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Abstract

A hybrid model based mostly on a high-order Markov chain and occasionally on an inde-

pendence model is proposed for pro�ling the command-sequence of a computer user in order

to identify a "signature behavior" for that user. Based on the model, an estimation procedure

for such a signature behavior driven by Maximum Likelihood (ML) considerations is devised.

The formal ML estimates are numerically intractable, but the ML-optimization problem can

be substituted by a linear inverse problem with positivity constraints (LININPOS), for which

the EM algorithm can be used as an equation solver to produce an approximate ML-estimate.

A user's command-sequence is then compared to his and others' estimated signature-behavior

in real time, by means of statistical hypothesis testing. A form of the likelihood-ratio test is

used to test if a given sequence of commands is from the proclaimed user, with the alternative

hypothesis being masquerader user. Data from a real-life experiment, conducted at a research

lab, is used to assess the method.

Key Words: Anomaly Detection; Unix; Mixture Transition Distribution (MTD); LININPOS; EM.

1 Introduction

Computer - and network - intrusions are top priority security issues for nowadays computer systems.

An intrusion-detection system ags intrusive behavior by monitoring dynamic usage patterns of

the system in search for abnormal patterns. A lot of e�orts have been put on developing intrusion
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detection systems, including commercial products like NetRanger from CISCO (NetRanger 1998)

and NIDES from Computer Science Laboratory, SRI International (Anderson, Frivold and Valdes

(1995)), and also academic projects like COAST project at Purdue University (Balasubramaniyan

et al. 1998) and Computer Immune Systems at University of New Mexico (Forrest et al. 1996).

There are two main approaches to intrusion detection: misuse detection and anomaly detection.

The misuse detection approach is to collect a large database of intrusion signatures and use it

as a reference to monitor the current computer (mis)use. This implicitly assume prior knowledge

of the nature of the intrusion and consequently runs the risk of failing to detect new types of

attacks. The anomaly detection approach is to build pro�les of normal usage patterns based on

historical records, and agging newly observed patterns which deviate from the "average" past-

pro�les possible intrusions. The focus of this paper is on the latter approach.

A Markov chain model is considered for pro�ling the UNIX command sequence of a computer

user in order to identify a "signature behavior" for that user. To increase the model-exibility, a

"high-order" Markov structure is assumed, which takes into account the last few commands (rather

than the last single command) in order to determine the next command. The underlying rational

behind this approach is that although the command sequence of any speci�c user is random, it

generally follows a probabilistic pattern which might be captured by a su�ciently rich Markov

model. A simple Markov chain, where the next command depends solely on the current one, seems

too crude for such an application, and so high-order model, in which the next command depends

on the recent history, say of last three commands seems more appropriate, as a modeling tool. The

problem is that this approach would lead to a very high-dimension parameter-space. In a universe

of, say, 500 commands a Markov transition probability between two commands will have 249,500

(= 5002�500) parameters. A higher order Markov model, say of order 2, where a pair of consecutive
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transitions constitute a single state in the chain, will have 124,750,000 (= 5002(500�1))parameters,

and, in general, the parameter-space dimensionality is K l(K � 1) if K is the number of distinct

commands and l is the index-order of the Markov chain. Our basic approach to overcoming the

dimension problem inherent to the high-order Markov chain, has two key components : (a) restrict

attention to a subset of the most used commands (with the remaining commands grouped to-

gether under a single "command" labeled other), (b) use a Mixture Transition Distribution (MTD),

Raftery (1985) and Raftery and Tavar�e (1994), approach to model the transition probabilities. The

combined two steps reduce the dimensionality of the parameter space to a practical level for which

we can apply statistical methods of estimation and hypotheses testing.

A major di�culty of the Markov modeling is that users' command patterns could change dras-

tically in time and consequently, it could be that a user's test data contain new commands which

were not observed in user's training data. The transition probabilities involving such new com-

mands could not be estimated from a �xed training data, and any Markov model would be on a

shaky ground. In such instances we resort to an alternative approach based on an independence

model from cross classifying users vs. commands in a simple contingency table.

