σu(1/α0 + 1/Mu.)-1(Muk/Mu.) / Σu(1/α0 + 1/Mu.)-1 k = 1, … , K (6)

The estimate α0 can be updated given πk by computing the chi-squared statistic

X2 = Σu,k(Muk – Mu.πk)
2/Mu.πk

The excess of X2 over its degrees of freedom is expected to be proportional to 1/α0, leading to the estimate

α0 = max[.5,  1/max(.0002, [X2 – (U-1)(K-1)]/(K-1)M..)] (7)

In (7) the estimate α0 has been artificially restricted to the interval 0.5 < α0 < 5000.  The empirical Bayes
estimates are produced by iterating (6)-(7) until convergence, and defining our final estimate of α0k to be

 α0k = α0 πk, k = 1, … , K. (8)

Extended Model with Estimation of User-Specific Commands. Schonlau and Theus (1998) report on the
implications of the fact that very many of the commands given by unix users are user-specific.  That is,
many commands are commonly used by a small subset of the U users and seemingly never used by the
other users.  This may happen because the user has actually created a private command definition, or just
because very few users are aware of that command or ever find it useful, even though others use it
frequently.  In such a case, the Dirichlet model for marginal command frequencies will not fit well.  We
extend the model by letting each of the commands k be associated with two separate hyperparameters, αk
and βk, and a set of unobserved variables δuk, u = 1, … , U, where

αk =  Dirichlet parameter for command k, applicable to users that ever use k

βk =  Prob(a randomly chosen user will ever use command k)

δuk = 1 if user u ever uses command k, = 0 if user u never uses command k

Using these definitions, we modify the assumption about each user’s prior distribution for the marginal
command probabilities to be

(qu1, … , quK) | δ ~ Dirichlet(α1δu1, … , αKδuK) (9)

Thus our extended procedure is to define αuk in (5) to be estimates of αkδuk in (9).  Let α0k be the estimate
of αk defined iteratively using equations (6)-(8) as described above.  Next set

βk =  Proportion of users who have ever used command k in the historical data

αk = α0k/ βk

In order to use (9), we need estimates of the δuk. If Muk > 0, then we set δuk = 1.  But suppose after
observing Mu. commands of user u, we still have Muk = 0.  Then we use the Bayes rule estimate

E[δuk | Mu.] =  βk L(Mu.)/[1 – βk + βk L(Mu.)]

L(Mu.) =  [1 – αk/α.][1 – αk/(α.+1)]⋅⋅⋅[1 – αk/(α.+Mu.–1)]  ≈  (1 + Mu./α.)–αk (10)



The quantity L(Mu.) is the likelihood of observing Mu. successive commands in a row, none of which are
command k, if the commands have been generated by the compound multinomial distribution given by (4).
The right-most expression in (10) is an approximation based on a Taylor’s series. [Approximate 1 –
αk/(α.+m) by exp{–αk/(α.+m)} and approximate the resulting summation in the exponent by –αklog(1 +
Mu./α.).]  In this extended model, all users having Muk > 0 share the same αuk, but users that have not used
command k have different Dirichlet parameters for that command, which approach 0 as Mu. becomes large:

αuk = α0k/βk (Muk > 0) (11a)

αuk = α0k/[βk + (1 – βk)(1 + Mu./α.)
α0k/βk] (Muk = 0) (11b)

Shrinkage Estimates of Transition Probabilities

Let Pu = {pjku} be (1), the desired estimates of transition probabilities from command j to command k for
user u, and, as before, let quk be the estimated marginal probability that user u uses command k.  Also let
Njku be the frequency counts of command transitions based on historical data.  In what follows, we shall
drop the subscript u when there is no danger of confusion and just refer to pjk, qk, and Njk, respectively. For
many (j, k) pairs, there will be little or no dependency and we might expect pjk to be close to qk.  Our
shrinkage estimate represents pjk as an average of the observed transition proportions and the marginal
estimate, namely

pjk = (Njk + νj qk)/(Nj + νj) Nj = Σk Njk (12)

