NISS

Computer Intrusion:
Detecting Masquerades

Matthias Schonlau, William DuMouchel,
Wen-Hua Ju, Alan F. Karr, Martin Theus,
and Yehuda Vardi

Technical Report Number 95
March, 1999

National Institute of Statistical Sciences
19 T. W. Alexander Drive
PO Box 14006
Research Triangle Park, NC 27709-4006
WWW.Niss.org



Computer Intrusion: Detecting Masquerades

Matthias Schonlau!, William DuMouchel?, Wen-Hua Ju®, Alan F. Karr!,
Martin Theus?, Yehuda Vardi®

! National Institute of Statistical Sciences, 19 Alexander Drive, Research
Triangle Park, NC 27709-4006

2 AT&T Labs Research, 180 Park Avenue, Shannon Laboratory, Florham
Park, NJ 07932

3 Rutgers University, Dept. of Statistics, 110 Frelinghuysen Rd., Piscataway,
NJ 08854-8019

4 VIAG Interkom, Marsststr. 33, 80335 Muenchen, Germany

Abstract

Masqueraders in computer intrusion detection are people who use somebody
else’s computer account. We investigate a number of statistical approaches
for detecting masqueraders. To evaluate them, we collected UNIX command
data from 50 users and then contaminated the data with masqueraders. The
experiment was blinded. We show results from our methods and two ap-

proaches from the computer science community.

Keywords: Anomaly, Bayes, Compression, Computer Security, High Order
Markov, Profiling, Unix



1 Introduction

Intrusion detection in computer science is an appealing problem area because
of its importance and the widespread interest in the subject, as evidenced by
the report of the President’s Commission on Critical Infrastructure Protec-
tion (1998).

There are many different types of intrusions. Denning (1997) divides

attacks into 8 basic categories:

e cavesdropping and packet sniffing (passive interception of network traf-

fic)
e snooping and downloading
e tampering or data diddling (unauthorized changes to data or records)

e spoofing (impersonating other users, e.g. by forging the originating

email address, or by gaining password access)

e jamming or flooding (overwhelming a system’s resources, e.g. by an

email flood)
e injecting malicious code (via floppy disks, email attachments, etc.)

e exploiting design or implementation flaws (often buffer overflows; over-

flows overwrite other data and can be used to get control over a system)

cracking passwords and keys

Due to a lack of actual intrusions (or at least due to our belief that we
have no intruders inside our firewall) we focus here on a common form of
spoofing, namely on detecting masquerades. Masqueraders are people who
impersonate other people on the computer. They could be the offspring of
users who use their parents’ company account inspite of company policy,

they could be users that play jokes on other users, or they could be malicious



intruders intentionally trying to hide their identity by impersonating other
users. They could also be intruders from outside - although in practice most
outside intruders immediately try to gain access to the account of the supe-
ruser and therefore are a special case. A computer crime and security survey
(Computer Security Institute, 1998) ranking computer security problems in
terms of their estimated financial damage found that unauthorized access by
insiders was most damaging, accounting for about one third of the total loss.

Methods for computer intrusion detection fall into two broad categories:
pattern recognition and anomaly detection. Pattern recognition refers to at-
tempting to recognize the attack signatures of previously observed intrusions.
It is our impression that computer scientists consider pattern recognition as
the first line of defense. Clearly, it can be very powerful when the intrusion
method is known. Unfortunately, like researchers, hackers come up with new
ideas but unlike researchers they do not publish their work, at least not be-
fore an attack. Anomaly detection can defend against novel attacks and it is
here that statistics seems most useful.

In anomaly detection, usually a historical profile is built for each user,
and sufficiently large deviations from the profile indicate a possible intruder.
Anomaly detection is not useful for most of the categories mentioned above
and probably most appropriate for detecting masquerades. All commercial
intrusion detection systems that we are aware of use pattern recognition,
while some, like IDES (Lunt et al. 1992), NIDES and Emerald (Porras and
Neumann 1997) use both approaches.

The literature focuses on a vast array of specific approaches to computer
intrusion detection. For a general overview see Denning and Denning (1997)
or Amoroso (1998). We describe two of the computer science approaches to
anomaly detection that are directly relevant to this article in Section 3.

This article is structured as follows: In the next section we discuss the
data and the experiment that we designed to compare several anomaly detec-
tion methods. In Section 3 we describe our methods and also two approaches

from the computer science community. Section 4 then analyzes the results



of the experiment and Section 5 concludes with a discussion.

2 Data and Experimental Design

2.1 Data

Under the UNIX operating system users give commands. For example, a user
might type more myfile in order to read myfile one screen at a time. In
this example more is the command and myfile is an argument to that com-
mand. As a second example, typing chmod +777 myfile allows all users to
read, write and execute myfile. Here both +777 and myfile are considered
arguments, +777 specifies who exactly can read and/or write and/or execute
myfile.

Our data source is the UNIX acct auditing mechanism. Examples of some

auditing entries are given in Table 1. Our analysis is only based on the first

Command User Ter- Start End Real CPU Memory
Name minal  Time Time (sec) (sec) Usage(K)
chmod matt pts/93 13:26:29 13:26:29 0.01 0.01 8.00
more karr  pts/31 13:27:36 13:27:39 3.01 0.01  20.00
cat vardi  pts/96 13:27:58 13:27:58 0.01 0.01 8.00

whoami theus pts/99 13:28:07 13:28:07 0.02 0.01 16.00
sendmail karr  pts/91 13:28:17 13:28:17 0.02 0.01 124.00

Table 1: Examples of accounting entries generated by the UNIX acct auditing

mechanism

two fields, “Command Name” and “User”.

The first 15,000 commands for each of about 70 users were recorded over
a time period of several months. The time span it took to collect 15,000 com-
mands differs vastly from user to user. Some generate this many commands

in a few days, others in a few months.



