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Summary

We examine properties of the CAR(1) model, which is commonly used to represent

regional e�ects in Bayesian analyses of mortality rates. We consider a Bayesian

hierarchical linear mixed model where the �xed e�ects have a vague prior such as a

constant prior and the random e�ect follows a class of CAR(1) models including those

whose joint prior distribution of the regional e�ects is improper. We give su�cient

conditions for the existence of the posterior distribution of the �xed and random

e�ects and variance components. We then prove the necessity of the conditions and

give a one-way analysis of variance example where the posterior may or may not exist.

Finally, we extend the result to the generalised linear mixed model, which includes

as a special case the Poisson log-linear model commonly used in disease mapping.

Some key words: Partially informative normal distribution; Spatial correlation; Gibbs

sampling; Poisson distribution; Multivariate normal; Linear mixed model.
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1. Introduction

This paper considers the propriety of the posterior distribution for the general

mixed linear model and generalised mixed linear model when the random e�ects are

represented by the conditional autoregressive model, or CAR(1), introduced by Besag

(1974). CAR(1) is currently one of the most important and widely used models to

represent spatial correlations in disease mapping (Clayton & Kaldor, 1987; Cressie &

Chan, 1989; Marshall, 1991; Bernardinelli, Clayton & Montomoli, 1995; and Waller

et al., 1997).

The recent popularity of CAR(1) is primarily due to the ease with which it may

be implemented in the Gibbs sampler (Gelfand & Smith, 1990). However, such con-

venience may lead to overlooking the possibility that the posterior distribution may

fail to exist when the joint distribution under CAR(1) is improper.

The use of the CAR(1) model to represent spatial e�ects may be illustrated by

a log-linear model in mortality analysis. For a given target population of size m,

let Y denote the frequency of the deaths due to some speci�c cause, such as lung

cancer, during some �xed time period. Conditionally on a population parameter p,

assume that Y has a Poisson distribution with mean mp, where p may be interpreted

as the rate per individual. The target populations are typically cross-classi�ed by

demographic variables such as age, sex and geographic region. The dependence of p

on such covariates can be represented by a log-linear model for p having the form

V = X1� +X2Z + e; (1)

where V is a vector of the set of log(p) associated with the target populations, � is
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a vector of �xed e�ects, Z is a vector of random regional e�ects, and X1 and X2

are design matrices. The vector e represents unexplained random e�ects and is often

omitted in the literature. Related models may be found in Tsutakawa (1988) and

Marshall (1991).

In practice, two forms of the CAR(1) model are widely used to represent spatial

e�ects. Let Z = (Z1; � � � ; Zq)
0 denote the real-valued regional e�ects of q regions,

�i the set of regions that are geographically adjacent to region i and di the num-

ber of regions in �i , i = 1; � � � ; q. In Model 1, the conditional distribution of Zi

given the other regional e�ects Z�i = (Z1; � � � ; Zi�1; Zi+1; � � � ; Zq)
0 is assumed to be

N(
P

j2�i
Zj=di; �1=di). In Model 2, the conditional distribution is assumed to be

N(�
P

j2�i
Zj ; �1). Model 1 was proposed by Besag, York, & Molli�e (1991) and used

by Bernardinelli & Montomoli (1992), Bernardinelli et al. (1995), Waller et al. (1997)

and Ghosh et al. (1998), among others. Model 2 was proposed by Clayton & Kaldor

(1987) and used by N. J. McMillan and L. M. Berliner in a National Institute of

Statistical Sciences technical report. Both models are designed to account for spatial

correlations among neighbouring regions.

In x2 we examine the joint distribution of the CAR(1) model and demonstrate

that, when the covariance matrix of Z is not positive de�nite, e.g. Model 1, the joint

distribution may be decomposed into a component which is nonsingular normal and

another which has a constant density over some Euclidian space, implying that the

distribution is improper. We also examine properties of Models 1 and 2 and introduce

a modi�cation (Model 1A) of Model 1 which has a proper joint distribution.

