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Abstract

In this chapter, we examine the use of special forms of correlated random e�ects in

the generalized linear mixed model (GLMM) setting. A special feature of our GLMM

is the inclusion of random residual e�ects to account for lack of �t due to extra

variation, outliers and other unexplained sources of variation. For random e�ects,

we consider, in particular, the correlation structure and improper priors associated

with the autoregressive (AR) model of Ord (1975) and the conditional autoregressive

(CAR) model of Besag (1974). We give conditions for the propriety of the posterior

distribution of the GLMM when the �xed e�ects have a constant improper prior and

the random e�ects have a possibly improper conditional autoregressive prior. Several

examples of exponential families as well as computational details for Markov chain

Monte Carlo simulation are also presented.

1 Introduction

Traditional treatment of random e�ects in mixed linear and nonlinear models generally

assumes that these e�ects are independent following some standard distributions such as

normal or gamma. However, with the advent of Markov chain Monte Carlo (MCMC) meth-

ods and, in particular, the Gibbs sampler (cf. Gelfand and Smith, 1990), such restrictions

are no longer necessary, and a much broader class of models, including those with correlated

random e�ects, can be used in practice. (See Clayton (1996) for a general review of this

recent development.)

In this chapter we consider generalized mixed linear models with random e�ects hav-

ing the autoregressive and conditionally autoregressive properties commonly encountered

in temporal and spatial covariates where one expects similarities among closely situated

observations. Examples from disease mapping will be used to motivate these models.

The computational simplicity of MCMC methods enables one to extend the commonly

used generalized linear mixed model (GLMM) to one that appends random residual e�ects
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to the linear term to account for lack of �t. These extra terms allow for the minor perturba-

tions and occasional outliers commonly encountered in practice. However, the remarkable

ease of application of the Gibbs sampler does not come without a price. There is poten-

tial nonconvergence and other annoying problems when using the algorithm, especially in

situations where noninformative prior distributions are employed.

In Section 2 we formally de�ne the GLMM with residual e�ects. Two examples are

given. One has the normal distribution and the other the gamma distribution, with the

choice depending on the nature of the observed data. For example when the data are

Poisson, it is more natural to use the conjugate gamma distribution, although the normal

may be just as appropriate and simple to use.

In Section 3 we discuss several forms of correlated random e�ects including the AR

process of Ord (1974) and the CAR process of Besag (1974), which are useful in describing

spatial correlations. We examine the joint distributions associated with these processes

to get a better understanding of the underlying association implied by these models. Of

particular interest are distributions that are improper and could create problems when used

in the GLMMs.

In Section 4, we consider the incorporation of these spatial random variables into the

GLMM setting and emphasize the special role of the link function in a Bayesian hierarchical

framework. In the case where the residual e�ects are normally distributed, the �xed e�ects

have a constant prior and random e�ects may have an improper prior, we give su�cient

conditions for the existence of a proper posterior distribution of all parameters including

the �xed and random e�ects and variance components.

In Section 5, we summarize the computational details including the full conditional

distributions required for the implementation of the Gibbs Sampler.

2 The Model

Let Y1; : : : ; YN be the independent random observations, where Yi has the probability den-

sity

fi(yij�i; �) = exp[Ai(�)
�1fyi�i �Bi(�i)g+ Ci(yi;�)]: (1)
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The function Ai(�) is commonly of the form Ai(�) = �w�1
i , where the wi are prespeci�ed

weights. It is often assumed that the scale parameter � is known. Consider, for example,

the case when the population size in area i is mi with unknown mortality rate pi, and Yi

is Poisson distributed with mean mipi. This is a special case of (1) with � = 1; Ai(�) =

1; �i = log(mipi); Bi(�i) = exp(�i); and Ci(yi;�) = � log(yi!). When Yi has a binomial

distribution with parameters mi and pi, � = 1; Ai(�) = 1; �i = logfpi=(1 � pi)g; Bi(�i) =

mi logf1 + exp(�i)g; and Ci(yi;�) = log[mi!=fyi!(mi �yi)!g].

Generalized Linear Models. We wish to model the variability in �i to account for

various �xed covariates. The natural parameters �i are modeled as

hi(�i) = xxxt1i���; (2)

where the hi are known monotone functions, XXX1 = (xxx11; : : : ; xxx1n)
t is an N�p design matrix

and ��� is the vector of �xed e�ects. Such a model is commonly referred to as a generalized

linear model (GLM) with canonical parameter �i, scale parameter �, and link function hi

(cf. McCullagh and Nelder, 1989). (Note that usually there is a single link function hi � h.)

Generalized Linear Mixed Models. We now extend the model to include random e�ects

as follows. Let

hi(�i) = xxxt1i��� + xxxt2iZZZ; (3)

where hi is a known monotone function, XXX1 = (xxx11; : : : ; xxx1n)
t and XXX2 = (xxx21; : : : ; xxx2n)

t are

N�p and N�k design matrices, the p� 1 vector ��� represents �xed e�ects, and ZZZ is a k�1

vector of random e�ects. Models given by (1) and (3) are often called generalized linear

mixed models (GLMMs) and have been widely used in many problems such as disease

mapping e.g., Breslow and Clayton (1993).