While the availability of arguments would be desirable, they were not col-
lected because of privacy concerns. Some commands recorded by the system
are implicitly and not explicitly typed by the user. A shell file is a file that
contains multiple commands. Therefore running a shell file will cause all of
its commands to be recorded. This also includes so called .profile files,
and make files. Names of executables (i.e., programs) are also interpreted as

commands since they are recorded in the audit stream.

2.2 Experimental Design

We randomly selected 50 users to serve as intrusion targets. We then used
the remaining users as masqueraders and interspersed their data into the
data of the 50 users.

For simplicity, we decided to decompose each user’s data into 150 blocks
of 100 commands each. The first 50 blocks (5000 commands) of all users are
kept aside as training data - as far as we know they are not contaminated by
masqueraders. For blocks 51 through 150 we made the simplification that a
block is contaminated either completely or not at all - there are no mixed
blocks.

Starting with block 51, we insert masquerading data as follows: If no
masquerader is present, a new masquerader appears in the following block
with a 1% probability. If a masquerader is present, the same masquerader
continues to be present in the following block with a probability of 80%. Data
that correspond to different masqueraders are always separated by at least
one block of uncontaminated data. Inserting masquerading data increases
the number of commands. We truncate the data to 150 blocks per user in
order not to give away the amount of masquerading data inserted.

Masquerading data are drawn from the data of masquerading users as fol-
lows: We determine the length of the masquerade and choose a masquerader
and a start data block at random. The random choice was repeated if there

were not enough contiguous masquerading data left or if the masquerading



data were previously used.

We conducted the study in a blind fashion: none of the investigators knew
the locations or number of the masqueraders at the time they were analyzing
the data. The investigators knew the probabilities with which a masquerader
would appear and disappear but were not allowed to use this information.
The only piece of information used was the fact that masquerades only start
at the beginning of blocks and so did the individual tests for masqueraders.

The data used in this experiment are available for download from

http://www.research.att.com/~schonlau/

3 Overview of Methods

In what follows we describe distinct approaches labeled, “Uniqueness”, “Bayes
1-Step Markov”, “Hybrid Multi-Step Markov”, “Compression”, and two ad-
ditional methods from the computer science literature labeled “IPAM” and
“Sequence-Match”. All methods attempt to detect anomalies and should
be thought of as subsystems rather than as stand-alone intrusion detection
systems.

The methods all operate in essentially the same way. First, the 5000
commands of training data are used to construct user profiles. Then, for
each block of 100 commands, a score is computed and if the score exceeds a
threshold, an alarm (indicating a potential masquerade) is triggered. When
data are deemed to be free of masquerades they may be used to update the
profiles. For each method we will describe how to generate the score as part
of the model, how to set thresholds, and how to update the profile.

Before we describe the various methods, we first introduce some notation

that is common to several methods:



C training data (command names)

c test data (command names)
Clut " command of user u of the training data
Nk number of times user u used the command sequence (7, k)

in the training data
Ny number of times user u used command £ in the training data
N, length of user u’s training data sequence

Najky Nuk, Ny as above for test data in a block being evaluated

Tub Score for user u at block b of method presented

U total number of users (here 50)

Uy number of users who have used command £ in the training data
K total number of distinct commands

T number of commands in a test data block (here 100)

Note that the subscripts u, ¢ and k index users, command order and com-
mands, respectively. When a second subscript is needed to index commands,
we use the subscript j.

The command stream for a given user is ordered. To avoid cumbersome

sentences we will occasionally refer to that order as “time”.

3.1 Uniqueness

The uniqueness approach is based on the idea that commands not previously
seen in the training data may indicate a masquerading attempt. Moreover,
the commands are more indicative the fewer users are known to use that

command. This approach is due to Theus and Schonlau (1998).

3.1.1 Motivation

Uniquely used and unpopular commands are very important for this method.
By “uniquely used command” we mean that in a pool of users only one user

is using that command. An unpopular command is used only by few users.



It turns out that almost half of the UNIX commands appearing in our
training data are unique to a single user, and many more are unpopular.
Moreover, uniquely used commands account for 3.0% of the data, and com-
mands used by 5 users or less account for 8.3% of the data.

A command has Popularity i if exactly ¢ users use that command. We
group the commands such that each group contains only commands with the
same popularity. We assign an 1D to each command such that commands
from groups with unpopular commands are assigned lower 1D’s than com-
mands from groups with more popular commands. The order within a group
is arbitrary. When plotting the command ID over “time” the usage pattern
of uniquely used/unpopular commands emerges. Such a plot is shown in
Figure 1 for the first 5000 commands of each of 50 users. Groups are sep-
arated by a horizontal line. The fact that the Popularity= 1 group takes
up approximately the bottom half of Figure 1 shows that about half of all

commands are uniquely used, and many more are unpopular.

3.1.2 Model

We define a test statistic that builds on the notion of unpopular and uniquely

used commands:
1 K
Ty k=1
where the weights W, are

—vui /v if user u’s training data contains

Wk = command k
1 otherwise
where
Uyk = Nuk/Nu
and

VE =D Vg
U



E =meBE mw
Tl LB 0LV L by B 1)
R B AL O LB B e [ k=

== i = = wq= WA FEL S L E

&= =R I || : ol E SRSl .t = ENChe
T L PR R wwmwmmmmmwwmmmmmmm E2apzect 33
R e R s R s S SN ¥ S S CEE R ERE S ESES S I EC TN
T e e e P e e M‘Hmmuwww“}wumwﬁuwmm
FrE el oGl Ak e ook alm ol S it <o} it fae bt e it~ o o i el bl s
[t ol bk Claaleeiantor bl e i b THST RS o ms T Crma R T ET S
—~t mmee. T e TS el Tt ekt e et ma  Tem L g Tmoe L. s Srmec ool clo TTS T e

b\u“‘hux-‘“Lqu.P..‘M“‘“‘l‘.‘l”“‘wﬂ‘i“w'!r‘r‘n‘xi”."“l‘nt“ul‘v‘
s G I = ANPERRFEEE » | - |
= I S =1 ] o= ;
2 ] P - : - I 1 I
2 || .z = . I = - ]
‘= - = e = | o0
S - = Cesa ¥ e ==
= -. i =
[oX - -
[e] - = .
o - - .
. \ . EE
- - B
, = o -
™ ) = sl.
1 | | o
. j—i
o -
1 - - “l I\. ll'
= i - . o
| | B - i -
- ~—
1234567 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950
User

Figure 1: Visualization of Command Popularity. Each panel corresponds to
one user. Within each user’s panel, each of the user’s commands is repre-
sented by a single dot. The popularity corresponding to each command is
plotted versus “time” (different commands with the same popularity have
different ordinates within their popularity group).