The paper proceeds as follows: In section 2 we describe the design of the experiment, and the

data for testing the methodology. In section 3 we describe the statistical models and estimation

procedure. A hypothesis testing procedure is developed in section 4 in order to ag out "abnormal

behavior", which are interpreted as potential masquerader. An algorithm for updating the esti-

mated parameters in real-time, as command-sequence data ows in, is described in section 5. The

experiment's results are given in section 6, and a summary-discussion in section 7.
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2 Data and Experimental Design

The data are collected from the output of the UNIX acct auditing mechanism on a local machine

at a research lab, user names and the associated sequences of commands (without arguments) are

used in the experiment. The data contain about seventy users, and for each of the users there

are at least 15,000 consecutive commands. Fifty out of the eighty users are randomly selected to

form a "user community", each of them has a string of 15,000 consecutive commands. Considering

these commands as 150 blocks of 100 commands, the �rst 50 blocks of commands of each user are

treated as this user's training data. Starting after block 50, some masquerading command blocks

are randomly inserted to the command sequence for each of the 50 users in the community. These

masquerading commands are randomly drawn from the 20 users outside the community.

The inserting rules are as follow: For each command block Bi(i = 50; 51; : : : ; 150) of the 50

users, there is a probability 1% that some masquerading command blocks are inserted after it. The

number of the inserted command blocks is randomly chosen according to the geometric distribution

with mean 5 (pmf f(x) = 0:2(0:8)x�1; x = 1; 2; : : :). After the length are determined, we randomly

choose a user and a start command block from the outside users. If there are not enough successive

command blocks or if these command blocks are previously used, we randomly choose a user and a

start command block again. After the random insertion is completed, the �rst 150 command blocks

are used, with the �rst 50 as the training data and the last 100 as the test data. The purpose of

our study is to develop a method to determine if a test command block is from the proclaimed user

or from an outside masquerader.
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3 Pro�ling Users Based On Training Data

We �rst describe the Markov part of our model (x 2.1) followed by an independence model (x

2.2) which is needed when the Markov model is not applicable. The latter typically happens in

connection with the use of rare commands. Below we outline our parameter-estimation procedure

for the two cases.

3.1 MTD Model and Parameter Estimation

We set up the high-order Markov chain model as a Mixture Transition Distribution (MTD) model,

along the lines proposed in Raftery (1985) and Raftery and Tavar�e (1994). With this model,

an increase of one dimension in the index-order of the Markov chain amounts to adding a single

parameter, so that the dimensionality of the parameter-space is linear with the index-ordering of

the Markov chain. For any given user, Let K be the smallest number such that the most frequently

used K-1 commands of that user account for at least 99% of his training data, and group all other

commands as other. We then combine the most frequently used K-1 commands and other to get

the Markov chain's state space, M . For example, suppose that a user's training data consist of

200 commands, including 100 sh, 50 ls, 40 cat, 8 sendmail, 1 rm and 1 date. Then K = 5 and

M = fs1=sh, s2=ls, s3=cat, s4=sendmail, s5=otherg where any command other than fsh, ls, cat,

sendmailg is categorized as other.

Let fCt; t = 1; 2; : : :g be the sequence of commands taking values in the state space M =

fs1; s2; : : : ; sKg. Under the MTD model, the transition probabilities of an l-th order Markov chain

can be written as:

P (Ct = si0 jCt�1 = si1 ; Ct�2 = si2 ; : : : ; Ct�l = sil) =
lX

j=1

�j r(si0 jsij ); t = l + 1; l + 2; : : : (1)
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where R = fr(sijsj); i; j = 1; 2; : : : ;Kg and � = f�i; i = 1; 2; : : : ; lg satisfy

r(sijsj) � 0; i; j = 1; : : : ;K and
KX
i=1

r(sijsj) = 1; 8j = 1; : : : ;K: (2)

�i � 0; i = 1; 2; : : : ; l and
lX

i=1

�i = 1 (3)

The advantage of the MTD model is the reduction of the number of parameters, from K l(K�1)

(conventional parameterization) to K(K�1)+ l�1. For simplicity, we �x l = 10 for all users in our

experiment, meaning, we consider for each user the history of the last 10 commands as potentially

contributing to the transition probability of the next command. In particular, any MTD model of

order less then or equal to 10 is covered by this model.

