Posterior Distribution of Hierarchical Models Using

 CAR(1) DistributionsDongchu Sun, Robert K. Tsutakawa, and Paul Speckman

Technical Report Number 96
April, 1999

National Institute of Statistical Sciences
19 T. W. Alexander Drive
PO Box 14006
Research Triangle Park, NC 27709-4006
www.niss.org

Posterior distribution of hierarchical models using CAR(1) distributions

By Dongchu Sun, Robert K. Tsutakawa and Paul L. Speckman
Department of StatisticsГUniversity of MissouriГColumbiaГMO 65211ГUSA
e-mail: dsun@stat.missouri.edu「sutakawa@stat.missouri.edu
and speckman@stat.missouri.edu

Summary
We examine properties of the $\operatorname{CAR}(1)$ modelFwhich is commonly used to represent regional effects in Bayesian analyses of mortality rates. We consider a Bayesian hierarchical linear mixed model where the fixed effects have a vague prior such as a constant prior and the random effect follows a class of CAR(1) models including those whose joint prior distribution of the regional effects is improper. We give sufficient conditions for the existence of the posterior distribution of the fixed and random effects and variance components. We then prove the necessity of the conditions and give a one-way analysis of variance example where the posterior may or may not exist. Finally F we extend the result to the generalised linear mixed model Γ which includes as a special case the Poisson log-linear model commonly used in disease mapping.

Some key words: Partially informative normal distribution; Spatial correlation; Gibbs sampling; Poisson distribution; Multivariate normal; Linear mixed model.

1. Introduction

This paper considers the propriety of the posterior distribution for the general mixed linear model and generalised mixed linear model when the random effects are represented by the conditional autoregressive modelor CAR(1) Гintroduced by Besag (1974). CAR(1) is currently one of the most important and widely used models to represent spatial correlations in disease mapping (Clayton \& KaldorГ1987; Cressie \& ChanГ1989; MarshallГ1991; BernardinelliГClayton \& MontomoliГ1995; and Waller et al.Г1997).

The recent popularity of $\operatorname{CAR}(1)$ is primarily due to the ease with which it may be implemented in the Gibbs sampler (Gelfand \& SmithГ1990). HoweverГsuch convenience may lead to overlooking the possibility that the posterior distribution may fail to exist when the joint distribution under $\operatorname{CAR}(1)$ is improper.

The use of the CAR(1) model to represent spatial effects may be illustrated by a log-linear model in mortality analysis. For a given target population of size $m \Gamma$ let Y denote the frequency of the deaths due to some specific cause Γ such as lung cancer Γ during some fixed time period. Conditionally on a population parameter $p \Gamma$ assume that Y has a Poisson distribution with mean $m p$ Гwhere p may be interpreted as the rate per individual. The target populations are typically cross-classified by demographic variables such as ageГsex and geographic region. The dependence of p on such covariates can be represented by a log-linear model for p having the form

$$
\begin{equation*}
V=X_{1} \theta+X_{2} Z+e \tag{1}
\end{equation*}
$$

where V is a vector of the set $\log (p)$ associated with the target populations $\Gamma \theta$ is
a vector of fixed effects ΓZ is a vector of random regional effects Γ and X_{1} and X_{2} are design matrices. The vector e represents unexplained random effects and is often omitted in the literature. Related models may be found in Tsutakawa (1988) and Marshall (1991).

In practiceГtwo forms of the CAR(1) model are widely used to represent spatial effects. Let $Z=\left(Z_{1}, \cdots, Z_{q}\right)^{\prime}$ denote the real-valued regional effects of q regions Γ Λ_{i} the set of regions that are geographically adjacent to region i and d_{i} the number of regions in $\Lambda_{i} \Gamma i=1, \cdots, q$. In Model 1Γ the conditional distribution of Z_{i} given the other regional effects $Z_{-i}=\left(Z_{1}, \cdots, Z_{i-1}, Z_{i+1}, \cdots, Z_{q}\right)^{\prime}$ is assumed to be $N\left(\sum_{j \in \Lambda_{i}} Z_{j} / d_{i}, \delta_{1} / d_{i}\right)$. In Model 2Γ the conditional distribution is assumed to be $N\left(\rho \sum_{j \in \Lambda_{i}} Z_{j}, \delta_{1}\right)$. Model 1 was proposed by Besag Γ York $\Gamma \&$ Mollié (1991) and used by Bernardinelli \& Montomoli (1992)ГBernardinelli et al. (1995) ГWaller et al. (1997) and Ghosh et al. (1998) Tamong others. Model 2 was proposed by Clayton \& Kaldor (1987) and used by N. J. McMillan and L. M. Berliner in a National Institute of Statistical Sciences technical report. Both models are designed to account for spatial correlations among neighbouring regions.

In $\S 2$ we examine the joint distribution of the $\operatorname{CAR}(1)$ model and demonstrate that Γ when the covariance matrix of Z is not positive definite Γ e.g. Model 1Γ the joint distribution may be decomposed into a component which is nonsingular normal and another which has a constant density over some Euclidian spaceГimplying that the distribution is improper. We also examine properties of Models 1 and 2 and introduce a modification (Model 1A) of Model 1 which has a proper joint distribution.