We can further extend the model to add additional residual e�ects by taking

hi(�i) = xxxt1i��� + xxxt2iZZZ + ei: (4)

Here eee = (e1; : : : ; eN)
t are residual e�ects satisfying some restriction such as IE(ei) = 0

or IE exp(ei) = 1. In addition, ZZZ and eee are assumed mutually independent. We include

random residual e�ects ei to account for the lack of �t of (3) due to extra variation,

outliers, and other unexplained sources of variation. Note that the random e�ect ei is quite
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di�erent from ZZZ in the sense that ZZZ often accounts for some special pattern such as random

geographical e�ects and spatial correlation. In addition, the number of components of ZZZ

is often much smaller than N , the number of residual e�ects ei. By a suitable choice of

the design matrix, (4) may be encompassed under (3), but we do not do this in order to

emphasize the separate roles of ZZZ and eee. We will call the model given by (1) and (4) a

GLMM as well.

There are many possible choices for the link functions hi in models (2){(4). For ex-

ample, in the mortality setting cited earlier, Yi has the Poisson distribution with mean

mipi and �i = log(mipi). One possibility is to take hi(�i) = �i � log(mi) = log(pi); and

a loglinear regression model may be applied. Alternatively, Yi can be modeled with a bi-

nomial distribution. Then the logit link is canonical, and logit(pi) = logfpi=(1 � pi)g =

�i � log(mi � e�i) = hi(�i), resulting in logistic regression.

The random e�ects term ZZZ in (3){(4) is typically assumed to have a multivariate normal

distribution. We will discuss in detail the choice of the distribution of ZZZ in the next section.

Distribution of Residual E�ects. We will assume that the residual e�ects ei or some

monotone functions of ei have distributions belonging to an exponential family (1), with

known common canonical parameter � but unknown scale parameter �. For illustration,

we will consider the following two classes of distributions for residual e�ects.

� Normal Residual E�ects. Residual e�ects ei are independent and identically normal

with mean 0 and variance �0.

� Gamma Residual E�ects. The exp(ei) are iid gamma(R;R). Here a random variable

W has the gamma(�; �) distribution if W has p.d.f.

f(w) = ��f�(�)g�1w��1 exp(��w):

Special cases of these models have appeared previously. Clayton and Kaldor (1987)

and Waller et al. (1997) use a Poisson-normal model (Poisson for Yi and normal for ZZZ)

but without the residual term eee: This a special case of (3). Ghosh et al. (1998) use eee in

the binomial-normal model and treat spatial e�ects by taking XXX2ZZZ = UUU , with UUU having a

distribution de�ned by the conditional auto regressive CAR(1) model of Besag (1974). This

is a special case of (4). In Sun, Tsutakawa, Kim and He (1997) and Sun, Tsutakawa and
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He (1998), ZZZ consists of block-wise independent random e�ects, where each block contains

random e�ects and the ei are independent random variables with mean 0 and a common

variance. West and Aguilar (1997) give another interesting example analysing hospital

quality monitors with an extra residual term in (1.4).

Special cases of Poisson-gamma models are found in Clayton and Kaldor (1987) and

Tsutakawa (1988). Speci�cally, in Tsutakawa (1988), ZZZ contains independent random

e�ects, and the exp(ei) are independent gamma variables with mean 1 and a common

variance.

The general model (1) and (2) can be used for both continuous and discrete data. A

discrete example of (4), which motivated much of this work, is studied in Sun, Tsutakawa,

Kim and He (1998), where a spatio-temporal model for cancer mortality data is proposed.

For a given gender, let Yijk denote the frequency of deaths from some speci�c cause in

the ith region and jth age group during the kth time period, i = 1; : : : ; I; j = 1; : : : ; J ;

k = 1; : : : ;K. Conditionally on the �xed and random parameters, assume the Yijk are

independent and Poisson with means mijkpijk, where mijk is the size of the ijkth target

population. The model of Sun et al. takes the form

log(pijk) = �j + Zi + (�j +Wij)(tk � �t) + eijk;

where �j is the e�ect of the jth age group, Zi is the e�ect of the ith region, tk is the midpoint

of the kth time period, and �t =
PK

k=1 tk=K. The rate of change over time is represented

by (�j +Wij) for the jth age group in the ith region. Both �j and �j are treated as �xed

e�ects, while Zi and Wij are random. The residual e�ects eijk are also random. A detailed

description of the distributions of the random e�ects and prior distributions are given in

Sun et al. (1998), where disease mapping and interpretation of numerical results for male

lung cancer in the state of Missouri can be found.