Because the set of commands being categorized as other varies from user to user, it's necessary

to �x a universal standard for the transition probabilities involving rare commands, and we use the

following rules for all users :

1. r(otherjsi) = �; 8i = 1; 2; : : : ;K, � is small (we choose � = .00001 in our experiment)

2. r(sijother) = (1� �)=(K � 1); 8i = 1; 2; : : : ;K � 1.

The rationale behind these rules are (1): To force the probability of transition to other to be small,

regardless of the individual de�nition of other. (2) To compensate for the scarcity of data for esti-

mating transition probabilities from other to other commands. Note that other is a representation of

rarely used commands. We choose � = .00001 according to 0.01 (1% chance to get a rare command)

times .001 (about 1000 rare commands to choose from).

For each user, the log-likelihood of a command sequence (c1; c2; : : : ; cT ) is

logL(c1; c2; : : : ; cT ) =
KX

i0=1

: : :
KX
il=1

N(si0 ; si1 ; : : : ; sil) log

0
@ lX
j=1

�jr(si0 jsij )

1
A (4)
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where N(si0 ; si1 ; : : : ; sil) is the number of times that the pattern sil 7! sil�1
7! : : : 7! si0 is observed

in the command sequence and M = fs1; s2; : : : ; sK = otherg is the state space of commands.

Maximum likelihood estimate (MLE) requires maximizing the expression on the right side of (4)

with respect to � and R subject to the constraints in (2) and (3). Raftery and Tavar�e (1994)

suggest the direct maximization method using sequential quadratic programming algorithm to

solve the optimization problem. In many cases, especially the one at hand, this method is too

computationally demanding to be practical or implementable, because of the huge number of the

variables to be included in the optimization.

To overcome this computational di�culty, We propose a method which approximately solve

the ML-optimization problem and signi�cantly reduces the computational e�ort. A key step is

an iterative alternating maximization of the log-likelihood with respect to � and R. This leads

to global maximization because logL is concave in � and R. For the part when R is �xed, we

maximize logL with respect to �. Since the number of elements in � is l (the order of the Markov

chain) and typically small, the sequential quadratic programming algorithm can be applied to solve

it (we use CFSQP v.2.5 as described in Lawrence, Zhou and Tits(1997)).

For the part when � is �xed, we approximate the optimization problem with a linear inverse

problem subject to positivity constraints (LININPOS problem), and apply the EM algorithm to

solve it (Vardi and Lee (1993)). Toward this goal, re-index the log-likelihood (4) as follows: De�nes

the map

' : (i0; i1; : : : ; il) 7�! k; where k = '(i0; : : : ; il) = 1 +
lX

j=0

(ij � 1)K l�j :

which leads to

N(si0 ; si1 ; : : : ; sil) 7�! ak and
lX

j=1

�jr(si0 jsij ) 7�! bk:
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and the log-likelihood being of the form

X
k

ak log bk; (5)

where

X
k

ak =
KX

i0=1

: : :
KX
il=1

N(si0 ; si1 ; : : : ; sil) = T � l;

and

X
k

bk =
KX

i0=1

: : :
KX
il=1

0
@ lX
j=1

�jr(si0 jsij )

1
A

=
KX

i1=1

: : :
KX
il=1

0
@ lX
j=1

�j

KX
i0=1

r(si0 jsij )

1
A

=
KX

i1=1

: : :
KX
il=1

(
lX

j=1

�j)

= K l:

Note that ' de�nes an one-to-one correspondence between (i0; : : : ; il) and k which allows us to

change the multi-dimensional index to one-dimensional.