The fraction (1 — Uy /U) acts as a uniqueness index: it is zero if all users
have used this command before, it is 1 if none of the users has used it before.
The weights W, control whether the uniqueness index should be added or
subtracted, depending on whether the command was seen before or not.
Hence a user will tend to score low if he/she uses commands similar to the
ones he/she used in the training data. The order in which the commands
appear does not matter. The quantity v, /v represents the command usage

relative to other users. It reduces the score contribution of commands that



other users often use and this user rarely.

3.1.3 Thresholds

We assign the same threshold to all users. This threshold is estimated via
cross validation: we split the original training data into two data sets of 4000
and 1000 commands. Using the larger data set as training data, we assign
scores for the smaller one. This is repeated 5 times, each time assigning
scores to a distinct set of 1000 commands. We set the threshold to the 99
percentile of the combined scores across all users and all 5 cross validations.
For our data the resulting threshold is 0.2319.

We investigated assigning different thresholds to different users, in the
way to be described for the compression method (Section 3.4.2). It turned
out that individual thresholds tended to yield a false alarm/missing alarm
tradeoff inferior to the one based on a common threshold for all users. This
may be due to the fact that scores are interpretable for all users in the same
way: e.g. a negative score indicates that the test data contains few or no

incidences of new commands and therefore are not suspicious.

3.1.4 Updating

This method is particularly sensitive to contamination of the training data.
Using all alarm-free test data for updating therefore does not seem sensible.
Instead we introduce a more conservative second threshold for updating: if
the test score remains below the updating threshold then the corresponding
data are added to the training data.

In choosing the updating threshold, we note that a masquerader who uses
mostly common commands can get a score of slightly below zero, and at the
same time contaminate the pool of commands by using a few of his/her own
uniquely used commands. To avoid that possibility, we set the updating
threshold somewhat arbitrarily to —0.05.

10



Updating the training data set means updating the vector of distinct
commands and the matrix that contains a count of how often each user used
a command. Updated scores can be recomputed from that matrix. Here we
recompute the scores after every 2000 test commands (i.e. after commands
7000, 9000, 11000, and 13000). While non-simultaneous updating is possible,
we chose to update simultaneously for all users, as if all users were submitting

commands at the same rate.

3.2 Bayes 1 Step Markov

The Uniqueness approach only considered command frequencies. The Bayes
1 Step Markov approach goes further: it is based on 1-step transitions of com-
mands. The approach uses a Bayes factor statistic to test the null hypothesis
that the observed 1-step command transition probabilities are consistent with

the historical transition matrix. This approach is due to DuMouchel (1998).

3.2.1 Model

We form two hypotheses. The null hypothesis assumes that the observed
transition probabilities stem from the historical transition matrix; the alter-

native hypothesis is that they were generated from a Dirichlet distribution:

HO : P(Ct = k|0t_1 = ]) = Pujk (2)
Hy: P(C,=E|Ciy=7)=Qx
(Q1,...,QK) ~ Dirichlet(ap,...,o0x) (3)

where p,;i; 1s the historical transition probability from command 7 to com-

mand £ for user u, i.e.,
pujr = P(Next Command = k|Previous Command = j, User = u)

We now explain how we estimate the historical command transitions p,x

and the parameters agq, ..., agx.

11



Choosing a Bayesian framework, we estimate the p,;; by shrinking the

observed conditional probabilities toward the marginal probabilities:

Pujk = (Nujk + vujqui )/ (Nuj. + vu))

where g, are the marginal probabilities ¢, = P(Next Command = k|User =
u) and v,; are Bayesian hyperparameters controlling the shrinkage. The v,;
in turn are estimated by fitting conditional frequencies N, ;; to a Dirichlet
distribution with means qy.

The marginal frequencies ¢, are estimated by shrinking marginal frequen-
cies observed in the training data toward the average command frequencies

for all users:

The o, above and the agi used in (3) to specify the alternative hypothesis are
estimated by fitting the marginal frequencies N, ; to a Dirichlet-multinomial
distribution with a modification of the usual Dirichlet model to take into
account the fact that many commands are unique to particular users. See
DuMouchel (1999) for details of this modification, which was inspired by the

success of the Uniqueness method of Section 3.1.

We test the above hypothesis by forming the Bayes factor. The Bayes fac-
tor BF' is the ratio of the probabilities of the data under the two hypotheses:

BF = PTOb(Cl,...,CT|H1)/PTO[)(01,...,CT|H0)

The larger BF' is, the more evidence there is against Hy in favor of Hy. In
fact, + = log(BF') if often called the weight of evidence. On the log scale
there is the nice property that evidence from two independent data sets is
the sum of their individual evidence. We therefore use & = log( BF') as the
test statistic.

It turns out that the Bayes factor BF' can be calculated as

BF =

12



H (cop(aor + 1) (cop + 1w — 1)) / (Oéo.(Oéo. + 1) (an.+T—1) sz;ljgk)

k .k
3.2.2 Thresholds

We split the training data set into two parts. The model was estimated from
one part and based on those estimates. Scores were calculated for the other
part. Let z, and x be the average such score for user u and across all users,
respectively.

We calculate individual thresholds for each user as follows:
Threshold, = (z, — )/2

The average threshold for all users is intentionally set to 0. The value 0 is the
log Bayes factor when the hypothesis and the alternative are equally likely.

It thus emerges as a natural choice.