3 Random e�ects

3.1 Independent Random E�ects

Historically, it was common to assume independent random e�ects for linear mixed mod-

els, i.e., Z1; : : : ; ZN are independently and identically N(0; �1) distributed. (See Harville
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(1977).) Typical examples include one-way ANOVA and two-way ANOVA models with

random e�ects. Hobert and Casella (1996) gave necessary and su�cient conditions for the

propriety of the posterior distribution for a class of noninformative priors for variances

components assuming independence of random e�ects.

3.2 Correlated random e�ects

There are many important situations where the random e�ects should be modeled as corre-

lated. Correlated models are especially appropriate for spatial e�ects. A number of related

methods are commonly used.

Direct speci�cation of correlation matrix. If the random e�ects are linearly ordered, as

for example with longitudinal data, it may be convenient to specify a correlation structure

directly. For example, to model correlation decreasing with distance, ZZZ = (Z1; : : : ; Zk)
t

can be taken to have the MVN(000;���) distribution, where ��� = (�ij) is the k�k matrix with

elements

�ij = ��ji�jj; (5)

and � > 0 and � 2 (�1; 1) are constants. For MCMC methods with modest size k (say,

k < 100 or so), it is sometimes feasible to generate ZZZ from the joint conditional distribution

directly. A number of authors including Cressie and Chan (1989) have used the distance

between area i and area j to introduce spatial correlation.

AR models. Again assuming a linear ordering for the components of ZZZ, a commonly

used structure is the AR(1) model with

Zi = �Zi�1 + �i; i = 2; : : : ; k; (6)

where � is a constant in (�1; 1), and the �i are independent and identically N(0; �1) dis-

tributed. If Z1 � N(0; �1=(1��2)), the distribution of ZZZ is given by (5) with � = �1=(1��2).

Ord (1975) proposed a generalized AR(1) model by de�ning

Zi = �
kX

j=1

CijZj + �i; (7)

where the Cij are �xed constants satisfying Cii = 0, and �1; : : : ; �k are iid N(0; �1). Here

� is a \correlation coe�cient," measuring the correlation among Zi in the sense that the
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larger j�j is, the stronger the correlation among the components of ZZZ. For example, if the

Zi are linearly ordered, one can de�ne their joint distribution by assuming

Z1 = �Z2 + �1;

Zi = �(Zi�1 + Zi+1) + �i; i = 2; : : : ; k � 1; (8)

Zk = �Zk�1 + �k:

One advantage of (7) is that the formulation generalizes easily to two or more dimensions.

Taking CCC = (Cil) to be the k � k matrix of coe�cients, III the k � k identity matrix, and

WWW � = III � �CCC; (9)

model (7) is equivalent to WWW �ZZZ = (�1; : : : ; �k)
t: If WWW � is nonsingular, ZZZ has a multivariate

normal distribution with mean zero and covariance matrix ��� = �1(WWW
t
�WWW �)

�1. A common

choice of CCC is the adjacency matrix AAA = (aij)k�k; de�ned by

aij =

8><
>:

1; if j is adjacent to i,

0; otherwise.
(10)

The class of distributions for ZZZ when WWW � = III � �AAA has been used in modeling random

regional e�ects in disease mapping by Sun, Tsutakawa, Kim and He (1997) and random

county e�ects in hunting success rates from a turkey hunting survey in the State of Missouri

by He and Sun (1998).

One appealing way to view the prior for ZZZ is through the conditional distributions of Zi

given ZZZ�i = (Zj ; j 6= i). For the simple AR(1) prior (6), it can be shown that BBB = �1���
�1

is a tridiagonal matrix with diagonal elements (1; 1 + �2; : : : ; 1 + �2; 1) and o�-diagonal

elements ��. It follows easily that ZZZ has the Markov property

ZijZZZ�i � N
� �

1 + �2
(Zi�1 + Zi+1);

�1

1 + �2

�
; for i = 2; : : : ; k � 1;

that is, the conditional distribution of Zi given the rest depends only on adjacent variables.

Curiously, the generalized AR prior speci�ed through the adjacency matrix in (8) does not

have a similar Markov property. This follows from the fact that ����1 = ��11 WWW t
�WWW � is a

banded matrix but is not tridiagonal. Instead, ZijZZZ�i depends on (Zi�2; Zi�1; Zi+1; Zi+2)

for 3 � i � k � 2.
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CAR(1) model. In an e�ort to use priors with the appealing �rst-order Markov property

in spatial modeling, many authors have adopted conditional autoregressive or CAR models,

which are developed by specifying the conditional distributions directly in a (presumably)

consistent manner. One popular model takes

ZijZZZ�i � N
� �
di

kX
j 6=i

CijZj ;
�1

di

�
; (11)

where Cij and di > 0 are constants satisfying Cii = 0. This is a special case of Besag's