νj = max{.5,  1/max[.0002, (Xj
2 – K')/NjK']} Xj

2 = Σk(Njk – Nj q'k)
2/Nj.q'k

In the above equations, K'+1 is the number of k-values for which there are any Njk > 0, and q'k is a
renormalization of qk so that the corresponding q'k values sum to 1.  (Recall that Njk = 0 for all j only if the
corresponding Muk = 0 and from (5) qk = quk will be close to 0.  We want to leave such k-values out of the
chi-squared calculation, but not out of the general formula (12).)  The νj will be large if the raw transition
frequencies are not significantly different from the marginal frequencies, but small if the raw transition
frequencies are reliably different than the marginal ones.  Note also that for any j such that every Njk = 0
and thus Nj = 0, the value νj cancels out of (12) and pjk = qk.

In this second use of Dirichlet estimation, we are in effect assuming that each transition probability vector
has been drawn from a Dirichlet population with parameters αjk = νjqk.  In this case we are taking the qk as
given and only need to estimate νj, which corresponds to α0. in the earlier Dirichlet problem.  The empirical
Bayes hierarchical models and the corresponding shrinkage estimates enable us to compute reliable
estimates of these large transition matrices (a total of UK2 parameters) with a limited amount of historical
data.  We are finally ready to define the test for intrusion detection.

Bayesian Hypothesis Testing Framework

Suppose that user u is online and being monitored, and has generated a sequence of T+1 commands C0, C1,
… , CT. We consider the two hypotheses

H0: P(Ct = k | Ct-1 = j) = pjku (13)

H1: P(Ct = k | Ct-1 = j) = Qk (Q1, … , QK) ~ Dirichlet(α01, … , α0K)



The null hypothesis H0 assumes that the legitimate user has generated the data from the profiled transition
probabilities.  The alternative hypothesis H1 assumes that the T commands have been drawn independently
using an arbitrary probability vector, which was drawn from a Dirichlet distribution with specified
hyperparameters.  These hyperparameters could be estimated from a database of intrusion records, if one
were available, but in our examples we use the estimated hyperparameters (8) from the U users used above
to estimate the quk.  Although the alternative H1 is more general than H0 in that Q is not specified while Pu
= {pjku} is completely specified, it is less general in that it only involves marginal probabilities and not
transition probabilities.  Thus H0 is not nested within H1.  Since the number of commands T available to
compute the intrusion detection statistic x is necessarily small compared to the much larger amount of
historical data available for estimation of P, it is not feasible to have a more general comparison of two sets
of transition matrices.  In our formulation, there is no carry-over of command frequency information from
one block of T commands to the next, except through the updating of the profile parameters P and µ.  In
our examples, we take T = 50 or 100.

Bayes Factor and Weight of Evidence.  The Bayes Factor BF is the ratio of the probabilities of the data
under the two hypotheses:

BF =  Prob(C1, … , CT| H1) / Prob(C1, … , CT| H0) (14)

The larger BF is, the more evidence there is against H0 in favor of H1.  In fact, x = log(BF) is often called
the weight of evidence.  On the log scale there is the nice property that evidence from two independent data
sets is the sum of their individual evidence.  The subjective Bayesian interpretation of BF is that the prior
odds in favor of H1 are multiplied by BF in order to produce the posterior odds in favor of H1.  Rather than
focus on this subjective probability interpretation, which depends on the model being exactly correct, we
will just treat x = log(BF) as a test statistic with solid Bayesian credentials for being quite informative
about the hypotheses in question.