3.2.3 Updating

When any three blocks of testing data (300 commands) in a row are alarm-
free then the center block is added to the training data. Should a fourth
block be alarm free, then the third block is added, and so forth. Not adding
the first and last blocks minimizes the contamination of the training data
with masquerading data.

Adding a block to the training data in practice can be done by updating
the values of ¢, and p, 5. The update algorithm is straightforward, involving
a modification of the nonzero counts N, ;. The values of p,;; are never stored,
but are only computed as needed, based on g, v,; and the nonzero values
of Nyj.

An exponential averaging method is used to update the N, to “age
out” old data. It is of the form N, ; Nuij_”“/mo + 1y i so that command
relative frequencies have a “half-life” of 5000 commands. The user - specific

thresholds are also updated by an exponential weighting algorithm.

13



3.3 Hybrid Multi-Step Markov

A hybrid method based mostly on a multi-step (also called “high-order”)
Markov chain and occasionally on an independence model is proposed. This
approach is due to Ju and Vardi (1999).

We overcome the high-dimensionality inherent in a multi-step Markov
chain as follows: (a) restrict attention to a subset of the most used com-
mands (with the remaining commands represented under a single “command”
labeled other), (b) use a Mizture Transition Distribution (MTD) approach to
model the transition probabilities (Raftery (1985) and Raftery and Tavaré
(1994)).

When test data contain many commands unobserved in the training data,
a Markov model is not usable. In such instances a simple independence model
with probabilities estimated from a contingency table of users vs. commands
may be more appropriate. Our method automatically toggles between the

two models as needed.

3.3.1 The Multi-Step Markov Model

Let K, be the smallest number such that the most frequently used K,-1
commands of user u account for at least 99% of that user’s training data.
All other commands, including those not appearing in user u’s training data,
form a category labeled other,. We then combine the most frequently used
K -1 commands and other, to constitute the Markov chain’s state space M,.

Let {Cu;t =1,2,...} be the sequence of commands of user u. Assuming

the MTD model, the transition probabilities of an [-step Markov chain is:
P (Cut = Co|Cu,t—1 = (1, Cu,t—z =€y Cu,t—l = Cl)

!
= Z)\Mru(cdci) , t=1l+1,01+2,...
=1

where R = {r(i|y); i,7 € M} and A = {X\;; ¢ = 1,2,...,1} satisfy certain

positivity constraints.

14



We fix [ = 10 in our experiments and make the simplifying assumptions
that for all users u: (1) r, (other,|t) =€, Vi € M,, where € is small (we take
¢ =.00001), and (2) r,(i[other,) = =5, Vi € M, except for i = other,.

Assumption (1) forces transition probabilities to infrequently used com-

mands to be small. Assumption (2) copes with the scarcity of the data by
setting all transition probabilities from infrequently used commands to the
same quantity. Note that other, contains rarely used commands. The ra-
tionale for choosing ¢ = .00001 is that there is a 1% chance to get a rare
command and there are (roughly) 1000 commands in other,.

The log-likelihood of a command sequence for user w is

iOGMu ileMu j:l

log L = Z Z n(ig, 1, ..,4) log (Z)\ujru(ioﬁj)) (4)

where n (ig,71,...,7;) is the number of times that the pattern iy — ;-1 —
. — 1o is observed in the command sequence. A maximum likelihood
estimate (MLE) maximizes (4) with respect to A and R, subject to positivity

constraints. See Ju and Vardi (1999) for computational details.

3.3.2 The Independence Model

This model assumes that user u’s commands are independently generated

from a multinomial random distribution:
T T
P(Cy=ci,...,Cur = crluseru) = H P(Cu = ct|luseru) = H Gues
t=1 t=1

As with the previous methods we use the fact that commands used by
few users have a greater power to distinguish different users than those that
are used by many users. To that end, this method also uses weights that
depend on the popularity score, and to achieve this, we transform N, as
follows:

Nu.)
N.7

Nék = wkNuk + (1 — wk)(Nk

15



%
.
shrunk toward their marginal proportions (Nk]X,—“) to a greater extent. Sub-

where wp = 1 + % — Frequencies of the more popular commands are

sequently, the N/, are renormalized to achieve N/ = N, and g, is estimated

by N../N! if N/, > 0or eif N/, =0 (to avoid taking log of zero).

3.3.3 Combining the two models
Based on the test data sequence {c,1,...,c,r} we test the hypothesis

Hy : commands are generated by user u
Hy : commands are generated by one of the other users

We define log of likelihood-ratio statistic for the Markov and independence

models, respectively, as follows:

maxyz, L(cr,...,cr|Ay, Ry) and Xy, — 1Ogmaxv;ﬁu IT; Gue, ‘
Lici,...,cr|Ay,Ry) IL; Gue,

To bring the two statistics X; and X, into the same scale, we regress X5

Xlu = log

over X; with no intercept, X; = pX,, based on the training data. We use a
robust regression procedure based on least median of squares to estimate p.
Let s, be the number of commands that are categorized as other, in

{cu1,---,cur}. We combine Xy, and X, into a single “score”, x,:

v o) Tt if s,/T <&, (we choose £ = 0.2 in our experiment)
Y pXae if s /T > €

This results in a hybrid method which automatically alternates between the
Markov and independence models according to whether the test data are

“usual” or “unusual”. The latter occurred 8.4% of the time in our data set.

3.3.4 Thresholds

We reject Hy if 2, > 1+ 30 where p and o are the mean and standard
deviation of the scores z,. We estimate p and o from the pooled training

data from all users. The same threshold is used for all users.

16



3.3.5 Updating

When z, < 0 for a given set of test data, the corresponding test data are
added to the training data set. The updating-threshold (zero) is thus more
conservative than the one for raising an alarm. The parameters A, and Ry,
which profile an individual user, are reestimated based on the augmented
training data at each update. The threshold parameters, y and o, are rees-
timated from all training data scores z, and all previous test data with a
score lower than the old threshold.