(1974) model with

f(ZijZZZ�i) =
� �i

2��1

� 1

2 exp
n
�
�i

2�1

�
Zi �

kX
j 6=i

�ijZj

�2o
; (12)

i = 1; : : : ; k. Suppose BBB is the k � k matrix with diagonal elements �i and ijth o�-

diagonal elements ��i�ij. Besag proved that if BBB is symmetric and positive de�nite, these

conditional distributions lead to the joint probability density of ZZZ,

f(ZZZ) = (2��1)
�k=2jBBBj1=2 exp

�
�

1

2�1
ZZZ tBBBZZZ

�
; (13)

i.e. ZZZ � MVN(000; �1BBB
�1). In the context considered here, suppose

BBB = BBB� = DDD � �CCC; (14)

where DDD is a k�k diagonal matrix with positive elements (d1; : : : ; dk), and CCC is a symmetric

matrix with Cii = 0. If BBB� is positive de�nite, then the joint distribution of ZZZ is (13), and

the conditional distributions of Zi given ZZZ�i are (11).

In practice, these models are important because the simple conditional distributions

depending only on neighboring values for the Zi are desirable for Bayesian analysis using

Markov chain Monte Carlo methods. Here are two important cases.

Case 1. Assume that CCC = AAA; the adjacency matrix, and di =
P

j Cij . If � 2 (�1; 1),

then BBB is positive de�nite and the conditional distribution of Zi given ZZZ�i is N(� �Zi; �1=ni),

where ni is the number of neighbors of location i; and �Zi is the mean of the ni neighboring

Zjs. (This corresponds to �i = ni and �ij = �=ni if j is adjacent to i and zero otherwise.)

This model was studied in Besag (1975) and Ripley (1981).

Case 2. Assume that CCC = AAA, the adjacency matrix, and DDD = III. Let �1 and �k be the

smallest and largest eigenvalues of CCC. If ��11 < � < ��1k , then BBB is positive de�nite and
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the conditional distribution of Zi given ZZZ�i is N(�
P

j 6=i aijZj ; �1). This model was used in

Ripley (1988).

However, there are potential problems in modeling the dependence among the Zi

through the choice of (�i; �ij) in (12). One problem, singularity of BBB, is addressed fur-

ther in the next section. Another possible problem is with specifying a symmetric matrix

BBB. The speci�cation in Case 1 with conditional variance �1=ni seems unrealistic when � is

small, since in the limiting case � = 0, the Zi are independent but the variances still depend

on the number of neighbors. This may not make sense near boundaries or in nonregular

cases. On the other hand, in Case 2 the conditional variance of Zi does not depend at all

on the number of neighbors. As an alternative, suppose we let the conditional distribution

of Zi given ZZZ�i be N(� �Zi; �1(1 + �=ni)) and assume 0 � � � 1. Formally, this is equivalent

to a CAR model with �i = (1 + �=ni)
�1 and

�ij =

8><
>:

�=ni; if j is adjacent to i,

0; otherwise.

Unfortunately, the ijth o�-diagonal element of BBB, �i�ij = �=(�+ ni), is not equal to �j�ji

unless ni = nj. Even in the linearly ordered case, this fails at the boundary where n1 = 1

and nj = 2 for 1 < j < k. Thus care must be taken in specifying a CAR model.

3.3 Strongly correlated random e�ects

If the determinant jBBBj is zero, the set of full conditional distributions given by (12) is not

\compatible," a de�nition used by Arnold and Press (1989), in the sense that there is no

joint density of ZZZ consistent with the corresponding conditional densities. However, there

are situations in practice where a nonpositive de�nite BBB is desirable. For example, if �! 1

in (14) when CCC = AAA; the adjacency matrix, and DDD is the diagonal matrix of row sums of

CCC, the model is a Markov random �eld. Clearly BBB is singular.

When the matrix BBB is nonpositive de�nite, there are two possible interpretations. One

way is to consider a lower dimensional distribution, in the sense that it is proper in certain

directions but degenerate in some other directions. For example, let r be the rank of BBB, and

let �1; : : : ; �r be the positive eigenvalues of BBB. Write BBB = ���������t, where ��� = (


1; : : : ; 


k)

is an orthogonal matrix, and ��� = diag(�1; : : : ; �r; 0; : : : ; 0). Let ���1 = (


1; : : : ; 


r) and
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���1 = diag(�1; : : : ; �r). Then BBB = ���1���1���
t
1. Now let UUU 1 = (U1; : : : ; Ur)

t be a vector of

independent random variables where Ui � N(0; �1�
�1
i ). Then ZZZ = ���1UUU 1 has a singular

normal distribution with mean 000 and covariance matrix �1BBB
�, where BBB� is a pseudo-inverse

of BBB. We often write this distribution as MVN(000; �1BBB
�). The joint distribution has the

form

f(ZZZ) / (2��1)
r
2 jBBBj

1

2

+ exp
�
�

1

2�1
ZZZ tBBBZZZ

�
; (15)

where jBBBj+ is de�ned to be
Qr

i=1 �i, the product of all positive eigenvalues of BBB. Note that

based on such a singular normal distribution, the full conditional distribution of Zi given

ZZZ�i is degenerate instead of a normal distribution. The distribution of ZZZ is essentially

proper on a lower dimensional space, so ZZZ is a vector of strongly correlated random e�ects.