The effect of such improper distributions on the posterior distribution for hier-
archical models is examined in $\S 3$. We consider the linear mixed model where the fixed effects have a uniform prior and the random effects have an arbitrary Gaussian CAR(1) distribution. We give sufficient conditions for the linear effects and variance components to have a proper posterior distribution. We also show the necessity of one of these conditions and provide an illustration of a balanced one-way analysis of variance model where the posterior may or may not be proper. Finally we prove the propriety of the posterior distribution for the generalised linear mixed model Γ which includes the mortality example as a special case. Our results are closely related to these of Ghosh et al. (1998) Гwho have previously shown the existence of the posterior under Model 1Γ and to those of Hobert \& Casella (1996) Γ who considered the hierarchical model where the covariance matrix of the random effects is positive definite. The discussion of the CAR(1) model is also related to Hobert \& Casella's (1998) functional compatibility.

2. Gaussian CAR(1) model

Let $Z=\left(Z_{1}, \cdots, Z_{q}\right)^{\prime}$ be a random vector with full conditional densities

$$
\begin{equation*}
f\left(Z_{i} \mid Z_{-i}\right)=\left(\frac{a_{i}}{2 \pi \delta_{1}}\right)^{\frac{1}{2}} \exp \left\{-\frac{a_{i}}{2 \delta_{1}}\left(Z_{i}-\sum_{j \neq i}^{q} \beta_{i j} Z_{j}\right)^{2}\right\} \tag{2}
\end{equation*}
$$

$i=1, \cdots, q$. Let B be the $q \times q$ matrix with diagonal elements a_{i} and $i j$ th off-diagonal element $-a_{i} \beta_{i j}$. Besag (1974) proved that Γ if B is symmetric and positive definite Γ these conditional distributions lead to the joint probability density function of $Z \Gamma$

$$
\begin{equation*}
f(Z)=\left(2 \pi \delta_{1}\right)^{-q / 2}|B|^{1 / 2} \exp \left\{-\frac{1}{2 \delta_{1}} Z^{\prime} B Z\right\} . \tag{3}
\end{equation*}
$$

In this case ΓZ is multivariate normal with mean 0_{q} and covariance matrix $\delta_{1} B^{-1}$. When B is nonnegative definite but not positive definite Γ the relationship between
(2) and the joint distribution of Z is less clear. In this case we will call the joint distribution a partially informative normal distribution and represent the density by

$$
\begin{equation*}
f(Z) \propto \delta_{1}^{-q / 2} \exp \left\{-\frac{1}{2 \delta_{1}} Z^{\prime} B Z\right\} \tag{4}
\end{equation*}
$$

We first note that Z cannot have a singular normal distribution that is consistent with (2). If Z has a singular normal distribution ΓZ is nonsingular normal over some hyperplane Γ so there exists at least one Z_{i} such that the conditional distribution of Z_{i} Гgiven Z_{-i} Гis degenerate Γ contradicting (2).

Suppose B is singular nonnegative definite with rank r. Then there exists an orthogonal matrix Γ such that $\Lambda=\Gamma^{\prime} B \Gamma=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{r}, 0, \cdots, 0\right)$, where $\lambda_{i}>0 \Gamma$ $i=1, \cdots, r<q$. Let $X=\Gamma^{\prime} Z$. Since $B=\Gamma \Lambda \Gamma^{\prime}, Z^{\prime} B Z=X^{\prime} \Lambda X=\sum_{i=1}^{r} \lambda_{i} X_{i}^{2}$. Thus Γ if the density of Z is given by (4) Гthe density of X is

$$
f(X) \propto \delta_{1}^{-q / 2} \exp \left(-\frac{1}{2 \delta_{1}} \sum_{i=1}^{r} \lambda_{i} X_{i}^{2}\right)
$$

i.e. $\left(X_{1}, \cdots, X_{r}\right)$ are independent normal variables with mean 0 and variance $\delta_{1} / \lambda_{i} \Gamma$ $i=1, \cdots, r$, and $\left(X_{r+1}, \cdots, X_{q}\right)$ has density proportional to $\delta_{1}^{-(q-r) / 2}$ over a $q-r$ dimensional Euclidian space. Thus the distribution of Z is improper when B is singular. Note that it may be more intuitive to use $\delta_{1}^{-r / 2}$ rather than $\delta_{1}^{-q / 2}$ in (4) so that the prior of $\left(X_{1}, \cdots, X_{r}\right)$ is constant independent of δ_{1}. We have chosen to follow Besag et al. (1995) and Ghosh et al. (1998) in using the exponent q in (4).

We can formally relate (4) to (2) by noting that

$$
f\left(Z_{i} \mid Z_{-i}\right)=f\left(Z_{1}, \cdots, Z_{q}\right) / \int_{-\infty}^{\infty} f\left(Z_{1}, \cdots, Z_{q}\right) d Z_{i}
$$

Hobert \& Casella (1998) have called this type of relationship 'functionally compatiblel' in contrast to one which is 'compatiblel' where the integral of $f\left(Z_{1}, \cdots, Z_{q}\right)$ with
respect to $\left(Z_{1}, \cdots, Z_{q}\right)$ is finite. In the remainder of this section Γ we will examine compatibility conditions for some important CAR(1) models.