Let njk be the transition count matrix from C0, … , CT. Then, using (3), (4), (13) and (14),

BF = Πk[α0k(α0k+1)⋅⋅⋅(α0k+n.k–1)]  /  [α0.(α0.+1)⋅⋅⋅(α0.+T-1) Πj,k pjku
njk] (15)

From (15), BF is the product of T terms, each one of the form  (α0k + i)/(α0. + t)pjku, amounting to just 5
arithmetic operations per monitored command.  In addition, the computation of each pjku using (12)
requires at most 4 more operations (fewer if Nj = 0) and, to avoid the possibility of underflow or overflow,
it is advisable to take the log of each of the T terms and sum, adding one log calculation per monitored
command.  Thus we have about 9 floating point operations plus a log computation per monitored
command, plus the integer operations needed to match command names in order to access the sparse array
Njk and the other variables needed to evaluate (15).  (To reduce the chance of wild outliers, we bound each
of the T terms that sum to log(BF), so that if |log[(α0k + i)/(α0. + t)pjku]| > 10, it is replaced by ±10.)

The Control Chart

Returning to the control chart framework discussed earlier in this section, we must set thresholds for the
xui, the log(BF) for the ith block of T commands from user u, to control the false alarm rate and to be
sensitive to changes in the distribution of x, especially to increases in the mean of x.  A simple procedure is
to set UCLui = µui + ∆, where ∆ is empirically determined and is the same for all blocks and for each user.
We define an alarm condition any time that xui > UCL.  In order to get initial estimates µu0 and estimates
of ∆, we use the same data used to estimate the α0k, assumed to be intrusion free.  We first estimate the Pu
based on just a subset of the commands from each user in the training data and then calculate x-values for



each user based on the remaining commands known to be intrusion-free.  Let xui, u = 1, … , U; i = 1, … , I,
be the resulting values of log(BF).  Choose a global value UCL0 (we take UCL0 = 0) as an average
threshold for raising an alarm.  However, we want to adjust for the fact that different users may have
different average values of x in the absence of intruders.  Therefore we define initial values of µu0 and ∆ so
that the average value of UCLu0 is UCL0.  Namely, let

ux = Σi xui / I .x  = Σu ux /U

∆ = UCL0 − .x µu0 = ( .x  + ux ) / 2

The rationale for µu0 = ( .x + ux )/2 is that the user-specific means ux are too variable to trust completely,
being based on just I blocks, so they are shrunk towards the grand mean.  Other choices of UCL0 besides
the value 0 could be based on percentiles or the sample variance of (xui – ux ).  Once µu0 and ∆ are
estimated, the initial values of Pu are updated with the commands used to compute the xui.  This completes
the initialization of the control chart described in step a) of the subsection “Control Chart Framework.”

Decision to update.  If, for a run of B + 2 consecutive values of i, xi < UCL, then the data from the middle
B such blocks are approved for use in updating the process parameters.  The choice of B depends on the
computational burden of going through the updating process and on the expected frequency of intrusions
and of expected changes in legitimate user behavior.  The choice B = 1 results in including all non-alarm xui
except those immediately before or after an alarm.  Larger values of B result in a procedure that is less
likely to contaminate the training data with intrusions and that is also less demanding computationally.

Updating µ.  The implementation of step d) of the control chart framework listed above, the updating of
process parameters P and µ, involves the choice of another constant, denoted n1/2, called the command half-
life, that determines how quickly old command counts “age out” of the computations.  Suppose we wish to
modify the current estimate of µ, based on Bµ values of x, to include information from B new values of x
having mean x .  Then we replace the pair (Bµ, µ) by the pair

Bµ
new = B + Bµ 2–BT/n1/2

µnew = ( x B + µ Bµ 2–BT/n1/2) / Bµ
new

Updating the transition matrix P.  We recommend updating the estimated transition matrix as follows.
First, update the estimated marginal probability vector qk.  Recall from (5) that quk is based on the two
matrices Muk and αuk.  Denote the command counts in the new data as mk, where Σkmk = BT.  Then these
matrices and the qk are updated as

Muk
new =  mk +  Muk2

–BT/n1/2 Mu.
new = Σk Muk

new

αuk
new = [Use (11) with updated values of Muk]

quk
new = [Use (5) with updated values of Muk and αuk]

To update the transition probabilities pjku, denote the transition counts in the blocks being newly included
as njk, where Σj,k njk = BT.  (Note that here we are defining njk as being the count over the set of B blocks,
B times as much data as in the discussion of the Bayes factor computation above.)  As before, Njk is
defined as the previously incorporated transition counts for user u.  Then, in order to be able to use (12) to
compute new pjku, we define new values of Njk, Nj, and νj as