Alternatively, we can sample an additional random sample UUU2 = (Ur+1; : : : ; Uk)
t from a


at constant density over a k�r dimensional Euclidian space. Now de�ne ZZZ = ���(UUU t
1; UUU

t
2)

t:

We can see that the joint density of ZZZ has the form (15), which is improper because BBB is

singular. However, we can formally relate (15) to (12) by noting that

f(ZijZZZ�i) = f(Z1; : : : ; Zk)
�Z 1

�1
f(Z1; : : : ; Zk)dZi:

Hobert and Casella (1998) have called this type of relationship \functionally compatible,"

in contrast to one being \compatible."

Markov random �eld models. In (14), if CCC = AAA = (aij); di =
P

j 6=i aij, and � = 1,

then the distribution of ZZZ is often called a Markov random �eld model (cf. Kindermann

and Snell (1980)). Such models have been used for modeling spatial correlations in disease

mapping and other contexts by Besag, York, and Molli�e (1991) and used by Bernardinelli

and Montomoli (1992), Bernardinelli et al. (1995), Carlin and Louis (1996), Waller et al.

(1997) and Ghosh et al. (1998) among others.

Autocorrelated random e�ects. We next give a class of strongly correlated distributions.

De�ne the backwards di�erence operator HHHk to be the k � k matrix

HHHk =

0
BBBBBB@

1 0 0 � � � 0 0

�1 1 0 � � � 0 0

� � � � � � � �

0 0 � � � � �1 1

1
CCCCCCA
;
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and let

GGGkd = [0(k�d)�d j IIIk�d]

be the lower (k � d) rows of the k-dimensional identity matrix Ik. Now let the structural

matrix BBB in (15) be

BBBkd = (GGGkdHHH
d
k)

tGGGkdHHH
d
k: (16)

BecauseBBBkd has rank k�d, ZZZ has a singular distribution, which we write as MVN(000; �1BBB
�
kd),

where BBB�
kd is a pseudo-inverse of BBBkd.

AR(1) (The �rst order di�erence model). When d = 1, the prior on ZZZ is called the

�rst order di�erence or random walk prior. See Clayton (1996). In this case the structural

matrix has the form

BBBk1 =

0
BBBBBBBBB@

1 �1 0 0 � � � 0 0 0

�1 2 �1 0 � � � 0 0 0

� � � � � � � � � �

0 0 0 0 � � � �1 2 �1

0 0 0 0 � � � 0 �1 1

1
CCCCCCCCCA
k�k

:

AR(2) (The second order di�erence) Model. When d = 2, the prior on ZZZ is called

the stochastic-trend or second order di�erence prior. See Clayton (1996). In this case the

structural matrix has the form

BBBk2 =

0
BBBBBBBBBBBBBBBB@

1 �2 1 0 0 � � � 0 0 0 0 0

�2 5 �4 1 0 � � � 0 0 0 0 0

1 �4 6 �4 1 � � � 0 0 0 0 0

� � � � � � � � � � � � �

0 0 0 0 0 � � � 1 �4 6 �4 1

0 0 0 0 0 � � � 0 1 �4 5 �2

0 0 0 0 0 � � � 0 0 1 �2 1

1
CCCCCCCCCCCCCCCCA
k�k

:

Note that this model can be obtained by the iterated formula

Zi = 2Zi�1 � Zi�2 + �i; i = 3; : : : ; k:

Such a second order random e�ects prior has been used for patient monitoring by Berzuini

(1996).
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3.4 Some Examples of the AR(d) model

To see the di�erences among the AR(d) models when we change d, in Figure 1 we graph

three sample paths of the AR(d) process prior for ZZZ using k = 100, �1 = 1 and d = 1; 2; 3.

Note that the rank of BBBkd is k�d. When d = 1, the sample paths are simple random walks

and locally rough, but sample paths are smoother when d � 2.

4 Hierarchical GLMMs

Bayesian analysis for the GLMs (1){(2) and the GLMMs given by (1) and (3) is studied

in Clayton (1996). We will discuss the GLMMs given by (1) and (4). For illustration,

we will consider normal residual e�ects ei. A full hierarchical Bayesian approach requires

the speci�cation of prior distributions for ���; the variance �0 of the distribution of ei; the

variance �1 of the distribution of random e�ects ZZZ, and the scale parameter �:

Although the commonly used prior of the �xed e�ects ��� is normal, we will assume

a noninformative prior for ���, in particular, one having a constant density. We will not

give a speci�c form for the priors of (�0; �1; �). Since the prior for ��� is improper, and the

prior for ZZZ is also improper for a singular BBB; the joint posterior distribution may still

be improper. As noted by Hobert and Casella (1996) and Sun, Tsutakawa and Speckman