Now fakg are given (data) and a simple Lagrange method argument shows that the log-likelihood

(5) will be maximized when

b̂k =
akP
k ak

X
k

bk =
ak

T � l
K l; 8k

i.e.

lX
j=1

�j r̂(si0 jsij ) =
K l

T � l
N(si0 ; si1 ; : : : ; sil); 8(i0; : : : ; il): (6)

Treating (6) as a linear system subject to the constraints (2) results in a LININPOS problem

in fr(�j�)g that can be "solved" (in the sense of a minimum Kullback-Leibler distance between the
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left- and right-side of (6)) using the EM algorithm. Speci�cally, we have the linear system

0
BBB@
A

B

1
CCCAR =

K l

T � l

0
BBB@
N

1

1
CCCA

where

RT = (r(s1js1); r(s2js1); : : : ; r(sK js1); : : : ; r(s1jsK); : : : ; r(sK jsK))

= (r1; r2; : : : ; rK2):

are the unknowns, r(sijsj) = ri+K(j�1), and

N =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

N(s1; s1; : : : ; s1)

N(s1; s1; : : : ; s2)

...

N(s1; s1; : : : ; sK)

...

N(sK ; sK ; : : : ; s1)

...

N(sK ; sK ; : : : ; sK)

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

N1

N2

...

NK

...

N1�K+Kl+1

...

NKl+1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

where N(si0 ; si1 ; : : : ; sil) = Ni; i = '(i0; i1; : : : ; il).

A = faijgKl+1�K2 ; where aij =
lX

k=0

�kI[j = i0 +K(ik � 1)]; (i0; : : : ; il) = '�1(i)

9



and looks like:

A =

0
BBBBBBBBBBBBBBBB@

�1 + : : :+ �l; 0; : : : ; 0; 0; 0; : : : ; 0; 0; 0; : : : ; 0; 0

�1 + : : :+ �l�1; 0; : : : ; 0; �l; 0; : : : ; 0; 0; 0; : : : ; 0; 0

�1 + : : :+ �l�1; 0; : : : ; 0; 0; 0; : : : ; 0; �l; 0; : : : ; 0; 0

...

0; 0; : : : ; 0; 0; 0; : : : ; 0; 0; 0; : : : ; 0; �1 + : : : + �l

1
CCCCCCCCCCCCCCCCA
Kl+1�K2

B =

0
BBBBBBBBBBBB@

1; : : : ; 1; 0; : : : ; 0; 0; : : : ; 0; 0; : : : ; 0;

0; : : : ; 0; 1; : : : ; 1; 0; : : : ; 0; 0; : : : ; 0;

0; : : : ; 0; 0; : : : ; 0;
. . . 0; : : : ; 0;

0; : : : ; 0; 0; : : : ; 0; 0; : : : ; 0; 1; : : : ; 1;

1
CCCCCCCCCCCCA
= fbijgK�K2 1 =

0
BBBBBBBBBBBB@

1

1

...

1

1
CCCCCCCCCCCCA
K�1

This can be solved iteratively using the following EM iteration step, with initial values for frjg

being strictly positive.

rj  
a�j

a�j + b�j
r̂j(A;N;R) +

b�j

a�j + b�j
r̂j(B;1;R) (7)

where

r̂j(W;u;v) �
vj

w�j

X
i

wijuiP
k wikvk

j = 1; 2; : : : ;K2

for matrix W = fwijg and vectors u = fuig;v = fvig, and

a�j =
X
i

aij =
X

(i0;:::;il)='
�1(i)

lX
k=0

�kI[j = i0 +K(ik � 1)]

=
lX

k=0

�k
X
i0

: : :
X
il

I[j = i0 +K(ik � 1)]

=
lX

k=0

�k �K
l�1

= K l�1:
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and b�j =
P

i bij = 1.

The linear system is given in a block form, which was �rst utilized by Iusem and Svaiter (1994).

See also Vardi (1996) section 3.4 for more detail. Note that if K l�1 � 1, one may consider use only

the �rst term in the right side of (7).