Njk
new = njk + Njk 2

–BT/n1/2 Nj
new = Σk Njk

new

νj
new = [Use updated values of Njk, Nj, and quk in the formulas defining X2 and νj just after (12)]

The discounting of the observed counts decreases the influence of data from the far past, allowing the
probabilities and the control chart specifications to keep up with gradual changes in user behavior.  Larger
values of n1/2 produce more gradual changes in the parameters and smaller values produce more current
updates that may possibly be unstable from excess sampling variation.  (We use n1/2 = 5000.)  Our
algorithms only store nonzero values of njk and Njk for each user, and compute all required values of pjku
on the fly.

Updating α0k.  We do not propose a regular updating scheme for the in-common prior hyperparameters
α0k, but they could be updated or replaced on an ad-hoc basis if it were desired to redefine H 1.  If, during
an update, entirely new commands are observed, we just take α0,K+k = .01, βK+k = 1/U, k = 1, 2, …  and
then increase K, but we could re-estimate all the α0k instead.  If the Bayes factor computations involve a
previously unobserved command, the values  α = .01, β = 1/U are used for these computations too.

Data and Results

To evaluate the method presented in the previous section, we compare test data to training data (profiles)
for pairs of users.  Ideally, an alarm should always be raised except when a user is tested against his or her
own profile.  To establish user profiles, we use historical data from usage on our local unix machine.  The
data (user names and commands) are extracted from output of the unix acct auditing mechanism and
consist of user names and commands only (without their arguments).  Commands recorded by the system
consist not only of commands typed but also include implicitly generated commands.  For example, for
each execution of the .profile file or a make file, all commands contained in these files are also recorded in
the data stream.

 Experimental Design.  Data were collected from our local population during a several-month time period.
This example uses 50 strings of 15,000 consecutive commands each taken from the records of 50 users.
The first 5,000 commands (50 blocks of 100) are taken as originally recorded.  However, beginning with
block 51, the design builds in the possibility that strings of 500 commands (5 blocks) from other users (not
from any of the original 50) are inserted into these sequences.  After each block of 100 original commands,
with probability .2 a subsequence of 500 “intruder” commands is inserted into the stream.  At the end of
each set of 5 intruder blocks, one block of original commands is always provided, after which the choice of
original vs. intruder continues with the same (.8, .2) probabilities.  Each of the 50 constructed sequences
stops after 15,000 commands, having a mixture of original and inserted “intruder” commands.  The task is
to detect the intruder blocks.  This design leads to approximately half of the test data arising from a
simulated intrusion, which of course is orders of magnitude greater than expected in real life.  Having
roughly equal numbers of simulated intrusions and controls allows us to estimate the misclassification
errors better.

Estimation Results

We estimated the parameters Pu = {pjku}, α and µu based on the initial 5000 commands from each of the
50 users that were known to be intrusion-free.  There were K = 636 distinct commands in these data.
However, the 50 x 15,000 commands including the simulated intrusions contained 933 distinct commands.
Based on the first 50 x 5000 commands, the sum of the α0k was α0. = 106.6, and the largest 20 values of
α0k were



  sh netscape    ls generic   cat popper sendmail  date    rm  expr
8.88    4.354 4.317   4.137 3.831   3.62    3.179 2.316 2.315 2.154

  sed grep hostname    ln tcpostio   ksh  nawk  tcsh uname true
2.074 1.47    1.469 1.421    1.417 1.415 1.336 1.333  1.32 1.31

Values of α0k were somewhat arbitrarily raised to 0.01 if the estimates fell below that value.  In addition,
as discussed above, previously unseen commands that show up past the initial period are also given the
value α0k = 0.01.  Initially 355/636 commands had α0k = 0.01.  These rare commands are often used by
only one or a few users, and tend to contribute much of the information allowing discrimination between
users.  See Schonlau and Theus (1998).