(1997), the propriety of the posterior is very important in Bayesian computation, especially

when Markov chain Monte Carlo methods are used. Sun, Tsutakawa and Speckman (1997)

considered a one-parameter distribution family where the prior for the parameters follows

a linear mixed model and found conditions for a proper posterior distribution. Here we

extend the results to the GLMM model, where the observations follow the densities (1)

with canonical parameters �i and a common scale parameter �. We will only consider the

case where there is a common variance component �1 for the whole vector of ZZZ. Some

generalizations to block random e�ects can be found in Sun et al. (1998). We use the

following notation. Note that for Bi(�) de�ned in (1), the �rst derivative B0
i is a strictly

increasing function. Let Hi be the inverse function of B0
i. Note that for any �xed �, the

likelihood function fi(yij�i; �) is bounded by

Mi(�) � sup
�i

fi(yij�i; �)

12
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Figure 1: sample paths of CAR(d) models for ZZZ when n = 100.
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= exp[Ai(�)
�1fyiHi(yi)�Bi(Hi(yi))g+ Ci(yi;�)]: (17)

Theorem 4.1 Consider the GLMMs (1) and (4) with normal residual e�ects ei iid �

N(0; �0). Assume that

(a) there exists a subset of f1; : : : ; Ng, say Jn = (i1; : : : ; in); such that

Z Y
j =2Jn

Mj(�)

( Y
j2Jn

Z
fj(yjj�j ; �)h

0
j(�j)d�j

)
F (d�) <1; (18)

where F (�) is the prior distribution for �;

(b) the design matrix XXX�
1 = (xxx1;i1; : : : ; xxx1;in)

t has full rank p, and XXX�
2 = (xxx2;i1; : : : ; xxx2;in)

t

has the same rank as the matrix XXX2 = (xxx2;1; : : : ; xxx2;N)
t;

(c) the prior for ��� is a constant and ZZZ follows the density (15);

(d) the rank of (XXX�t
2 RRR1XXX

�
2 +BBB) is k, where RRR1 = IIIn �XXX�

1(XXX
�t
1 XXX

�
1)
�1XXX�t

1 ;

(e) the prior for (�0; �1) satis�es the moment condition,

IEf�
� 1

2
(n�p�k)

0 �
� 1

2
k

1 + �
� 1

2
(n�p)

0 g <1: (19)

Then the posterior distribution of (���; �; ���; ZZZ; �0; �1) given YYY = (y1; : : : ; yN) is proper.

Proof. Without loss of generality, assume that Jn = f1; : : : ; ng in assumption (a) and

that �i has a prior density gi. The posterior density of (���; ���; ZZZ; �0; �1) given (YYY ; �) is

p(���; ���; ZZZ; �0; �1jYYY ; �) /
NY
i=1

fi(Yij�i; �)h
0
i(�i)�

� 1

2
(N�n)

0 �

NY
i=n+1

exp
h
�

1

2�0
fhi(�i)� xt1i��� � xt2iZZZg

2
i 1Y
j=0

gj(�j)G:

where

G =
1

�
n
2

0 �
k
2

1

exp
n
�
(VVV ��XXX�

1����XXX
�
2ZZZ)

t(VVV ��XXX�
1����XXX

�
2ZZZ)

2�0
�
ZZZ tBBBZZZ

2�1

o
:

Here VVV � = (h1(�1); : : : ; hn(�n))
t. Let ���� = (�1; : : : ; �n)

t: Using inequality (17) and inte-

grating with respect to (�n+1; : : : ; �N)
t,

p(����; ���; ZZZ; �0; �1jYYY ; �) /
NY

i=n+1

Mi(�)
nY

j=1

fj(yjj�j; �)h
0
j(�j)G:

14



Using arguments similar to those in Sun, Tsutakawa and Speckman (1997), we get

Z
IRp

Z
IRk

Gd���dZZZ � f�
� 1

2
(n�p�k)

0 �
� 1

2
k

1 + �
� 1

2
(n�p)

0 g:

Therefore, from assumption (e),

Z Z
p(����; �jYYY )d����F (d�)

/
Z NY

i=n+1

Mi(�)

(
nY

j=1

Z
fj(yjj�j; �)h

0
j(�j)d�j

)
F (d�);

which is �nite by (18).

Remark 4.1 A common prior for the variance components �i is inverse gamma(ai; bi),

whose density is

gi(�i) /
1

�ai+1i

exp(�bi=�i): (20)

Clearly, when bi > 0, n� p� k + 2a0 > 0 and k > 2a1, condition (19) holds.

Remark 4.2 When the prior of � is degenerate, i.e., a known constant as in the Poisson

or binomial cases, condition (18) becomes

Z
fj(yjj�j; �)h

0
j(�j)d�j <1; for j 2 Jn;

which is equivalent to the condition,

Z
exp[Aj(�)

�1fyj�j �Bj(�j)g]h
0
j(�j)d�j <1; for j 2 Jn: (21)

A condition similar to (21) was required for all j in Ghosh et al. (1997) for propriety of the

posterior distribution.