The e�ect of such improper distributions on the posterior distribution for hier-
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archical models is examined in x3. We consider the linear mixed model where the

�xed e�ects have a uniform prior and the random e�ects have an arbitrary Gaussian

CAR(1) distribution. We give su�cient conditions for the linear e�ects and variance

components to have a proper posterior distribution. We also show the necessity of

one of these conditions and provide an illustration of a balanced one-way analysis

of variance model where the posterior may or may not be proper. Finally, we prove

the propriety of the posterior distribution for the generalised linear mixed model,

which includes the mortality example as a special case. Our results are closely re-

lated to these of Ghosh et al. (1998), who have previously shown the existence of the

posterior under Model 1, and to those of Hobert & Casella (1996), who considered

the hierarchical model where the covariance matrix of the random e�ects is positive

de�nite. The discussion of the CAR(1) model is also related to Hobert & Casella's

(1998) functional compatibility.

2. Gaussian CAR(1) model

Let Z = (Z1; � � � ; Zq)
0 be a random vector with full conditional densities

f(ZijZ�i) =
� ai

2��1

� 1

2 exp
n
� ai

2�1

�
Zi �

qX
j 6=i

�ijZj

�2o
; (2)

i = 1; � � � ; q. Let B be the q�q matrix with diagonal elements ai and ijth o�-diagonal

element �ai�ij. Besag (1974) proved that, if B is symmetric and positive de�nite,

these conditional distributions lead to the joint probability density function of Z,

f(Z) = (2��1)
�q=2jBj1=2 exp

n
� 1

2�1
Z 0BZ

o
: (3)

In this case, Z is multivariate normal with mean 0q and covariance matrix �1B
�1:

When B is nonnegative de�nite but not positive de�nite, the relationship between
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(2) and the joint distribution of Z is less clear. In this case we will call the joint

distribution a partially informative normal distribution and represent the density by

f(Z) / �
�q=2
1 exp

n
� 1

2�1
Z 0BZ

o
: (4)

We �rst note that Z cannot have a singular normal distribution that is consistent

with (2). If Z has a singular normal distribution, Z is nonsingular normal over some

hyperplane, so there exists at least one Zi such that the conditional distribution of

Zi, given Z�i, is degenerate, contradicting (2).

Suppose B is singular nonnegative de�nite with rank r. Then there exists an

orthogonal matrix � such that � = �0B� = diag(�1; � � � ; �r; 0; � � � ; 0); where �i > 0,

i = 1; � � � ; r < q. Let X = �0Z. Since B = ���0; Z 0BZ = X 0�X =
Pr

i=1 �iX
2
i : Thus,

if the density of Z is given by (4), the density of X is

f(X) / �
�q=2
1 exp

�
� 1

2�1

rX
i=1

�iX
2
i

�
;

i.e. (X1; � � � ;Xr) are independent normal variables with mean 0 and variance �1=�i,

i = 1; � � � ; r; and (Xr+1; � � � ;Xq) has density proportional to �
�(q�r)=2
1 over a q � r

dimensional Euclidian space. Thus the distribution of Z is improper when B is

singular. Note that it may be more intuitive to use �
�r=2
1 rather than �

�q=2
1 in (4)

so that the prior of (X1; � � � ;Xr) is constant independent of �1. We have chosen to

follow Besag et al. (1995) and Ghosh et al. (1998) in using the exponent q in (4).

We can formally relate (4) to (2) by noting that

f(ZijZ�i) = f(Z1; � � � ; Zq)

�Z 1

�1
f(Z1; � � � ; Zq)dZi:

Hobert & Casella (1998) have called this type of relationship `functionally compatible,'

in contrast to one which is `compatible,' where the integral of f(Z1; � � � ; Zq) with
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respect to (Z1; � � � ; Zq) is �nite. In the remainder of this section, we will examine

compatibility conditions for some important CAR(1) models.

A simple nontrivial example is given for the case q = 2. Suppose that f(Z1jZ2) is

N(�Z1; 1) and f(Z2jZ1) is N(�Z2; 1): In this case B =
�
1 ��

�� 1

�
, and if j�j < 1 then

Z is bivariate normal with mean 0 and covariance matrix B�1 = (1� �2)�1
�
1 �

� 1

�
. If

� = 1 (the case � = �1 is similar), B is singular and the joint distribution formally

becomes f(Z1; Z2) / expf�1

2
(Z1�Z2)

2g; an improper distribution as in (4). Thus the

conditional distributions are functionally compatible. We can generalise this example

to the regional e�ects (Z1; � � � ; Zq)
0 by the following model.