A simple nontrivial example is given for the case $q=2$. Suppose that $f\left(Z_{1} \mid Z_{2}\right)$ is $N\left(\rho Z_{1}, 1\right)$ and $f\left(Z_{2} \mid Z_{1}\right)$ is $N\left(\rho Z_{2}, 1\right)$. In this case $B=\left(\begin{array}{cc}1 & -\rho \\ -\rho & 1\end{array}\right)$ and if $|\rho|<1$ then Z is bivariate normal with mean 0 and covariance matrix $B^{-1}=\left(1-\rho^{2}\right)^{-1}\left(\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right)$. If $\rho=1$ (the case $\rho=-1$ is similar) ΓB is singular and the joint distribution formally becomes $f\left(Z_{1}, Z_{2}\right) \propto \exp \left\{-\frac{1}{2}\left(Z_{1}-Z_{2}\right)^{2}\right\}$, an improper distribution as in (4). Thus the conditional distributions are functionally compatible. We can generalise this example to the regional effects $\left(Z_{1}, \cdots, Z_{q}\right)^{\prime}$ by the following model.

Model 1A. Let $a_{i}=d_{i}$ and $\beta_{i j}=\rho / d_{i}$, if $j \in \Lambda_{i}$, and 0Γ if $j \notin \Lambda_{i}$, where $|\rho|<1$; the adjacency property is assumed to be symmetric so that $i \in \Lambda_{j}$ if and only if $j \in \Lambda_{i}$. Then $a_{i} \beta_{i j}=a_{j} \beta_{j i}$ and B is symmetric. Moreover Γ

$$
\begin{equation*}
B=D-\rho C \tag{5}
\end{equation*}
$$

where D is the diagonal matrix with diagonal elements d_{1}, \cdots, d_{q} and C is the adjacency matrix Γ with element $c_{i j}=1$, if i and j are adjacent Γ and 0Γ otherwise. The conditional distribution (2) can now be written

$$
f\left(Z_{i} \mid Z_{-i}\right)=\left(\frac{d_{i}}{2 \pi \delta_{1}}\right)^{\frac{1}{2}} \exp \left\{-\frac{d_{i}}{2 \delta_{1}}\left(Z_{i}-\rho \bar{z}_{i}\right)^{2}\right\}
$$

where $\bar{z}_{i}=d_{i}^{-1} \sum_{j \in \Lambda_{i}} Z_{j}$.
When $\rho=1$ in (5) Гwe have Model 1 proposed by Besag et al. (1991) Гand used by Carlin \& Louis (1996) ГGhosh et al. (1998) and others. In this case ΓB cannot be positive definite since the row and column sums of B will be 0_{q}. When $\rho=0$ in (5) Γ
it reduces to the case where Z_{1}, \cdots, Z_{n} are independent without spatial correlation. However Ithe variance of Z_{i} is still inversely proportional to the number of neighbours d_{i} Гan unlikely situation under independence.

To show that B is positive definite under Model $1 \mathrm{~A} \Gamma$ we note that Γ for any ρ for which $|\rho|<1 \Gamma$ the i th diagonal element is larger than the sum of the absolute values of all off diagonal elements in the i th row. The following lemma Ca corollary of diagonal dominance (c.f. OrtegaГ1987Гp. 225) stated here for completenessTimplies that B is positive definite. According to Besag (1974) Г Z has a nonsingular normal distribution.

Lemma 1. Let $A=\left(a_{i j}\right)$ be $a q \times q$ matrix. If $a_{i i}>\sum_{j \neq i}\left|a_{i j}\right|$ for all i, then A is positive definite.

Model 2. Let $a_{i}=1$ and $\beta_{i j}=\rho$, if $j \in \Lambda_{i}$, and 0 Гif $j \notin \Lambda_{i}$. Here Λ_{i} is again the set of regions adjacent to region i. Then $\beta_{i j}=\beta_{j i}, B$ is symmetric「and

$$
\begin{equation*}
B=I_{q}-\rho C \tag{6}
\end{equation*}
$$

where I_{q} is the $q \times q$ identity matrix and C is the adjacency matrix. Let $\lambda_{1} \leq \lambda_{2} \leq$ $\cdots \leq \lambda_{q}$ be the ordered eigenvalues of C. As seen in the following lemma厂 C is neither positive definite nor negative definite Γ so that $\lambda_{1}<0$ and $\lambda_{q}>0$.

Lemma 2. Let $A=\left(a_{i j}\right)$ be an $q \times q$ nonzero symmetric matrix whose diagonal elements are all zero. Let $\lambda_{\min }$ and $\lambda_{\max }$ be the minimum and maximum eigenvalues of A. Then A is neither positive definite nor negative definite. That is to say,

$$
\lambda_{\min }<0 \quad \text { and } \quad \lambda_{\max }>0 .
$$

Proof. Since A is a nonzero matrix Γ there is a pair (i, j) such that $i<j$ and $a_{i j} \neq 0$. Let X be the q-dimensional vector whose i th and j th components are 1 and other components are 0 . Clearly $X^{\prime} A X=2 a_{i j}+a_{i i}+a_{j j}=2 a_{i j}$ Гsince $a_{i i}=a_{j j}=0$. If we let X be the q-dimensional vector whose i th component is $1 \Gamma j$ th component is -1 Tand other components are 0 , we get $X^{\prime} A X=-2 a_{i j}$. The result then follows.

From Lemma 2 Twe know that $\lambda_{1}<0<\lambda_{q}$.