Example 4.1 Suppose fi(yij�i; �) is Poisson with mean �i = mipi. This is a special case

of (1) with � = 1 and �i = log(mipi). Let hi(�i) = �i � log(mi) = log(pi): Here � = 1 and

hi(�i) follows the linear structure (4). Then fi(yij�i; �) is bounded for any yi � 0, and

Z
fi(yij�i; � = 1)h0i(�i)d�i =

Z 1

0

e��i�
yi�1
i

yi!
d�i;

which is �nite for yi > 0: Under assumptions (b)-(e) of Theorem 4.1 , the joint posterior

distribution of (p1; : : : ; pN ; ���; ZZZ; �0; �1) is proper.
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Example 4.2 Suppose fi(yij�i; �) is binomial with parameters mi and pi. This is a special

case of (1) with � = 1 and �i = logfpi=(1 � pi)g: Assume hi(�i) = �i has structure (4).

Then fi(yij�i; � = 1) is bounded in �i for any 0 � yi � mi, and

Z 1

�1
fi(yij�i; � = 1)h0i(�i)d�i =

Z 1

�1

eyi�i

(e�i + 1)mi
d�i

=
Z 1

0
p
yi�1
i (1 � pi)

mi�yi�1dpi;

which is �nite if and only if 0 < yi < mi. Under assumptions (b){(e) of Theorem 4.1, the

joint posterior distribution of (p1; : : : ; pN ; ���; ZZZ; �0; �1) is proper.

Example 4.3 When Yij(�i; �2) � N(�i; �
2); we have �i = �i; � = �2; Ai(�) = �, Bi(�i) =

�i and Ci(yi; �) = �0:5 log(�) � y2i =(2�). If hi(�i) = �i, this is a typical example of a

normal hierarchical model. It is easy to see that Mi(�) = 1=
p
2�� and

R
fi(yij�i; �)d�i = 1:

Condition (18) becomes

Z 1

0
��

1

2
(N�n)F (d�) <1;

which always holds when N = n and F is a proper prior for �. In addition, assumptions (b){

(e) of Theorem 4.1 hold. Then the joint posterior distribution of (�1; : : : ; �N ; �
2; ���; ZZZ; �0; �1)

is proper.

Example 4.4 Suppose Yij(�i; �) � gamma(�;�=�i), with density

fi(yij�i; �) =
��y��1i

�(�)��i
expf��yi=�ig:

Here � is the common shape parameter and �i is the mean of Yi for given (�i; �). This

is a special case of (1) with � = �, �i = 1=�i, Ai(�) = �1=�, Bi(�i) = log(�i) and

Ci(yi; �) = � log(�) + (� � 1) log(yi) � logf�(�)g. Choose hi(�i) = log(�i) = � log(�i).

Then

Mi(�) = y�1i ��e��=�(�) and
Z 1

0
f(yij�i; �)

1

�i
d�i = y�1i :

If N = n and � has a proper prior, condition (18) holds. If assumptions (b){(e) in Theorem

4.1 hold, the joint posterior distribution of (�1; : : : ; �N ; �; ���; ZZZ; �0; �1) is proper.
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When � is unknown but Yi has a continuous distribution, as in the normal and gamma

examples, we often choose n = N and Jn = f1; : : : ; Ng, so that condition (18) becomes

Z ( NY
j=1

Z
fj(yjj�j; �)h

0
j(�j)d�j

)
F (d�) <1:

Remark 4.3 Assumption (d) in Theorem 4.1 is crucial. Otherwise, the results may not

hold. On the other hand, it is easy to see that the rank of the matrix (XXX t
2RRR1XXX2+BBB) equals

k if either the rank of (XXX1;XXX2) is p+ k or the rank of (BBB) = k. The following results can

be proved similarly.

Theorem 4.2 Assume that the rank of (XXX t
2RRR1XXX2 + BBB) < k; where RRR1 = IIIN �

XXX1(XXX
t
1XXX1)

�1XXX t
1, and XXX1 and XXX2 are design matrices based on the full data. Under

assumption (d), for any proper prior of (�0; �1; �); the posterior is improper.

Proof. Let G be de�ned as in the proof of Theorem 4.1, and replace n by N and

(XXX�
1;XXX

�
2) by (XXX1;XXX2): From Sun, Tsutakawa and Speckman (1997), we know that for any

given (�0; �1),

Z
IRp

Z
IRk

Gd���dZZZ =1:

The results follows.

The following result can be proved using the same argument as that of Theorem 4.1.

Theorem 4.3 Given assumptions (a), (b) and (c) of Theorem 4.1, suppose that either

condition (d1) or (d2) below holds:

(d1) the rank of (XXX�t
2 RRR1XXX

�
2) is k and (19) is replaced by

IEf�
� 1

2
(n�p�k)

0 �
� 1

2
k

1 g <1: (22)

(d2) the rank of BBB is k and (19) is replaced by

IEf�
� 1

2
(n�p)

0 g <1: (23)

Then the result of Theorem 4.1 still holds.