There are a potential of UK2 = 50 x 9332 = 43.5M different transition probabilities to estimate.  However,
only about 22,000 of these transitions actually occurred in the initial data, and even after updating each Pu
based on seemingly intrusion-free runs of test data, only about 29,000 distinct transitions are ever stored
and counted. This shows the utility of Bayesian shrinkage estimation, which allowed us to produce nonzero
estimates for all 43.5M pjku.  Despite the many empty cells, most users had hundreds or even thousands of
identical transitions in their most populated cells.

Control Chart Results

Figures 1 and 2 show typical control charts generated under this simulated scenario.  The values of x =
log(BF) are plotted as points connected by lines and the values of µ and UCL are plotted as two parallel
nearly horizontal curves.  The values n1/2 = 5000 and either (T = 50, B = 6) or (T = 100, B = 2) were used
in this example.  To estimate µu0 and ∆, Pu based on the first 4000 commands were used to test the next
1000.  The top panel in each Figure shows the control chart for T = 100, the bottom for T = 50.  The
plotted symbols show the source of the commands in each block; filled circles for simulated intrusions,
open circles for commands from the original user.  Thus open circles above the line labeled “UCL”, or
filled circles below the line, represent misclassification errors.  Figure 1, describing User 1, has relatively
few misclassification errors.  From the top panel, when T = 100, there was just one false alarm in 5000
legitimate commands, or 0.2 per thousand.  Of the ten inserted intrusions in Figure 1, an alarm was
sounded after the very first block in nine intrusions, while the remaining intrusion, beginning in block 59,
was missed completely.  One method of scoring a detection rate is to count the average number of
simulated intruder commands before detection.  In the case of Figure 1 (top) it would be .9×100 + .1×500
= 140.  The bottom panel of Figure 1 shows what happened with the same input data when the blocksize
was T = 50.  There are twice as many points on the chart, but there is still just one false alarm for the same
false alarm rate of .2 per 1000 legitimate commands.  (The one open circle seemingly exactly on the UCL
line is actually slightly below it.)  Of the ten intrusions, the first alarm was at block 1 8 times and at block
2 twice, so that the average number of commands before detection in that panel is .8×50 + .2×100 = 60.



Figure 1. Control chart for User 1.  Top: N = 100 commands per point; Bottom: N = 50.
Simulated intrusions are “•”, control blocks are “o.”  Points above the line marked “UCL” are alarms.
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Figure 2. Control chart for User 2.  Top: N = 100 commands per point; Bottom: N = 50.
Simulated intrusions are “•”, control blocks are “o.”  Points above the line marked “UCL” are alarms.
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Figure 2 displays the same data for User 2 in our sample.  This User suffered just 9 simulated intrusions.
The false alarm rate is 2/5500 = .36/1000 when T = 100 and 9/5500 = 1.6/1000 when T = 50.  In the top
panel all nine intrusions raise an alarm in the first block, for 100 commands/intrusion before detection.  In
the bottom panel, the average is (7/9)×50 + (2/9)×100 = 61.  These two Figures show the variability
inherent in such a simulation, and also that neither of the two studied blocksizes is uniformly better.  But
both types of error rate are fairly low in these Figures.

False alarm and detection rates.  Over all 50 users, the number of false alarms when T = 100 was 170
during 256,500 control commands, a rate of .66/1000.  The T = 50 procedure had 353 false alarms for a
rate of 1.38/1000.  During the 487 simulated 500-command intrusions, 449 (92.2%) raised an alarm when
T = 100, while 465 (95.5%) raised an alarm when T = 50.

During “intrusions”, the distribution of number of commands before detection was

Commands:  50  100  150  200  250  300  350  400  450  500  500(Never)
 Count (T = 100):      381        30        19        12         7   38
Cum. Detection (%):       78        84        88        91        92  100

Count (T = 50): 373   30   14   17    9    5    3    7    2    5   22
Cum. Detection (%):  77   83   86   89   91   92   93   94   94   95  100

The average number of commands/intrusion before detection was 158 for T = 100, and 101 for T = 50.