In this experiment the estimates of the parameters A, and R,, were

updated once exactly half way through the test data.

3.4 Compression

By compression we mean a reversible mapping of data to a different repre-
sentation that uses fewer bytes. This approach was implemented by Karr

and Schonlau.

3.4.1 Model

The premise of the compression approach is that test data appended to his-
torical training data compress more readily when the test data stems indeed
from the same user rather than from a masquerader. We define the score
x to be the number of additional bytes needed to compress test data when

appended to training data :
x = compress({C, c}) — compress(C)
where (' is the training data, ¢ the test data, {C, ¢} is the test data appended
to the training data, and compress() is a function that gives the number of
bytes of the compressed data.
There are several compression methods, many of which are based on the

Lempel-Ziv algorithm. We use the UNIX tool “compress” which implements

a modified Lempel-Ziv algorithm popularized in Welch (1984).

17



3.4.2 Threshold

The threshold is determined from the training data (the first 5000 commands
for each user) by cross validation. We assign an individual threshold for each

user. For each user and each of the 50 blocks of 100 commands, we compute
2% = compress(C) —compress(C—CH%), b=1,....B=50u=1,...,U

where and C1%° is the b block of 100 commands for user u. The superscript
cv indicates that the scores are cross - validated.

This yields 50 cross - validated scores for each user. Since we cannot deter-
mine the 99" percentile of only 50 empirical scores we make the assumption

that each user’s threshold is a constant offset from each user’s score average:
Threshold, = z." + A ,
where A is determined from the pooled data across all users:
N (5

where %, is the sample 99 percentile of 2. Note that the choice of
%y = 0 leads to the thresholds that were proposed in Section 3.2.2 for the
Bayes 1-Step Markov model.

3.4.3 Updating

After every 2000 test commands for a given user (i.e., after commands 7000,
9000, 11000 and 13000) we consider updating the training data. When no
alarm was raised in the most recent 5000 commands for a given user, then
the training data set is replaced by the most recent 5000 commands and the
threshold for this user is recomputed (more precisely, we recompute 22 only,
not A). If one or more alarms were raised, the previous training data and

threshold remain in place.

18



3.5 Additional Methods

We have not been able to use commercial intrusion detection tools on our
data. A problem with the commercial systems that have an anomaly de-
tection component is that they expect the data in a specific format. For
example, CMDS (Computer Misuse Detection System, 1999) expects events
at the system call level and then reconstructs the UNIX audit trail from the
system calls.

The authors’” methods are compared to two methods from the computer

science community. We very briefly describe these methods here.

3.5.1 IPAM

“Incremental Probabilistic Action Modeling” (IPAM) is the name of an algo-
rithm by Davison and Hirsh (1998). It is based on 1-step command transition
probabilities estimated from the training data. The estimated probabilities
are updated continually, using an exponential updating scheme. That is,
upon arrival of a new command all transition probabilities from the penulti-
mate command to another command are aged by multiplying them with «,
and 1 — « is added to the most recent transition. Davison and Hirsh’s choice
of a 1s .9.

Given a command it is then possible to predict the next command by
choosing the one corresponding to the highest transition probability. A pre-
diction is labeled good, if the next command turns out to be among the top
four predicted commands. The fraction of good predictions of the test data
forms the score. If the fraction falls below a threshold, an alarm is raised.

The thresholds are estimated from the training data in an ad hoc fashion.

3.5.2 Sequence-Match

For each new command, Lane and Brodley (1998) compute a similarity mea-

sure between the most recent 10 commands and a users’s profile. A user’s

19



profile consists of command sequences of length 10 that the user has used
in the past. The similarity measure is a count of the number of matches
in a command-by-command comparison of two command sequences, with
a greater weight assigned to adjacent matches. This similarity measure is
computed for the test data sequence paired with each command sequence in
the profile. The maximum of all similarity values computed forms the score
for the test command sequence. Since these scores are very noisy, the most
recent 100 scores are averaged. If the average score is below a threshold an
alarm is raised.

The threshold is determined based on the quantiles of the empirical dis-
tribution of average scores. The initial profiles based on the training data

contain 4991 command sequences for each user.

4 Results

The experimental setup described in Section 2 yielded a total of 40 masquer-
ader incidents for the 50 users. These incidents account for 4.74% of the data.
There were at most three incidents for any one user, and 21 of the users had
no masquerader at all. Half the masqueraders were present for four or fewer

blocks, while three masqueraders were present for 20 — 22 blocks.

4.1 Overall Results

We will first visually inspect when various methods gave alarms and when
a masquerader was present. This can be seen in Figure 2 for Hybrid Multi-
Step Markov, Bayes 1-Step Markov, Uniqueness, and Compression methods.
Each row corresponds to one user and each column to one block of data.
The presence of a color indicates that the corresponding method gave an
alarm. The red background shading indicates the presence of masqueraders.
Whether an alarm was raised or not was based on thresholds supplied by the

respective methods. All methods except IPAM and Sequence-Match were

20



ZST = PULIR[y Passy {LET = SULTRLY ISTR ([T = PIALI0) 9T = suerery swopssaadure)y
LIT = SWIeTy PassTI $ZS[ = FULETY IS [£LF = 10000y 997 = suurery snoxprepy dong-nngy prgiy

D5E = SULTETY PassTIN B9 = SULTRTY asTe] {76Lb = 10ALI0) {Gg] = SULTRLY :ssauanbpu)

[ = SWLTETY PAssIY {0Z{ = SWLIETY 9sTe] {G)0F = 10aLI0)) g = surely :aorey daps-| saeqg ¢
167 = suorsnay [
00k s)sa) 1
(K| 0%
' 44 @ L]
R EEEE R EEREREEEERE R uun.iiii
- b
> EEELE]
4 |
; 3 [PIITM™MITT T e
A ERL K A1
4N L | M4 MA 44
[ELK|
N . b b | b M
—
444444 | AR M
N
K 444
4
AR [ z
7
M
4 L]
N I |
% I W™ >~ ¥~¥ idivvwﬁgﬂéigvggg
A M 4 Nd | 44
hd 4414 4P @ (P04 qqd 444 44
““‘i -
v
m -
L K]
1

Figure 2: Plot of alarms given by various methods for each of 50 users.