We set the initial values of the parameters as follows: Let all �i are equal, �1 = �2 = : : : =

�l = 1/l. R is estimated by the �rst-order transition counts of the data, except that: (a) If the

transition sj 7! si is not observed, we arbitrarily set the count equal to one; (b) Fix r(otherj�) =

� and r(sijother) = (1 � �)=(K � 1), i = 1; : : : ;K � 1 as described earlier. We continue the

alternating maximization steps until the proportion of the increase of the log-likelihood is less than

a pre-speci�ed number (we use 10�5). The EM iteration (7) is applied once in each maximization

step, and after that r(�j�) are linearly normalized to satisfy the constraint (2). Based on our

experimental results, the estimates obtained from the proposed procedure are very close, if not the

same, to the ones from the direct maximization. By using this approach, we signi�cantly reduce

the computational e�ort and are able to derive the MLE of � and R to get an estimated "user

signature" or "user pro�le".

3.2 Independence Model

As explained above when many rare commands are present in the test data, any Markov model

is on shaky grounds and we need to resort to methods based on an independence model. This

happens approximately 8% of the time in our data set. In these cases we assume that user u's

commands are independently generated from a multinomial distribution. That is,

P (C1 = c1; : : : ; CT = cT juseru) =
TY
t=1

P (Ct = ctjuseru) = quc1 : : : qucT :
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Let Nuk be the number of times user u used command k in the training data, quk can be estimated

by q̂uk = Nuk=Nu�. Here "�" denoting summation over the subscript that it replaces (e.g. Nu� =

P
kNuk). Such simple statistics could be poor estimates of the probability that user u uses command

k, quk, because not all commands have the same power to distinguish di�erent users. For q̂u;k to

be a proper user-identi�er, the following behavior would be desirable:

q̂u1k=q̂u2k

8>>><
>>>:
� 1 if command k is common. (command k is used by a lot of users)

/
Nu1k

=Nu1�

Nu2k
=Nu2�

if command k is rare. (command k is used by few users)

That is, for a given sequence of commands, the likelihood ratio statistic for testing H0: command

sequence is from user u1 vs. H1: command sequence is from user u2 depends on the users' usage

of rare commands. For example, suppose user John didn't use command cat in the training data,

while every other users in the same community used it. Then the fact that we observe cat in John's

test data is not a big surprise, as it's a fairly common command for the community. On the other

hand, if that command is xev and was only used by one user in the community (but not John)

during the training period, then it's very unusual if we see command xev in John's test data.

To achieve this, we transform Nuk as follows: Let �k be the proportion of users who have used

command k in the training data and let the weight wk = 1 + 1
U � �k (U = total number of users).

1. Let

N 0
uk = wkNuk + (1� wk)(N�k

Nu�

N��

)

And de�ne

du+ =
X
k

max(0; Nuk �N 0
uk) du� =

X
k

max(0; N 0
uk �Nuk)

Euk+ =

8>>><
>>>:

wkP
fi:Nui>0g

wi
du+ if Nuk > 0

0 if Nuk = 0
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2. Let

N 00
uk = N 0

uk +Euk+

And de�ne

Buk =

8>>><
>>>:

wkN
00
uk if Nuk = 0

0 if Nuk > 0

Euk� =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Buk if Nuk = 0; Bu� � du�

du�
Bu�

Buk if Nuk = 0; Bu� > du�

N 00
ukP

fi:Nui>0g
N 00
ui

(du� �Bu�) if Nuk > 0; Bu� � du�

0 if Nuk > 0; Bu� > du�

3. Let

N 000
uk = N 00

uk �Euk�

And de�ne

q̂uk =

8>>><
>>>:

N 000
uk

N 000
u�

if N 000
uk > 0

� if N 000
uk = 0

The rational behind this is to get the weighted sum of the original user/command contingency

table (Nuk) and the average one (N�k
Nu�
N��

), where the weight wk is determined by the proportion of

users who used command k in the training data. Step 2 and 3 make sure the new table is properly

transformed such that it has the same row (user) marginal as the original Nuk has. By applying

this, the estimates q̂uk have the desired behavior.
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4 Detecting Masqueraders : Hypothesis Testing applied to the

Test Data

Suppose that the recorded command sequence fc1; : : : ; cT g in the test data is proclaimed to be

from user u. We then test the hypothesis:

H0 : commands are generated by user u

H1 : commands are NOT generated by user u.