Model 1A. Let ai = di and �ij = �=di; if j 2 �i; and 0, if j =2 �i; where j�j < 1; the

adjacency property is assumed to be symmetric so that i 2 �j if and only if j 2 �i.

Then ai�ij = aj�ji and B is symmetric. Moreover,

B = D � �C; (5)

where D is the diagonal matrix with diagonal elements d1; � � � ; dq and C is the adja-

cency matrix, with element cij = 1; if i and j are adjacent, and 0, otherwise. The

conditional distribution (2) can now be written

f(ZijZ�i) =
� di

2��1

� 1

2 exp
n
� di

2�1
(Zi � �zi)

2
o
;

where zi = d�1i
P

j2�i
Zj.

When � = 1 in (5), we have Model 1 proposed by Besag et al. (1991), and used

by Carlin & Louis (1996), Ghosh et al. (1998) and others. In this case, B cannot be

positive de�nite since the row and column sums of B will be 0q. When � = 0 in (5),
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it reduces to the case where Z1; � � � ; Zn are independent without spatial correlation.

However, the variance of Zi is still inversely proportional to the number of neighbours

di, an unlikely situation under independence.

To show that B is positive de�nite under Model 1A, we note that, for any �

for which j�j < 1, the ith diagonal element is larger than the sum of the absolute

values of all o� diagonal elements in the ith row. The following lemma, a corollary of

diagonal dominance (c.f. Ortega, 1987, p. 225) stated here for completeness, implies

that B is positive de�nite. According to Besag (1974), Z has a nonsingular normal

distribution.

Lemma 1 . Let A = (aij) be a q � q matrix. If aii >
P

j 6=i jaijj for all i, then A

is positive de�nite.

Model 2. Let ai = 1 and �ij = �; if j 2 �i; and 0, if j =2 �i: Here �i is again the set

of regions adjacent to region i. Then �ij = �ji; B is symmetric, and

B = Iq � �C; (6)

where Iq is the q � q identity matrix and C is the adjacency matrix. Let �1 � �2 �

� � � � �q be the ordered eigenvalues of C. As seen in the following lemma, C is neither

positive de�nite nor negative de�nite, so that �1 < 0 and �q > 0.

Lemma 2 . Let A = (aij) be an q� q nonzero symmetric matrix whose diagonal

elements are all zero. Let �min and �max be the minimum and maximum eigenvalues

of A. Then A is neither positive de�nite nor negative de�nite. That is to say,

�min < 0 and �max > 0:
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Proof. Since A is a nonzero matrix, there is a pair (i; j) such that i < j and

aij 6= 0. Let X be the q-dimensional vector whose ith and jth components are 1 and

other components are 0: Clearly X 0AX = 2aij + aii + ajj = 2aij , since aii = ajj = 0.

If we let X be the q-dimensional vector whose ith component is 1, jth component is

�1, and other components are 0; we get X 0AX = �2aij. The result then follows.

From Lemma 2, we know that �1 < 0 < �q.

Theorem 1 . If

��11 < � < ��1q ; (7)

then B is positive de�nite, and the conditional distribution (2) can be written

f(ZijZ�i) =
� 1

2��1

� 1

2 exp
n
� 1

2�1

�
Zi � �

X
i2�i

Zj

�2o
: (8)

Proof. Let � be an orthogonal matrix so that C = �diag (�1; � � � ; �q)�0. Then

we have the decomposition

B = �diag (1� ��1; � � � ; 1� ��q)�
0:

The eigenvalues of B are (1� ��1; � � � ; 1� ��q): From (7), they are all positive. This

proves the �rst part. The second part follows immediately.

If � = ��11 or ��1q then B will be singular and, by our previous result, the joint

distribution of Z will be improper. Moreover, if � < ��11 or � > ��1q ; B is no longer

nonnegative de�nite.

Note that (8) is the model used in Clayton & Kaldor (1987). Furthermore, if

� = 0; then the model reduces to the case where Z1; � � � ; Zn are independently and

identically N(0; �1) distributed.
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3. Existence of the Posteriors

3.1. Propriety of the Posterior for a Linear Mixed Model

Here and in x3.2 we examine whether or not the posterior distribution remains

proper when both � and Z have noninformative priors.