17



5 Bayesian Computation

Bayesian inference for hierarchical GLMMs can be implemented via Markov chain Monte

Carlo methods such as Gibbs sampling and/or the Metropolis algorithm. We assume that

the prior for the variance components �i follows an inverse gamma(ai; bi) distribution with

density (20). The proof of the following fact is omitted.

Fact 5.1 The full conditional distributions are as follows.

1. ���j(���; �; ZZZ; �0; �1) � MVNp((XXX
t
1XXX1)

�1XXX t
1(VVV �XXX2ZZZ); �0(XXX

t
1XXX1)

�1):

2. ZZZj(���; �; ���; �0; �1) � MVNk(MMM 1XXX
t
2(VVV�XXX1���); �0MMM 1);whereMMM1 = (XXX t

2XXX2+�0�
�1
1 BBB)�1:

3. �0j(���; �; ���; ZZZ; �1) � inverse gamma(a0+
n
2
; b0+

1
2
(VVV �XXX1����XXX2ZZZ)

t (VVV �XXX1����XXX2ZZZ)):

4. (�1j���; �; ���; ZZZ; �0) � inverse gamma(a1+
k
2
; b1 +

1

2
ZZZ tBBBZZZ):

5. Given (�;ZZZ; �0; �1); the �j (or vj = hj(�j)) are independent. In fact, since �j and

vj are related by a one-to-one transformation, we can simulate from either �j or vj,

depending on simplicity. The density of �j given (�; ���; ZZZ; �0; �1) is

sj(�j) / exp
hyj�j �Bj(�j)

Aj(�)
�
fhj(�j)� xxxt1j��� � xxxt2jZZZg

2

2�0

i
h0j(�j);

and the density of vj given (�;ZZZ; �0; �1) is

~sj(vj) / exp
hyjh�1j (vj)�Bjfh

�1
j (vj)g

Aj(�)
�
fvj � xxxt1j��� � xxxt2jZZZg

2

2�0

i
;

where h�1j is the inverse function of hj .

6. If the prior for � is degenerate, so is its posterior. If � has the prior density g(�);

then its posterior density given (���; ���; ZZZ; �0; �1) is

g�(�) / g(�)
NY
i=1

exp[Ai(�)
�1fyi�i �Bi(�i)g+ Ci(yi;�)]:

Sampling from a normal or inverse gamma distribution is very simple. In Part 5 of Fact

5.1, the conditional density of �i or vi is often log-concave. For sampling from a log-concave

density, Gilks and Wild's (1992) adaptive method or Berger and Sun's (1993) direct method

can be used. Here are Poisson and binomial examples.
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Example 4.1 (continued). When hi(�i) = �i � log(mi) = log(pi),

si(�i) / exp
h
yi�i � e�i �

1

2�0
f�i � log(mi)� (xxxt1i��� + xxxt2iZZZ)g

2
i
:

Therefore

@2

@�2i
logfsi(�i)g = �e�i � ��10 < 0:

Consequently, the conditional density of �i given (�;ZZZ; �0; �1) is log-concave. Since vj is a

linear transformation of �i, the conditional density of vj is also log-concave.

Example 4.2 (continued). When hi(�i) = �i = logfpi=(1 � pi)g, we have

si(�i) / exp
h
yi�i �mi log(1 + e�i)�

f�i � log(mi)� (xxxt1i��� + xxxt2iZZZ)g
2

2�0

i
:

We can show that

@2

@�2i
logfsi(�i)g = �mie

�i(1 + e�i)�2 � ��10 < 0:

So the conditional density of �i = vi given (�;ZZZ; �0; �1) is log-concave.

Example 4.3 (continued). When hi(�i) = �i, we have

si(�i) / exp
h
�
(yi � �)2

2�2
�
f�i � (xxxt1i��� + xxxt2iZZZ)g

2

2�0

i
:

Clearly, the conditional distribution of �i given others is normal with mean �i(�
2+�i)

�1yi+

�2(�2 + �i)
�1(xxxt1i��� + xxxt2iZZZ) and variance �2�i(�

2 + �i)
�1.

Example 4.4 (continued). When hi(�i) = log(�i); we have

si(�i) / exp
h
��yi�i + � log(�i)�

flog(�i)� (xxxt1i��� + xxxt2iZZZ)g
2

2�0

i
:

This conditional density is not necessary logconcave. However, its transformation �i =

log(�i) has the conditional density

~si(�i) / exp
h
��yie

�i + (�+ 1)�i �
f�i � (xxxt1i��� + xxxt2iZZZ)g

2

2�0

i
:

It is easy to verify that @2

@�2i
logf~si(�i)g = ��yie�i � ��10 , which is negative. Consequently,

we can simply sample from the logconcave density of �i, then make the transformation

�i = e�i.
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For numerical illustrations of the Gibbs sampler discussed here, see the binomial appli-

cation used in He and Sun (1998) and the Poisson example given in Sun et al. (1998).
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