Theorem 1. If

$$
\begin{equation*}
\lambda_{1}^{-1}<\rho<\lambda_{q}^{-1} \tag{7}
\end{equation*}
$$

then B is positive definite, and the conditional distribution (2) can be written

$$
\begin{equation*}
f\left(Z_{i} \mid Z_{-i}\right)=\left(\frac{1}{2 \pi \delta_{1}}\right)^{\frac{1}{2}} \exp \left\{-\frac{1}{2 \delta_{1}}\left(Z_{i}-\rho \sum_{i \in \Lambda_{i}} Z_{j}\right)^{2}\right\} . \tag{8}
\end{equation*}
$$

Proof. Let Γ be an orthogonal matrix so that $C=\Gamma \operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{q}\right) \Gamma^{\prime}$. Then we have the decomposition

$$
B=\Gamma \operatorname{diag}\left(1-\rho \lambda_{1}, \cdots, 1-\rho \lambda_{q}\right) \Gamma^{\prime}
$$

The eigenvalues of B are $\left(1-\rho \lambda_{1}, \cdots, 1-\rho \lambda_{q}\right)$. From (7) Гthey are all positive. This proves the first part. The second part follows immediately.

If $\rho=\lambda_{1}^{-1}$ or λ_{q}^{-1} then B will be singular and Γ by our previous result Γ the joint distribution of Z will be improper. Moreover Γ if $\rho<\lambda_{1}^{-1}$ or $\rho>\lambda_{q}^{-1}, B$ is no longer nonnegative definite.

Note that (8) is the model used in Clayton \& Kaldor (1987). Furthermoreएif $\rho=0$, then the model reduces to the case where Z_{1}, \cdots, Z_{n} are independently and identically $N\left(0, \delta_{1}\right)$ distributed.

3. Existence of the Posteriors

3.1. Propriety of the Posterior for a Linear Mixed Model

Here and in $\S 3.2$ we examine whether or not the posterior distribution remains proper when both θ and Z have noninformative priors.

Consider a general linear mixed model

$$
\begin{equation*}
V_{i}=x_{1 i}^{\prime} \theta+x_{2 i}^{\prime} Z+e_{i}, \tag{9}
\end{equation*}
$$

where $x_{1 i}$ and $x_{2 i}$ are vectors of fixed constants $\Gamma \theta$ is a vector of fixed effects ΓZ is a vector of random effects Γ and the e_{i} are independently and identically distributed normal errors with mean 0 and variance δ_{0}. For given $\delta_{1}>0, \delta_{0}>0$ and a nonnegative definite matrix $B \Gamma$ we assume that $\theta \Gamma Z \mid \delta_{1}$ and $e \mid \delta_{0}$ are independent with

$$
\begin{equation*}
w(\theta) \equiv 1 \tag{10}
\end{equation*}
$$

and $Z \mid \delta_{1}$ has the partially informative normal density (4). Assume that the variance components δ_{0} and δ_{1} are a priori independent and that δ_{i} has an inverse gamma distribution $\left(a_{i}, b_{i}\right)$ with density

$$
\begin{equation*}
g_{i}\left(\delta_{i}\right) \propto \delta_{i}^{-\left(a_{i}+1\right)} \exp \left(-b_{i} / \delta_{i}\right) \tag{11}
\end{equation*}
$$

Let $V=\left(V_{1}, \cdots, V_{n}\right)^{\prime}$ be the vector of n observations Γ and let $X_{1}=\left(x_{11}, \cdots, x_{1 n}\right)^{\prime}$ and $X_{2}=\left(x_{21}, \cdots, x_{2 n}\right)^{\prime}$ be the $n \times p$ and $n \times q$ design matrices. Denote the usual least squares estimator of $\left(\theta^{\prime}, Z^{\prime}\right)$ by $\left(\hat{\theta}^{\prime}, \hat{Z}^{\prime}\right)^{\prime}=\left(X^{\prime} X\right)^{-} X^{\prime} V \Gamma$ where $X=\left(X_{1}, X_{2}\right)$ and $\left(X^{\prime} X\right)^{-}$is a generalised inverse of $X^{\prime} X$. Let the sum of squared errors be $S S E=$ $V^{\prime}\left\{I_{n}-X\left(X^{\prime} X\right)^{-} X^{\prime}\right\} V$ which is invariant for any choice of $\left(X^{\prime} X\right)^{-}$.

Theorem 2. Consider the linear mixed model (9) with prior distribution given by (4), (10), and (11), where B is nonnegative definite. Assume the following conditions.
(a) rank $\left(X_{1}\right)=p$ and $\operatorname{rank}\left(X_{2}^{\prime} R_{1} X_{2}+B\right)=q$, where $R_{1}=I_{n}-X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime}$;
(b) $a_{1}>0$ and $b_{1}>0$;
(c) $n-p-q+2 a_{0}>0$ and $S S E+2 b_{0}>0$.

Then the joint posterior distribution of $\left(\theta, Z, \delta_{0}, \delta_{1}\right)$ given V is proper.