Consider a general linear mixed model

Vi = x01i� + x02iZ + ei; (9)

where x1i and x2i are vectors of �xed constants, � is a vector of �xed e�ects, Z is

a vector of random e�ects, and the ei are independently and identically distributed

normal errors with mean 0 and variance �0. For given �1 > 0; �0 > 0 and a nonnegative

de�nite matrix B, we assume that �, Zj�1 and ej�0 are independent with

w(�) � 1; (10)

and Zj�1 has the partially informative normal density (4). Assume that the variance

components �0 and �1 are a priori independent and that �i has an inverse gamma

distribution (ai; bi) with density

gi(�i) / �
�(ai+1)
i exp(�bi=�i): (11)

Let V = (V1; � � � ; Vn)0 be the vector of n observations, and let X1 = (x11; � � � ; x1n)0

and X2 = (x21; � � � ; x2n)0 be the n � p and n � q design matrices. Denote the usual

least squares estimator of (�0; Z 0) by (�̂0; Ẑ 0)0 = (X 0X)�X 0V , where X = (X1;X2)

and (X 0X)� is a generalised inverse of X 0X: Let the sum of squared errors be SSE =

V 0fIn �X(X 0X)�X 0gV , which is invariant for any choice of (X 0X)�.
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Theorem 2 . Consider the linear mixed model (9) with prior distribution given

by (4), (10), and (11), where B is nonnegative de�nite. Assume the following condi-

tions.

(a) rank (X1) = p and rank (X 0
2R1X2 +B) = q, where R1 = In �X1(X

0
1X1)

�1X 0
1;

(b) a1 > 0 and b1 > 0;

(c) n� p� q + 2a0 > 0 and SSE + 2b0 > 0:

Then the joint posterior distribution of (�; Z; �0; �1) given V is proper.

Proof. First, the joint posterior density of (�; Z; �0; �1) is proportional to

G = �
� 1

2
n

0 �
� 1

2
q

1 exp
n
�(V �X1��X2Z)

0(V �X1��X2Z)

2�0
� Z 0BZ

2�1

o 1Y
i=0

gi(�i): (12)

Since (V �X1��X2Z)
0(V �X1��X2Z) equals SSE+(�� �̂�C1)

0X 0
1X1(�� �̂�C1)

+ (Z� Ẑ)0X0
2R1X2(Z� Ẑ), where C1 = (X 0

1X1)
�1X 0

1X2(Ẑ � Z); we integrate G with

respect to � and get

Z
Gd� =

(2�)
p

2 jX 0
1X1j�

1

2

�
1

2
(n�p)

0 �
1

2
q

1

exp
n
�SSE

2�0
� (Z � Ẑ)0X 0

2R1X2(Z � Ẑ)

2�0
�Z 0BZ

2�1

o 1Y
i=0

gi(�i): (13)

De�ne R2 = ��10 X 0
2R1X2 + ��11 B: For any �xed �0; �1 > 0, R�1

2 exists by Assumption

(a). Let C2 = ��10 R�1
2 X 0

2R1X2Ẑ and R3 = X 0
2R1X2 � ��10 X 0

2R1X2R
�1
2 X 0

2R1X2. Then

(Z � Ẑ)0X 0
2R1X2(Z � Ẑ)

�0
+
Z 0BZ

�1
= (Z � C2)

0R2(Z � C2) +
Ẑ 0R3Ẑ

�0
:

Integrating G with respect to � and Z, we get

Z
IRq

Z
IRp

Gd�dZ =
(2�)

1

2
(p+q)jX 0

1X1j�
1

2

�
1

2
(n�p)

0 �
1

2
q

1 jR2j
1

2

exp
�
�SSE + Ẑ 0R3Ẑ

2�0

� 1Y
i=0

gi(�i): (14)

Since R3 is nonnegative de�nite, Ẑ
0R3Ẑ � 0. Note that

jR2j�
1

2 � fmin(��10 ; ��11 )qjX 0
2R1X2 +Bjg� 1

2 <
�
�
1

2
q

0 + �
1

2
q

1

����X 0
2R1X2 +B

����
1

2 :
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We have

Z
IR

q

Z
IR

p
Gd�dZ � (2�)

1

2
(p+q)

���X 0
1X1

����
1

2

���X 0
2R1X2 +B

����
1

2 (J1 + J2); (15)

where

J1 =
1

�
1

2
(n�p�q)+a0+1

0 �
1

2
q+a1+1

1

exp
�
�2b0 + SSE

2�0
� b1

�1

�
;

J2 =
1

�
1

2
(n�p)+a0+1

0 �a1+11

exp
�
�2b0 + SSE

2�0
� b1

�1

�
:

From Assumption (c), 1

2
q+a0 > 0: The Integral of J1 with respect to (�0; �1) is �nite.