Figure 3.  Trade-off between false alarms and detection ability, as functions of the offset ∆.
Solid curve: Blocksize = 50 ;  Broken curve: Blocksize = 100.
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Detection-false alarm tradeoff.  It is interesting to compare how the false alarm and detection rates change



as ∆, the offset of UCL from µ, change.  As noted above, the smaller blocksize had a higher false alarm
rate but lower average commands/intrusion before detection.  It is natural to be curious as to which would
have the better detection rate if ∆ were adjusted so they had the same false alarm rate.  Figure 3, which is
similar in spirit to an ROC curve in acceptance sampling (Montgomery, 1991), displays the detection-false
alarm tradeoff.  For each possible value of ∆, both the number of false alarms and the average commands
before detection are computed and then plotted against each other.  (The computation merely adds a
constant to the observed values of UCL in the simulation, and does not take into account how the inclusion
of new data into updated profiles might change if UCL changed.)  Figure 3 shows that if we adjusted the ∆s
so that both false alarm rates were 1/1000, the commands/intrusion would be about 120 and 140 for T = 50
and 100, respectively.  However, the preference is reversed at a false alarm rate of .2/1000, raising the
commands/intrusion to 293 and 270, respectively.  Neither blocksize is uniformly better, and both
blocksizes lose quite a bit of detection ability if the false alarm rate must be as low as .1/1000.

Discussion

In order for an intrusion detection tool to be useful, the false alarm rate needs to be low— otherwise alarms
tend to be ignored. This can presumably be achieved by setting the control chart parameters as desired
and/or by increasing the blocksize.  We assume that an operational anomaly detection scheme would also
employ other criteria besides command proportions, perhaps based on time-of-day, commands/hour or file
access information, and the combined criteria would hopefully have better statistical properties than those
based on command proportions alone.  In our sample of users, the number of commands generated per day
varied quite a bit.  The 15000 consecutive commands spanned a period of from 2 days to over 4 months.
Most users give between 200 and 2000 commands in a typical working day.  This provides some context
for our 50- and 100-command blocks.  A major strength of the approach presented is its speed.  Relatively
few operations are needed for computing the test statistic and for updating the control chart parameters;
preliminary estimates indicate that it will be easily possible to implement this procedure in real time.  We
are planning to perform a pilot study of real time monitoring to gather more information on this issue.
Currently all software is written in S-PLUS (MathSoft, 1995), an interpreted language programming
environment.  The pilot project will assess the ability of our S-PLUS implementation to keep up with the
accounting flow generated by many users.

Ryan et. al. (1998) use a neural network approach and test classification errors based on 10 users. They
have 11 successive days of data, 8 of which are chosen at random and used for training the neural net,
which then tried to distinguish users among the other three days.  They report a false alarm rate of 7% and
4% missing alarms, based on variable blocksizes equal to a full day of commands for a user.  Our test is
more challenging in that we test with more users and with smaller blocksizes, and because the test data are
collected during a later time period than the training data.  On the other hand, unlike them, we excluded
users with very low account usage.

See DuMouchel and Schonlau (1998a, 1998b) for descriptions of a comparative study of different test
statistics that each use a different approach involving principal components regression and the Fisher score
statistic.  The current method performs better and requires much less computer storage.  Schonlau and
Theus (1998) also describe a simple but quite effective test statistic based on a measure of how many users
have ever previously used each command–which inspired our extended Dirichlet model.

Control Charts for Intrusion Detection.  We have provided explicit details of a typical charting
procedure in the hopes that some researchers in the field of intrusion detection who are unfamiliar with
control charting will be encouraged to integrate their own anomaly detection method into this or a similar
control chart scheme.  For example, the output of a neural network algorithm could readily take the place



of xi in the control chart, and Figures 1-3 could be constructed for virtually any intrusion detection
indicator.  If authors of anomaly detection research papers use control charts and ROC plots as a common
testing and reporting framework, comparisons of methodology would be greatly facilitated.

Acknowledgement.  I would like to thank Matt Schonlau for assembling the data used in the analysis, and
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