Proof. First Γ the joint posterior density of $\left(\theta, Z, \delta_{0}, \delta_{1}\right)$ is proportional to

$$
\begin{equation*}
G=\delta_{0}^{-\frac{1}{2} n} \delta_{1}^{-\frac{1}{2} q} \exp \left\{-\frac{\left(V-X_{1} \theta-X_{2} Z\right)^{\prime}\left(V-X_{1} \theta-X_{2} Z\right)}{2 \delta_{0}}-\frac{Z^{\prime} B Z}{2 \delta_{1}}\right\} \prod_{i=0}^{1} g_{i}\left(\delta_{i}\right) \tag{12}
\end{equation*}
$$

Since $\left(V-X_{1} \theta-X_{2} Z\right)^{\prime}\left(V-X_{1} \theta-X_{2} Z\right)$ equals $S S E+\left(\theta-\hat{\theta}-C_{1}\right)^{\prime} X_{1}^{\prime} X_{1}\left(\theta-\hat{\theta}-C_{1}\right)$ $+(\mathrm{Z}-\hat{\mathrm{Z}})^{\prime} \mathrm{X}_{2}^{\prime} \mathrm{R}_{1} \mathrm{X}_{2}(\mathrm{Z}-\hat{\mathrm{Z}})$ Гwhere $C_{1}=\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2}(\hat{Z}-Z)$, we integrate G with respect to θ and get

$$
\begin{equation*}
\int G d \theta=\frac{(2 \pi)^{\frac{p}{2}}\left|X_{1}^{\prime} X_{1}\right|^{\frac{1}{2}}}{\delta_{0}^{\frac{1}{2}(n-p)} \delta_{1}^{\frac{1}{2} q}} \exp \left\{-\frac{S S E}{2 \delta_{0}}-\frac{(Z-\hat{Z})^{\prime} X_{2}^{\prime} R_{1} X_{2}(Z-\hat{Z})}{2 \delta_{0}}-\frac{Z^{\prime} B Z}{2 \delta_{1}}\right\} \prod_{i=0}^{1} g_{i}\left(\delta_{i}\right) . \tag{13}
\end{equation*}
$$

Define $R_{2}=\delta_{0}^{-1} X_{2}^{\prime} R_{1} X_{2}+\delta_{1}^{-1} B$. For any fixed $\delta_{0}, \delta_{1}>0 \Gamma R_{2}^{-1}$ exists by Assumption (a). Let $C_{2}=\delta_{0}^{-1} R_{2}^{-1} X_{2}^{\prime} R_{1} X_{2} \hat{Z}$ and $R_{3}=X_{2}^{\prime} R_{1} X_{2}-\delta_{0}^{-1} X_{2}^{\prime} R_{1} X_{2} R_{2}^{-1} X_{2}^{\prime} R_{1} X_{2}$. Then

$$
\frac{(Z-\hat{Z})^{\prime} X_{2}^{\prime} R_{1} X_{2}(Z-\hat{Z})}{\delta_{0}}+\frac{Z^{\prime} B Z}{\delta_{1}}=\left(Z-C_{2}\right)^{\prime} R_{2}\left(Z-C_{2}\right)+\frac{\hat{Z}^{\prime} R_{3} \hat{Z}}{\delta_{0}}
$$

Integrating G with respect to θ and $Z \Gamma$ we get

$$
\begin{equation*}
\int_{\mathbb{R}^{q}} \int_{\mathbb{R}^{p}} G d \theta d Z=\frac{(2 \pi)^{\frac{1}{2}(p+q)}\left|X_{1}^{\prime} X_{1}\right|^{-\frac{1}{2}}}{\delta_{0}^{\frac{1}{2}(n-p)} \delta_{1}^{\frac{1}{2} q}\left|R_{2}\right|^{\frac{1}{2}}} \exp \left(-\frac{S S E+\hat{Z}^{\prime} R_{3} \hat{Z}}{2 \delta_{0}}\right) \prod_{i=0}^{1} g_{i}\left(\delta_{i}\right) . \tag{14}
\end{equation*}
$$

Since R_{3} is nonnegative definite $\Gamma \hat{Z}^{\prime} R_{3} \hat{Z} \geq 0$. Note that

$$
\left|R_{2}\right|^{-\frac{1}{2}} \leq\left\{\min \left(\delta_{0}^{-1}, \delta_{1}^{-1}\right)^{q}\left|X_{2}^{\prime} R_{1} X_{2}+B\right|\right\}^{-\frac{1}{2}}<\left(\delta_{0}^{\frac{1}{2} q}+\delta_{1}^{\frac{1}{2} q}\right)\left|X_{2}^{\prime} R_{1} X_{2}+B\right|^{-\frac{1}{2}}
$$

We have

$$
\begin{equation*}
\int_{\mathbb{R}^{q}} \int_{\mathbb{R}^{p}} G d \theta d Z \leq(2 \pi)^{\frac{1}{2}(p+q)}\left|X_{1}^{\prime} X_{1}\right|^{-\frac{1}{2}}\left|X_{2}^{\prime} R_{1} X_{2}+B\right|^{-\frac{1}{2}}\left(J_{1}+J_{2}\right) \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
& J_{1}=\frac{1}{\delta_{0}^{\frac{1}{2}(n-p-q)+a_{0}+1} \delta_{1}^{\frac{1}{2} q+a_{1}+1}} \exp \left(-\frac{2 b_{0}+S S E}{2 \delta_{0}}-\frac{b_{1}}{\delta_{1}}\right), \\
& J_{2}=\frac{1}{\delta_{0}^{\frac{1}{2}(n-p)+a_{0}+1} \delta_{1}^{a_{1}+1}} \exp \left(-\frac{2 b_{0}+S S E}{2 \delta_{0}}-\frac{b_{1}}{\delta_{1}}\right) .
\end{aligned}
$$

From Assumption (c) $\Gamma \frac{1}{2} q+a_{0}>0$. The Integral of J_{1} with respect to $\left(\delta_{0}, \delta_{1}\right)$ is finite.
Also $\operatorname{CAssumption}(\mathrm{c})$ implies that $n-p+2 a_{0}>0$ and the integral of J_{2} with respect to $\left(\delta_{0}, \delta_{1}\right)$ is finite. The result then follows.