(8)

We use the likelihood ratio test in the following way:

De�ne the statistics

X1 = log

 
maxv 6=u L(c1; : : : ; cT j�̂v; R̂v)

L(c1; : : : ; cT j�̂u; R̂u)

!
and X2 = log

�
maxv 6=u

Q
i qvciQ

i quci

�
(9)

where �u and Ru are the parameter estimates of user U . Note that in the computation of X1, the

likelihood L(c1; : : : ; cT ) (de�ned in (4)) could be zero if there exists pattern il 7! il�1 7! : : : 7! i0

in the command sequence such that p =
Pl

j=1 �̂j r̂(i0jij) = 0. In such case we set p = �.

To bring the two statistics X1 and X2 into the same scale, we regress X2 over X1 with no

intercept term, X1 = �X2, based on the command sequences in the training data. We use a robust

regression procedure based on least median of squares to estimate �. The estimated �̂ is then the

scaling factor used to equalize the scale of X1 and X2.

Let s be the number of commands that are categorized as other, according to user u's de�nition,

in fc1; : : : ; cT g. We de�ne the test statistic (score) to be

X =

8>>><
>>>:

X1 if s=T � �, (we choose � = 0.2 in our experiment)

�̂X2 if s=T > �.

(10)

The likelihood ratio test rejects H0 if X is greater than the threshold w. In our experiment,

we let every users have the same threshold w = �+ 3� and estimate � and � by sample mean and
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sample standard deviation of the X's obtained from the training data. Speci�cally, let xub be the

score for user u and commands block b, A = fxub;u = 1; : : : ; 50; b = 1; : : : ; 50g. Then w1 = �̂+3�̂,

where �̂ = mean(A) and �̂ =
p
var(A). This leads to the following hybrid method: In the case

of "usual" test data (the rare proportion is less than �), we use the Markov chain model; in the

case of "unusual" test data (the rare proportion is greater than �), we use an independence model.

Namely, we set up a rule base to decide how to process the test command sequences, which is one

of the arti�cial intelligence techniques have been used in many intrusion detection system (Frank

(1994)). Since it's impossible to derive the probability distribution of the test statistic (10), we

don't know the power of this test. However, from the experiment we get a type I vs. type II error

curve based on di�erent critical values, which can be used to evaluate the test procedure.

5 Updating User Pro�les and Alarm Threshold

In real life applications it's desirable to be able to update users' training data and pro�les in real

time, but this involves the risk of including an intruder (masquerader) data in the updated training

data set. To reduce the risk of contaminating the training data, we need a much more conservative

acceptance-rule than the one which determine the alarm threshold w1 in the previous section. Note

that based on the de�nitions in (9) and (10), the test statistic X is the log of likelihood ratio. Thus,

we set the updating threshold w2 = 0, and any command block with score less than zero has the

interpretation that, among all users in the community, this command sequence is most likely from

the proclaimed users. All such command blocks are then incorporated into the training data, along

with the original one (commands blocks 1 to 50), to form a new updated training data set. Due to

the computational demand of the parameters estimation procedure in the Markov chain model, we
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can't a�ord to update the user pro�les very often. In our experiment, we only update them once,

after commands 10,000.

To update the alarm threshold, we include all the scores of the alarms-free command blocks

to the scores of the original training data, and compute their sample mean and sample standard

deviation as before. Speci�cally, let A = fxub;u = 1; : : : ; 50; b = 1; : : : ; 50g and B = fxub;u =

1; : : : ; 50; b = 51; : : : ; 100; xub � w1g. Then w1;new = �̂new + 3�̂new where �̂new = mean(A;B) and

�̂new =
p
var(A;B).

6 Results

Based on the hypothesis (8), type I error indicates a false alarm and type II error indicates a

missing alarm. Figure 1 visually displays the inference results for the given alarm threshold. The

dark shaded background indicates masquerader data and the light shaded background indicates

true user data. The alarms raised by the method with and without user pro�le updating are

represented by � and +. In the case of no pro�le updating, there are 221 false alarms, 103 missing

alarms and the percentage of correct inferences is 93.5%. In the case of pro�le updating, there are

163 false alarms, 115 missing alarms and the percentage of correct inferences is 94.4%.