Also, Assumption (c) implies that n� p+2a0 > 0 and the integral of J2 with respect

to (�0; �1) is �nite. The result then follows.

Assumption (a) is equivalent to the assumption that the rank of

0
@X 0

1X1 X 0
1X2

X 0
2X1 X 0

2X2 +B

1
A

equals p+ q. Also, Assumption (a) is satis�ed by either of the following conditions:

(a1) the rank of X is p+ q;

(a2) the rank of X1 is p and rank of B is q:

Corollary 1 . Consider the linear mixed model (9), whose prior distribution

is given by (10) and suppose �i follows the prior (11).

(a) If Condition (a1) holds, the posterior distribution of (�; Z; �0; �1) given V exists

for any q � q nonnegative de�nite matrix B.

(b) If Condition (a2) holds, the posterior distribution of (�; Z; �0; �1) given V exists

for any n� q design matrix X2.

Proof. From the same argument as the proof of Theorem 2, (14) holds. For

Part (a), we know that jR2j � �
�q
0 jX 0

2R1X2j. Then
Z
IRq

Z
IRp

Gd�dZ � (2�)
1

2
(p+q)jX 0

1X1j�
1

2 jX 0
2R1X2j�

1

2

�
1

2
(n�p�q)+a0+1

0 �
1

2
q+a1+1

1

exp
�
�2b0 + SSE

2�0
� b1

�1

�
:
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The result is immediate. Part (b) follows from the fact that jR2j � �
�q
1 jBj.

Corollary 2 . (a) Assume that (X 0
1X1)

�1 exists. Then the posterior distribu-

tion of (�; Z; �0; �1) given V is proper under Model 1A.

(b) Assume that (X 0X)�1 exists. Then the posterior distribution of (�; Z; �0; �1) given

V exists under Model 1 or Model 2 when � = 1=�1 or � = 1=�q .

This corollary follows from Corollary 1. A related result has appeared in Hobert

& Casella (1996) for the special case where rank (X1) = p and B is a diagonal matrix

with unknown elements. In this case, rank (R2) = q. If, however, B is not positive

de�nite, the posterior distribution may not be proper, as shown in the following

theorem.

Theorem 3 . Assume that rank (X1) = p and rank (X 0
2R1X2+B) < q. For any

priors on �0 and �1, the posterior distribution of (�; Z; �0; �1) given V does not exist.

Proof. Since rank (X1) = p, (13) still holds. Since rank (X 0
2R1X2 +B) < q, for

any �xed �0 and �1,

Z
IRq

exp
n
�(Z � Ẑ)0X 0

2R1X2(Z � Ẑ)

2�0
� Z 0BZ

2�1

o
dZ = 1:

This proves the result.

We note that ifB is positive de�nite our model reduces to that of Hobert & Casella

(1996), who provide necessary and su�cient conditions for the posterior distribution

to be proper. Our result is an interesting extension to the situation where B is not

positive de�nite, as is often the case with the CAR(1) model.
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One implication of our results is that, among the assumptions of Theorem 2, rank

(X 0
2R1X2 + B) = q is both necessary and su�cient for the posterior distribution of

(�; Z; �0; �1) given V to be proper. We illustrate the point by a simple example for

which the posterior distribution may or may not be proper.

Example 1. Consider a balanced one-way analysis of variance,

Yij = � + Zi + eij; i = 1; � � � ; q; j = 1; � � � ;m:

Here � is the �xed e�ect, Z = (Z1; � � � ; Zq)
0 is the random e�ect, and the eij are

independently and identically N(0; �0) distributed. This is a special case of (9) with

X1 = 1qm (a vector of ones) and X2 = Iq 
 1m. Assume the prior (10). Clearly,

X 0
2R1X2 = r(Iq � 1

q
1q1

0
q).