Assumption (a) is equivalent to the assumption that the rank of $\left(\begin{array}{cc}X_{1}^{\prime} X_{1} & X_{1}^{\prime} X_{2} \\ X_{2}^{\prime} X_{1} & X_{2}^{\prime} X_{2}+B\end{array}\right)$
equals $p+q$. Also Assumption (a) is satisfied by either of the following conditions:
(a1) the rank of X is $p+q$;
(a2) the rank of X_{1} is p and rank of B is q.

Corollary 1. Consider the linear mixed model (9), whose prior distribution is given by (10) and suppose δ_{i} follows the prior (11).
(a) If Condition (a1) holds, the posterior distribution of $\left(\theta, Z, \delta_{0}, \delta_{1}\right)$ given V exists for any $q \times q$ nonnegative definite matrix B.
(b) If Condition (a2) holds, the posterior distribution of $\left(\theta, Z, \delta_{0}, \delta_{1}\right)$ given V exists for any $n \times q$ design matrix X_{2}.

Proof. From the same argument as the proof of Theorem 2Γ (14) holds. For Part (a) Гwe know that $\left|R_{2}\right| \geq \delta_{0}^{-q}\left|X_{2}^{\prime} R_{1} X_{2}\right|$. Then

$$
\int_{\mathbb{R}^{q}} \int_{\mathbb{R}^{p}} G d \theta d Z \leq \frac{(2 \pi)^{\frac{1}{2}(p+q)}\left|X_{1}^{\prime} X_{1}\right|^{-\frac{1}{2}}\left|X_{2}^{\prime} R_{1} X_{2}\right|^{-\frac{1}{2}}}{\delta_{0}^{\frac{1}{2}(n-p-q)+a_{0}+1} \delta_{1}^{\frac{1}{2} q+a_{1}+1}} \exp \left(-\frac{2 b_{0}+S S E}{2 \delta_{0}}-\frac{b_{1}}{\delta_{1}}\right)
$$

The result is immediate. Part (b) follows from the fact that $\left|R_{2}\right| \geq \delta_{1}^{-q}|B|$.

Corollary 2. (a) Assume that $\left(X_{1}^{\prime} X_{1}\right)^{-1}$ exists. Then the posterior distribution of $\left(\theta, Z, \delta_{0}, \delta_{1}\right)$ given V is proper under Model 1A.
(b) Assume that $\left(X^{\prime} X\right)^{-1}$ exists. Then the posterior distribution of $\left(\theta, Z, \delta_{0}, \delta_{1}\right)$ given V exists under Model 1 or Model 2 when $\rho=1 / \lambda_{1}$ or $\rho=1 / \lambda_{q}$.

This corollary follows from Corollary 1. A related result has appeared in Hobert \& Casella (1996) for the special case where rank $\left(X_{1}\right)=p$ and B is a diagonal matrix with unknown elements. In this case $\Gamma \operatorname{rank}\left(R_{2}\right)=q$. If Γ however ΓB is not positive definite Γ the posterior distribution may not be proper Γ as shown in the following theorem.

Theorem 3. Assume that rank $\left(X_{1}\right)=p$ and rank $\left(X_{2}^{\prime} R_{1} X_{2}+B\right)<q$. For any priors on δ_{0} and δ_{1}, the posterior distribution of $\left(\theta, Z, \delta_{0}, \delta_{1}\right)$ given V does not exist.

Proof. Since rank $\left(X_{1}\right)=p \Gamma(13)$ still holds. Since rank $\left(X_{2}^{\prime} R_{1} X_{2}+B\right)<q$ โfor any fixed δ_{0} and $\delta_{1} \Gamma$

$$
\int_{\mathbb{R}^{q}} \exp \left\{-\frac{(Z-\hat{Z})^{\prime} X_{2}^{\prime} R_{1} X_{2}(Z-\hat{Z})}{2 \delta_{0}}-\frac{Z^{\prime} B Z}{2 \delta_{1}}\right\} d Z=\infty
$$

This proves the result.

We note that if B is positive definite our model reduces to that of Hobert \& Casella (1996) Twho provide necessary and sufficient conditions for the posterior distribution to be proper. Our result is an interesting extension to the situation where B is not positive definite「as is often the case with the CAR(1) model.

One implication of our results is that Tamong the assumptions of Theorem 2 Trank $\left(X_{2}^{\prime} R_{1} X_{2}+B\right)=q$ is both necessary and sufficient for the posterior distribution of $\left(\theta, Z, \delta_{0}, \delta_{1}\right)$ given V to be proper. We illustrate the point by a simple example for which the posterior distribution may or may not be proper.

Example 1. Consider a balanced one-way analysis of variance Γ

$$
Y_{i j}=\theta+Z_{i}+e_{i j}, \quad i=1, \cdots, q ; \quad j=1, \cdots, m
$$

Here θ is the fixed effect $\Gamma Z=\left(Z_{1}, \cdots, Z_{q}\right)^{\prime}$ is the random effect Γ and the $e_{i j}$ are independently and identically $N\left(0, \delta_{0}\right)$ distributed. This is a special case of (9) with $X_{1}=1_{q m}$ (a vector of ones) and $X_{2}=I_{q} \otimes 1_{m}$. Assume the prior (10). Clearly Γ $X_{2}^{\prime} R_{1} X_{2}=r\left(I_{q}-\frac{1}{q} 1_{q} 1_{q}^{\prime}\right)$.