Compromised data has a red background shading.



Method False Missing
Alarms (%)  Alarms(%)
Uniqueness 1.4 60.6
Bayes 1-Step Markov 6.7 30.7
Hybrid Multi-Step Markov 3.2 50.7
Compression 5.0 65.8
Sequence-Match 3.7 63.2
IPAM 2.7 58.9

Table 2: False alarms and missing alarms for all methods. The investigators
corresponding to the first four methods were asked to target a false alarm
rate of 1%.

asked to target a false alarm rate of 1%. The false alarm rates achieved for
this data set are given in Table 2. None of the methods accomplished this
goal, suggesting that it is difficult to control the false alarm rate. The missing
alarms range from 30 to 60 per cent. Because of different false alarm /missing
alarm rates, some colors show up more often in Figure 2.

When a masquerader is present, often either all three or none of the meth-
ods raise an alarm. This may suggest that masqueraders fall into two groups:
easy to detect and very difficult to detect. While the methods sometimes give
false alarms jointly (e.g. User 13, User 27) different methods seem to be prone
to false alarms for different users (e.g. yellow - user 16, green - user 12, blue
- user 33). Particularly interesting is that false alarms often appear in long
sequences. It also appears that while methods raise false alarms for different

users, they discover the same masqueraders at about the same time.

4.2 Selected Individuals

Figure 2 showed alarms for all users. Now we will look at the actual scores
of all methods for selected users.

The 8 panels in Figure 3 correspond to 8 particular users. Each panel

22



Figure 3: Plot of standardized scores over “time” for 8 different users.

23



displays standardized scores over “time” for all methods. Each color corre-
sponds to a different method. The horizontal axis - labeled 1 through 100 -
corresponds to the 100 blocks of testing data. The scores are standardized
such that the horizontal line in the center represents the threshold value for
all 100 blocks and for all methods. Thus, if any line crosses above the center
line, that method raises an alarm at that point. The thresholds used here are
the ones supplied by each method, meaning that all methods have different
false alarm rates as given in Table 2. Standardized scores are not comparable
across plots since the standardizations are different for each plot.

Gray shading indicates the presence of a masquerader. Lines crossing
above the threshold when no gray shading is present are thus false alarms.

In what follows we comment on individual panels:

o User 9: During the first 8 blocks of the first masquerader the scores
of half the methods jump up, indicating an alarm, while the scores for
the other methods jump down. The features of the scores of the two
groups are exactly reversed. We hypothesize that during these blocks
this masquerader did not use unusual new commands (uniqueness score
is low) and the commands were somewhat repetitive (compression score
is low) but the transition between familiar commands were unusual
(all transition methods have high scores). It turns out that the data
between about commands 8200 and 8900 consist of repeated sequences
sed, 1ln, sh. User 9 had used all three commands separately before,

but the 1-step transitions sed, 1ln and 1n, sh never appeared before.

The first and the second masquerader happen to be the same person.

This is the only time this happened in our experiment.

e User 10: During the presence of the masquerader the score of all meth-
ods remains constant. The only method not detecting the masquerader
is the compression method. We hypothesize that the masquerader did

something unusual that was very easy to compress. It turns out that

24



the masquerading data consists of a single repeated command: popper.
User 10 never used this command before. Clearly, the masquerading

data are highly repetitive and thus can be compressed easily.

User 12: There is a masquerader present for 6 blocks that not a single
method discovers. This raises the question whether the intrusion is

discoverable at all. Nothing unusual was found in the data.

User 18: There is one masquerader that some methods capture pre-
cisely. Around block 20 every single method raises an alarm in the
absence of a masquerader. There seems to be a true anomaly that does
not happen to be a masquerader. User 18 uses the commands get_acc_,
line.pro and acc.prof, which did not appear in the training data.

There are also some unusual command transitions.

User 25: Masqueraders 1 and 3 are detected well by most methods, but

no method detects the second masquerader.

There is a delayed reaction by all methods to the first masquerader
(except IPAM, which fails to raise an alarm). It turns out that at the
onset of the masquerading attempt there are a lot of common com-
mands like 1s, more and sendmail. Later, the more unusual sequence
of commands driver, edgcpfe, uopt, ugen, asl appears a number of

times.

During the presence of the third masquerader, all scores take a small
dip at the same time, indicating that they are highly correlated. It
turns out that the data of the masquerader is dominated by sequences
of the form mars.sh, grep, ping, grep. The dip is caused when the

sequences temporarily occur less frequently than before and after.

User 30: All methods are highly correlated over the entire 100 blocks.
While not all methods raise an alarm (remember that methods are

not standardized to the same false alarm rate), the score clearly peaks

25



during the presence of the masquerader. It turns out that the data of
User 30 is highly repetitive: the command sequence rdistd, tcsh,

rshd repeats itself over and over for the most part.

o User 42: Surprisingly, the distribution of the scores during the presence

of the masquerader is essentially bimodal for all methods.

e User 44: The two masqueraders are perfectly captured by most meth-
ods. It turns out that the second masquerading attempt consists several
hundred repetitions of the command popper. Therefore the compres-
sion method fails to detect the masquerader. The reason that Sequence-
Match misses this masquerader is likely due to an updating problem:
while User 44 never uses popper, the first masquerader does. Since
Sequence-Match did not detect the first masquerader, sequences con-
taining this command may have been added to User 44’s profile, leading

to a failure to detect the second masquerader.

4.3 Correlation of Methods

Apparently scores are correlated very highly. We ran several cluster algo-
rithms using the correlation matrix as a measure of similarity. The Methods
Uniqueness and Hybrid Multi-Step Markov with a correlation coefficient of
.79 clearly are part of the same cluster. This may be due to the fact that the
hybrid elements of the Hybrid Multi-Step Markov method focus on rare and
unique commands similar to the way the Uniqueness method does.