Based on Figure 1, several interesting points are observed:

1. The false alarms tend to appear in long sequences (e.g. user 16, 20, 23). The interpretation

could be that when a user changes his usage pattern, he typically stays at the new usage

pattern for several command blocks.

2. After block 100, there are fewer false alarms given by the method which includes updating of

training data than those given by the method without updating. This indicates that the newly
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included training command sequences, even though determined on the basis of a conservative

rule, could be really helpful in pro�ling the users.

Focusing on individual users, �gure 2 shows the plot of the test scores, based on the method

with pro�le updating, for 6 particular users. The horizontal axis represents the command blocks

and the vertical one represents the test score. The points above the threshold line indicate alarms

and the shaded background indicates the presence of masquerader data.

The results for user 9 and 5 are examples of correct inferences. All the simulated masqerader

command blocks are agged for user 9, and while no such blocks present for user 5, the test correctly

doesn't generate any false alarms.

The result for user 30 is an example of the missing alarms. The test scores of the command

sequences from the masqerader fail to exceed the alarm threshold. However, it's easy to see from

the plot that they are very suspicious, in the sense that those scores are much higher then the

average scores.

After about block 100, there are a lot of false alarms for user 20. This could indicate the

change of computer usage for this user. The result for user 42 is quite interesting. While the

test successfully detects the beginning of the masquerader data, the test scores go down and up

dramatically afterwards.

The result for user 16 is an example of the performance improvement due to updating. From

block 51 to 100, the test gives a lot of wrong inferences. After block 100, however, the updated

training data improves the accuracy of the estimated user pro�les, and the procedure's error rates

are much smaller.

It's also interesting to see the tradeo� between false alarms and missing alarms. By varying the

thresholds, adding di�erent constants to w1, the false and missing alarm rates change accordingly.
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Figure 2: Plot of scores over command blocks for 6 users
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The smaller the threshold is, the more the false alarms and the less the missing alarms exist, and vice

versa. Figure 3 shows the ROC (Receiver Operating Characteristic) curves of the false vs. missing

alarm rates. Each point on the curve represents the error rates given by di�erent thresholds. For

1% false alarm rate, the corresponding missing alarm rates are 78.4% (no updating) and 77.1%

(with updating). For 5% false alarm rate, the corresponding missing alarm rates are 40.3% (no

updating) and 34.2% (with updating). The highest percentages of the correct inferences are 95.5%

(no updating, corresponding to false alarm rate 0.9% and missing alarm rate 79.2%) and 95.8%

(with updating, corresponding to false alarm rate 0.6% and missing alarm rate 78.5%)

7 Discussion

We believe that no single criterion can be used to completely defend against computer network

intrusions, and our approach can be considered as an example of how to combine various components

in a multi-layer defense scheme. A major advantage of our approach is that it uses both probability

modeling as well as elementary statistics. Repeated command sequence patterns are modeled by

the high-order Markov chain, and information from rarely used commands is utilized through the

independent model. Depending on the nature of the command sequences, di�erent strategies can

be applied.

While using a high-order Markov chain to model the repeated patterns in the command se-

quences is successful, there is also a concern about the relatively large computing requirements

needed to build the user pro�le. Based on our experiment, it takes on average 5 minutes to get the

parameter estimates for a sequence of 5,000 commands. This can go as short as a few seconds or

as long as half an hour, depending on the complexity of the command sequences.
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In the test procedure (9) and (10), the test statistic is de�ned in a form of the likelihood

ratio test. However the numerator of X1 and X2 are not really maximized over all alternative

hypothesis in (8), but rather over all users in the same community other than the proclaimed user.

So it appears that this test can only distinguish users in the same community from one another.

However, the experiment's results show that a masquerader's command sequences can be detected

quite successfully. Furthermore, an advantage of this test is it can easily accommodate add-on

virtual "users" to the community to incorporate misuse detection methods. For example, one can

build pro�les from the command sequences of a known intrusion, and consider them as the pro�les

of the intrusive "user" in the community. Then for new command sequences, failure to distinguish

them from the virtual (intrusive) "user" indicates a possibly intrusive behavior of the same kind.
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