Case 1. $B=I_{q}$. For a proper prior on δ_{i} given in (11) Гthe posterior of $\left(\theta, Z, \delta_{0}, \delta_{1}\right)$ is proper.

Case 2. $B=D-C$, a special case of Model 1 A . Since $1_{q}^{\prime} B 1_{q}=0$ एwe know that the rank of $X_{2}^{\prime} R_{1} X_{2}+B$ is $q-1$. From Theorem 3Γ we know that for any proper prior on δ_{i} Гthe joint posterior of $\left(\theta, Z, \delta_{0}, \delta_{1}\right)$ does not exist.

Case 3. $B=I_{q}-\rho C$ Гwith the limiting case $\rho=1 / \lambda_{1}$ or $\rho=1 / \lambda_{q}$. This case is quite complicated. We study a simple case with $q=3$. Assume that $C=1_{3} 1_{3}^{\prime}-I_{3} \Gamma$ whose eigenvalues are $-1,-1,2$. If $\rho=1 / \lambda_{1}=-1 \Gamma$ then the rank of $X_{2}^{\prime} R_{1} X_{2}+B$ is $q=3$. Then the posterior distribution might be proper. On the other hand Γ if $\rho=1 / \lambda_{3}=0.5$ then $1_{q}^{\prime} B 1_{q}=0 \Gamma$ and the posterior distribution does not exist. We
now change C to

$$
C=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right),
$$

whose eigenvalues are $-\sqrt{ } 2,0, \sqrt{ } 2$. By numerical calculation Twhen either $\rho=-1 / \sqrt{ } 2$ or $1 / \sqrt{ } 2 \Gamma$ the rank of $X_{2}^{\prime} R_{1} X_{2}+B$ is $q=3$. Consequently Γ the posterior distribution would be proper for any proper prior of δ_{i}.

3.2. Propriety of the posterior for a generalised linear mixed model

Consider the hierarchical model where $Y_{1}, Y_{2}, \cdots, Y_{N}$ are conditionally independent given parameters $V=\left(V_{1}, V_{2}, \cdots, V_{N}\right) \Gamma$ and V_{i} follows the hierarchical prior defined by (9)-(11). Let $f_{i}\left(Y_{i} \mid V_{i}\right)$ be the distribution of Y_{i} given V_{i}.

Theorem 4. Suppose there exist $Y_{i_{1}}, \cdots, Y_{i_{n}}\left(1 \leq i_{1}<\cdots<i_{n} \leq N ; p+q \leq\right.$ $n \leq N)$ such that

$$
\begin{equation*}
\int f_{j}\left(Y_{j} \mid V_{j}\right) d V_{j}<\infty, j \in\left\{i_{1}, \cdots, i_{n}\right\} \quad \text { and } \quad f_{j}\left(Y_{j} \mid V_{j}\right) \leq M, j \notin\left\{i_{1}, \cdots, i_{n}\right\} \tag{16}
\end{equation*}
$$

for some constant M, the corresponding design matrix $X_{1}^{*}=\left(x_{1, i_{1}}, \cdots, x_{1, i_{n}}\right)^{\prime}$ has full rank, and $X_{2}^{*}=\left(x_{2, i_{1}}, \cdots, x_{2, i_{n}}\right)^{\prime}$ has the same rank as the matrix $\left(x_{2,1}, \cdots, x_{2, N}\right)^{\prime}$. For any proper prior on δ_{i}, the posterior distribution of $\left(V, \theta, Z, \delta_{0}, \delta_{1}\right)$ given $Y=$ $\left(Y_{1}, \cdots, Y_{N}\right)$ exists.

Proof. Without loss of generality assume that $i_{j}=j, j=1, \cdots, n$. Let $V^{*}=\left(V_{1}, \cdots, V_{n}\right)$. The posterior density of $\left(V, \theta, Z, \delta_{0}, \delta_{1}\right)$ given Y is
$p\left(V, \theta, Z, \delta_{0}, \delta_{1} \mid Y\right) \propto \prod_{i=1}^{N} f_{i}\left(Y_{i} \mid V_{i}\right) \delta_{0}^{-\frac{1}{2}(N-n)} \prod_{i=n+1}^{N} \exp \left[-\frac{1}{2 \delta_{0}}\left(V_{i}-x_{1 i}^{\prime} \theta-x_{2 i}^{\prime} Z\right)^{2}\right] G^{*}$.