A second group is formed by the two methods contributed from the com-
puter science community, namely IPAM and Sequence-Match. The correla-
tion coefficient between these two groups is .62. Depending on the clustering
algorithm the Bayes 1-Step Markov method could be associated with either
of these two groups. Given that both IPAM and Bayes 1-Step Markov are
based on the 1-step command transition matrix, it is surprising that both

methods are more highly correlated with other methods than with each other.

26



The compression method stands by itself. Its highest correlation coeffi-

cient - with the uniqueness method - is .57.

4.4 ROC curves and survival analysis

Up to now it was difficult to compare methods because the visualizations
were based on different false alarm rates. By varying the thresholds we obtain
different tradeoffs between false alarms and missing alarms. The curve that
shows the functional relationship between false alarms and missing alarms is
called a ROC curve.

Since some methods have different thresholds for different users there is a
question of how to vary the thresholds. We add a constant to all individual
thresholds and then compute the corresponding alarm rates. We ignore the
possibility that different thresholds might have some effect on the updating
algorithm.

Figure 4 displays ROC curves for all methods. The lower and the further
left a curve is, the better it is. For the best methods, one per cent false
alarms corresponds to about 70% missing alarms; and five per cent false
alarms corresponds to about 30% missing alarms. The compression method
seems to be uniformly inferior to other methods. Between 1% and 5% false
alarms the uniqueness methods clearly dominates the other methods. IPAM
and Sequence-Match are surprisingly similar for high false alarms. For a very
low false alarm rate (< .5%), they do better than all other methods.

When using ROC curves, the unit of analysis is the block rather than
the intrusion. It is also of interest to see how long an intrusion “survives”
before it is detected. Figure 5 gives the probability of an intrusion surviving
as a function of the number of data blocks when the false alarm rate for all
methods is fixed at 1%. After the first block between 15% and 30% of the
intrusions are caught, after about 10 blocks about 40% — 50% are caught.

The compression method does worse than that.

27



o

Q ooy

A I o Y —— Hybrid Multi-Step Markov

,,,,,,,,, _‘“ﬁ‘%{* . -~ Bayes 1-Step Markov
L == L -, ---- Compression
‘ ! - ——- Uniqueness

o RN —— Sequence-Match

8 1 LT —— IPAM
S o
=~ O
E
ks
<
[2]
£
& o |
E <

Good

o |

N

o J

0.1 0.5 1.0 5.0 10.0 50.0 100.0

False Alarm (%)

Figure 4: ROC curves for all methods. Methods use updating.

4.5 ROC curves without updating

All analyses were based on the updating algorithms as described in Sec-
tion 3. Figure 6 gives the ROC curves of algorithms based solely on the
initial training data. Methods Sequence-Match and Compression perform
better without updating. For compression this is directly attributable to
the following difficulties associated with the updating algorithm: Since we
do not update training data with test data that had high scores to avoid
contamination with masquerading data, the average score for the training
data tends to decrease. As the consequence the thresholds - calculated from

the updated training data - decrease too. Eventually normal variation in the

28



o
-
—— Hybrid Multi-Step Markov
""""" Bayes 1-step Markov
---- Compression
,,,,,,,, ——- Uniqueness
o —— Sequence-Match
o -~ PR U, —— IPAM
o L
c
s 0y 0] s Fommmm - i
>
=
[ee]
= e 1 " w
@ | !
-5 ********** — — 4‘7———
= ‘ S
=2~ 1 |
= O L —
g L__
) co———
o I ,
I
© | = —_— e
©
n
i
0 2 4 6 8 10

Number of blocks of commands until detecting a masquerader

Figure 5: Survival plot of intrusions for all methods given a fixed false alarm
rate of 1 per cent. Ideally there would be no detection delay, that is, instant
“death” of the intrusion.

scores starts looking like a masquerading attempt. While this is a problem
for all methods, it turned out to be especially severe for the compression
method.

Both the Uniqueness and Hybrid Multi-Step Markov methods benefited
from updating. This was not obvious given that methods may be vulnera-
ble from updating the training data with masquerading data (especially the

Uniqueness method).

29



o
g |
R S Hybrid Multi-Step Markov
e R B Bayes 1-Step Markov
] B ---- Compression
\ RN ——- Uniqueness
§ = — Sequence-Match
.
2 | —_
s o]
=~ O
E
<
<
(o))
=
& o |
E <
Good
o |
N
e
© A LN
0.1 0.5 1.0 5.0 10.0 50.0 100.0

False Alarm (%)

Figure 6: ROC curves for all methods except IPAM for which no data was
available. Methods do not use updating.

5 Discussion

All methods detect anomalies in command usage. We have shown that all
methods can detect anomalies surprisingly well considering the paucity of
information.

In essence, we try to classify data into two groups which one might label
“good” and “bad”. However, we have to characterize “good” in the absence
of training data for “bad”. It is interesting to reflect on how our methods cope

with this problem: The Hybrid Multi-Step Markov method explicitly assumes

30



that the masquerader resembles one of the other users. To a lesser extent,
the Uniqueness method and the Bayes 1-Step markov method also assume
that through the concept of command popularity and parameter estimation
of the Dirichlet distribution, respectively. The compression method has an
inherent notion of what “bad” constitutes.

The experiment has led to more insight into the different methods:

The uniqueness method can be severely affected by accidental contamina-
tion of the training data with rare commands from the masquerading data.
Further, a single threshold for all users works better than individual thresh-
olds for each user. The uniqueness method is the easiest to compute yet it
was the most powerful at anomaly detection in our experiment. It is an open
question whether this success can be repeated in other contexts.

The compression method is vulnerable to updating the training data with
homogeneous data. It has also difficulties with updating algorithms.

The Markov method - while very successful - is computationally demand-
ing. While only used 5% of the time, the hybrid elements of the Hybrid
Multi-Step Markov method did improve its ROC curve.