Case 1. B = Iq: For a proper prior on �i given in (11), the posterior of (�; Z; �0; �1)

is proper.

Case 2. B = D � C, a special case of Model 1A. Since 10qB1q = 0, we know that

the rank of X 0
2R1X2 + B is q � 1. From Theorem 3, we know that for any proper

prior on �i, the joint posterior of (�; Z; �0; �1) does not exist.

Case 3. B = Iq � �C, with the limiting case � = 1=�1 or � = 1=�q. This case is

quite complicated. We study a simple case with q = 3: Assume that C = 131
0
3 � I3,

whose eigenvalues are �1;�1; 2. If � = 1=�1 = �1, then the rank of X 0
2R1X2 + B

is q = 3. Then the posterior distribution might be proper. On the other hand, if

� = 1=�3 = 0:5 then 10qB1q = 0, and the posterior distribution does not exist. We
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now change C to

C =

0
BBBBB@

0 1 0

1 0 1

0 1 0

1
CCCCCA
;

whose eigenvalues are �
p
2; 0;

p
2. By numerical calculation, when either � = �1=

p
2

or 1=
p
2, the rank of X 0

2R1X2 +B is q = 3. Consequently, the posterior distribution

would be proper for any proper prior of �i.

3.2. Propriety of the posterior for a generalised linear mixed model

Consider the hierarchical model where Y1; Y2; � � � ; YN are conditionally indepen-

dent given parameters V = (V1; V2; � � � ; VN ), and Vi follows the hierarchical prior

de�ned by (9){(11). Let fi(YijVi) be the distribution of Yi given Vi.

Theorem 4 . Suppose there exist Yi1 ; � � � ; Yin (1 � i1 < � � � < in � N ; p + q �

n � N) such that

Z
fj(YjjVj)dVj <1; j 2 fi1; � � � ; ing and fj(Yj jVj) �M; j =2 fi1; � � � ; ing; (16)

for some constant M , the corresponding design matrix X�
1 = (x1;i1; � � � ; x1;in)0 has full

rank, and X�
2 = (x2;i1; � � � ; x2;in)0 has the same rank as the matrix (x2;1; � � � ; x2;N)0:

For any proper prior on �i, the posterior distribution of (V; �; Z; �0; �1) given Y =

(Y1; � � � ; YN ) exists.

Proof. Without loss of generality, assume that ij = j; j = 1; � � � ; n. Let

V � = (V1; � � � ; Vn). The posterior density of (V; �; Z; �0; �1) given Y is

p(V; �; Z; �0; �1jY ) /
NY
i=1

fi(YijVi)�
� 1

2
(N�n)

0

NY
i=n+1

exp
h
� 1

2�0
(Vi � x01i� � x02iZ)

2
i
G�:
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Here G� is de�ned by (12) with X1 and X2 being replaced byX
�
1 and X

�
2 , respectively.

Using the second inequality in (16) and integrating with respect to Vn+1; � � � ; VN , we

obtain

p(V �; �; Z; �0; �1jY ) /
nY
i=1

fi(YijVi)G�:

From the same argument as in the proof of Theorem 2, we obtain

p(V �; �0; �1jY ) /
nY
i=1

fi(YijVi)
�
1

2
q

0 + �
1

2
q

1

�
1

2
(n�p)+a0+1

0 �
1

2
q+a1+1

1

exp
n
�2b0

2�0
� b1

�1

o
:

Clearly, p(V �jY ) / Qn
i=1 fi(YijVi); which is proper by the �rst inequality in (16).

In the original example given in x1, fi(YijVi) is Poisson with mean �i = mie
Vi,

where Vi has the linear structure (9). Then, fi(YijVi) is bounded for any Yi � 0 and

Z
fi(YijVi)dVi =

Z 1

0

e��i�Yi�1i

Yi!
d�i;

which is �nite for Yi > 0: For another example, let YijVi be binomial with parameter

mi and pi = eVi=(eVi + 1), where Vi has prior (9). Then fi(YijVi) is bounded in Vi for

any 0 � Yi � mi, and

Z 1

�1
fi(YijVi)dVi =

Z 1

�1

eViYi

(eVi + 1)mi
dVi =

Z 1

0
pYi�1i (1 � pi)

mi�Yi�1dpi;

which is �nite if and only if 0 < Yi < mi.
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