Here G^{*} is defined by (12) with X_{1} and X_{2} being replaced by X_{1}^{*} and X_{2}^{*} Гrespectively. Using the second inequality in (16) and integrating with respect to V_{n+1}, \cdots, V_{N} Twe obtain

$$
p\left(V^{*}, \theta, Z, \delta_{0}, \delta_{1} \mid Y\right) \propto \prod_{i=1}^{n} f_{i}\left(Y_{i} \mid V_{i}\right) G^{*}
$$

From the same argument as in the proof of Theorem 2Twe obtain

$$
p\left(V^{*}, \delta_{0}, \delta_{1} \mid Y\right) \propto \prod_{i=1}^{n} f_{i}\left(Y_{i} \mid V_{i}\right) \frac{\delta_{0}^{\frac{1}{2} q}+\delta_{1}^{\frac{1}{2} q}}{\delta_{0}^{\frac{1}{2}(n-p)+a_{0}+1} \delta_{1}^{\frac{1}{2} q+a_{1}+1}} \exp \left\{-\frac{2 b_{0}}{2 \delta_{0}}-\frac{b_{1}}{\delta_{1}}\right\}
$$

Clearly $\Gamma p\left(V^{*} \mid Y\right) \propto \prod_{i=1}^{n} f_{i}\left(Y_{i} \mid V_{i}\right)$, which is proper by the first inequality in (16).
In the original example given in $\S 1 \Gamma f_{i}\left(Y_{i} \mid V_{i}\right)$ is Poisson with mean $\mu_{i}=m_{i} e^{V_{i}} \Gamma$ where V_{i} has the linear structure (9). Then $\Gamma f_{i}\left(Y_{i} \mid V_{i}\right)$ is bounded for any $Y_{i} \geq 0$ and

$$
\int f_{i}\left(Y_{i} \mid V_{i}\right) d V_{i}=\int_{0}^{\infty} \frac{e^{-\mu_{i}} \mu_{i}^{Y_{i}-1}}{Y_{i}!} d \mu_{i}
$$

which is finite for $Y_{i}>0$. For another example ${ }^{\text {. }}$ et $Y_{i} \mid V_{i}$ be binomial with parameter m_{i} and $p_{i}=e^{V_{i}} /\left(e^{V_{i}}+1\right)$ एwhere V_{i} has prior (9). Then $f_{i}\left(Y_{i} \mid V_{i}\right)$ is bounded in V_{i} for any $0 \leq Y_{i} \leq m_{i}$ Гand

$$
\int_{-\infty}^{\infty} f_{i}\left(Y_{i} \mid V_{i}\right) d V_{i}=\int_{-\infty}^{\infty} \frac{e^{V_{i} Y_{i}}}{\left(e^{V_{i}}+1\right)^{m_{i}}} d V_{i}=\int_{0}^{1} p_{i}^{Y_{i}-1}\left(1-p_{i}\right)^{m_{i}-Y_{i}-1} d p_{i}
$$

which is finite if and only if $0<Y_{i}<m_{i}$.

Acknowledgement

Sun's research was supported by a grant from the National Security Agency. Tsutakawa's research was supported by a Research Board award from the University of Missouri-System. Speckman's research was partially supported by a grant from
the National Science Foundation. Research was also supported in part by the US Federal Highway AdministrationTunder subcontract E77690017-3Y from Los Alamos National Laboratory to the National Institute of Statistical Sciences. The authors gratefully acknowledge the very constructive comments of the editor Γ an associate editor and two referees.

References

Bernardinelli, L. \& Montomoli, C. (1992). Empirical Bayes versus fully Bayesian analysis of geographical variation in disease risk. Statist. in Med. 11「 983-1007.

Bernardinelli, L., Clayton, D. \& Montomoli, C. (1995). Bayesian estimates of disease maps: how important are priors? Statist. in Med. 14Г2411-31.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with Discussion). J. R. Statist. Soc. В 36Г192-236.

Besag, J., Green, P., Higden, D., \& Mengersen, K. (1995). Bayesian computation and Stochastic Systems (with Discussion). Statist. Sciences 10Г3-66.

Besag, J., York, J. \& Mollié, A. (1991). Bayesian image restorationTwith two applications in spatial statistics (with Discussion). Ann. Inst. Statist. Math. 43「 1-59.

Carlin, B.P. \& Louis, T.A. (1996). Bayes and Empirical Bayes Methods for Data Analysis. London: Chapman and Hall.

Clayton, D. \& Kaldor, J. (1987). Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics $43 \Gamma 671$ - 81 .

Cressie, N \& Chan, N.H. (1989). Spatial modeling of regional variables. J. Am.

Statist. Assoc. 84Г393-401.
Gelfand, A.E. \& Smith, A.F.M. (1990). Sampling based approaches to calculating marginal densities. J. Am. Statist. Assoc. 85Г398-409.

Ghosh, M., Natarajan, K., Stroud, T.W.F. \& Carlin, B.P. (1998). Generalized linear models for small area estimation. J. Am. Statist. Assoc. 93Г273-82.

Gilks, W.R. \& Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Appl. Statist. 41Г337-48.

Hobert, J.P. \& Casella, G. (1996). The effect of improper priors on Gibbs sampling in hierarchical linear mixed models. J. Am. Statist. Assoc. 91Г1461-73.

Hobert, J.P. \& Casella, G. (1998). Functional compatibilityГ Markov chains and Gibbs sampling with improper posteriors. J. Comp. and Graph. Statist.Г 7Γ 42-66.

Marshall, R.J. (1991). A review of methods for the statistical analysis of spatial patterns of disease. J. R. Statist. Soc. A 154Г421-41.

Ortega, J. M. (1987). Matrix Theory. New York: Plenum Press.
Tsutakawa, R.K. (1988). Mixed model for analysing geographic variability in mortality rates. J. Am. Statist. Assoc. 83Г117-30.

Waller, L.A., Carlin, B.P., Xia, H. \& Gelfand, A.E. (1997). Hierarchical spatio-temporal mapping of disease rates. J. Am. Statist. Assoc. 92「607-17.