The Bayes 1-Step Markov method did slightly worse than the Markov
and the Uniqueness methods, but it is more robust than Uniqueness and is
not as computationally intensive as the Markov method.

Previously, we investigated another approach based on principal com-
ponents analysis of one step command transition frequencies (DuMouchel,
Schonlau, 1998a and 1998b). This approach was abandoned because it re-
quired very voluminous user profiles and was not easily extensible to make
use of the information in unpopular/unique commands.

To some extent, the performance of various methods is substantially the
same. For example, the ROC curves in Figures 4 and 6 do not differ dra-
matically. Nevertheless, the curves do differ, and we believe these differences
to be meaningful. One interpretation is that any sensible approach (com-
pression is a good example) works pretty well, because some intrusions are

easy to detect. But going from working pretty well to working well requires

31



insight and effort.

None of the methods described here could sensibly serve as the sole means
of detecting computer intrusions. The relatively high missing alarm rates
preclude this. We have presented a collection of tools. They would be part
of an overall strategy that might include both attack signatures and analysis
of more detailed data, including time stamps and command arguments.

In our opinion our contribution to the field of intrusion detection is as
follows: We introduced a theoretical framework to detect masquerades by
formulating hypotheses and applying statistical theory to test them. We
introduced ROC curves to make comparisons between different intrusion de-
tection methods possible. We made a substantive discovery with the Unique-
ness method introducing the popularity score as a valuable component of a
command profile. We were able to combine the concepts of Dirichlet priors,
shrinkage estimation, Bayes factors, and sparse matrix computation for the
detection of masquerades. We introduced a way to toggle between differ-
ent methods, in our case between the Multi-Step Markov and the Indepen-
dence Model. We found ways to reduce the dimensionality of the Multi-Step
Markov model.

One of our goals was to bring this exciting area to the attention of the
statistical community. We believe that there is a lot of room for further

investigation.

6 Acknowledgements

We are very grateful to Brian Davison (IPAM) and Terran Lane (Sequence-
Match) who agreed to run their intrusion tools on our data. We thank Daryl
Pregibon for generating the blinded experimental data and Allan Wilks for
helping us to collect the command data in the first place. The work of Ju,
Karr, Schonlau, and Vardi is funded in part by NSF grant DMS-9700867. M.
Schonlau’s work is also funded in part by NSF grant DMS-9208758. W. Ju’s

32



and Y. Vardi’s work is also funded in part by NSF grant DMS-97 04983 and
NSA grant MDA 904-98-1-0027.

References

1]

Amoroso, E. (1999), Intrusion Detection: An Introduction to Inter-
net Surveillance, Correlation, Trace Back, Traps, and Response, Intru-

sion.Net Books, Sparta, New Jersey, (ISBN 0-9666700-7-8).

Computer Misuse Detection System (CMDS) Website (1999),
http://www.cmds.net /profiles.htm

Computer Security Institute (1998), “CSI/FBI computer crime and se-
curity survey results quantify financial losses”, Computer Security Alert,
no. 181, April.

Davison, B. D. and Hirsh, H. (1998), “Predicting Sequences of User Ac-
tions” in : Predicting the Future: Al Approaches to Time Series Prob-
lems, published as Technical Report WS-98-07, (Proceedings of AAAI-
98 /ICML-98 Workshop) , pp.5-12, AAAT Press, Madison, Wisconsin .

Denning, D. E. (1997), “Cyberspace Attacks and Countermeasures” in
Internet Besieged Denning, D.E. and Denning P.J. (eds), ACM Press,
New York, pp 29-55.

Denning, D. E. and Denning P.J. (eds), (1997), Internet Besieged, ACM
Press, New York.

DuMouchel, W. (1999), “Computer intrusion detection based on Bayes
Factors for comparing command transition probabilities”, National In-
stitute of Statistical Sciences Technical Report No. 91 available at
http://www.niss.org/downloadabletechreports.html

33



3]

[11]

[12]

[13]

[14]

DuMouchel, W., Schonlau, M., (1998a), “A Comparison of Test Statis-
tics for Computer Intrusion Detection Based on Principal Components
Regression of Transition Probabilities”. Proceedings of the 30th Sympo-

stum on the Interface: Computing Science and Statistics, (to appear).

DuMouchel, W., Schonlau, M. (1998b), “A fast computer intrusion de-
tection algorithm based on hypothesis testing of command transition
probabilities”. in Proceedings: The Fourth International Conference of

Knowledge Discovery and Data Mining, August 27-31, New York, pp.
189-193.

Ju, W., Vardi Y. (1999), “A Hybrid High-order Markov Chain Model
for Computer Intrusion Detection”, National
Institute of Statistical Sciences. Technical Report No. 92, available at
http://www.niss.org/downloadabletechreports.html

Lane, T. and Brodley, C.E. (1998), Approaches to online learning and
concept drift for user identification in computer security, in Proceedings:
The Fourth International Conference of Knowledge Discovery and Data
Mining, August 27-31, New York, pp. 259-263.

President’s Commission on Critical Infrastructure Protection, (1998),
“Critical Foundations”, United States Gov-
ernment Printing Office, GPO 040-000-00699-1. Also available online
at http://www.pccip.gov /report_index.html

Raftery, A. E. (1985), “A Model for High-order Markov Chains”, Journal
of the Royal Statistical Society, Ser. B, 47, 528-539.

Raftery, A. E. and Tavaré, S. (1994), “Estimation and Modeling Re-
peated Patterns in High Order Markov Chains with the Mixture Tran-
sition Distribution Model”, Applied Statistics, 43, 179-199.

34



[15] Theus, M., Schonlau, M., (1998), “Intrusion Detection Based on Struc-
tural Zeroes”. Statistical Computing €& Graphics Newsletter. Vol. 9, No
1,12 - 17.

[16] Welch, T. A. (1984), “A Technique for High Performance Data Com-
pression”, [EFEE Computer, vol 17, no. 6,pp 8-19.

35



