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Spatio-Temporal Interaction with Disease Mapping

Dongchu Sun, Robert K. Tsutakawa, Hoon Kim and Zhuoqiong He

Summary

Markov chain Monte Carlo methods are used to estimate mortality rates under a Bayesian

hierarchical model. Spatial correlations are introduced to examine spatial e�ects relative to both

regional and regional changes over time by groups. A special feature of the models is the inclusion

of longitudinal variables which will describe temporal trends in mortality or incidences for di�erent

population groups. Disease maps are used to illustrate the role of di�erent parameters in the

model and pinpointing areas of interesting patterns. The methods are demonstrated by male

cancer mortality data from the state of Missouri during 1973{1992. Of special interest will be the

geographic variations in the trend of lung cancer mortality over the recent past. Marginal posterior

distributions are used to examine e�ects due to spatial correlations and age di�erence in temporal

trends. Numerical results from the Missouri data show that though spatial correlations exist, they

do not have a large e�ect on the estimated mortality rates.

KEY WORDS: Bayesian prediction; Gibbs sampling; Linear mixed models; Multivariate normal;

Markov chain Monte Carlo; Mortality rates; Variance Components.
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1 Introduction

Disease maps can be used to highlight geographic areas with high and low incidence or mortality

rates of a speci�c diseases, such as lung cancer, and the variability of such rates over a state or

country. They can also be used to detect spatial clusters which may be due to common environ-

mental, demographic or cultural e�ects shared by neighboring regions. Although these maps are

often constructed with countries or states as basic units, the boundaries between such units can be

epidemiologically arbitrary when the neighboring units are homogeneous.

Mapping of crude rates can be non-informative or misleading when the sizes of the population

for some of the units are small, resulting in large variability in the estimated rates, and making

it di�cult to distinguish chance variability from genuine di�erences. Pooling of neighboring units

often masks important real di�erences, which could aid in pinpointing potential causes.

An example of the mapping of crude rates is illustrated in Figure 1, which shows annual male

lung cancer mortality rates per 100,000 population by age group, county and period for the state

of Missouri in central USA. The age groups are 45-54, 55-64, 65-74 and 75+. The periods are 1973-

1977, 1978-1982, 1983-1987 and 1988-1992. The state has two large population centers, Kansas city

and St. Louis, several mid-size cities and a large number of sparely populated rural communities.

The city of St. Louis, which is not a part of any county, is quite urban, and di�ers from the

surrounding St. Louis county environmentally and socio-economically. By including the city of St.

Louis as a separated county, the state is divided into a total of 115 counties.

In Figure 1, we see the general increase in crude rates over the lower 3 age groups but no

general increase from the third to the fourth age group. There are some signs of an increase over

time for the two older groups. It is more di�cult to detect counties or clusters of counties with high

(or low) rates since the extreme rates tend not to appear consistently over county or time. Since

the excessive rates typically occur in small counties, where a di�erence of a few deaths can have

noticeable e�ect on the crude rates, it is important to separate the di�erent sources of variations.

Recent developments in empirical Bayes and Bayesian hierarchical modeling has made it possible

to obtain stable estimates for small areas, by using information from all of the areas to obtain

estimates for individual areas. The development on this topic has been greatly enhanced by rapidly

developing computational tools such as the Gibbs sampler (Gelfand and Smith1) and other Markov

chain Monte Carlo (MCMC) methods (Tanner2) for posterior analysis.

The literature on disease mapping has also grown at a rapid pace. One of the earlier works is
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by Breslow and Day3 who assumed that for a homogeneous population of size n, the frequency of

deaths Y; due to some disease over a given period, follows a Poisson distribution with mean np,

where p is the rate per individual and can be factored into several components such as age, sex, and

region. They computed maximum likelihood estimates of p for the di�erent sub-populations. Em-

pirical Bayes techniques for mortality rates were introduced by Manton, Woodbury, and Stallard4,

Tsutakawa, Shoop, and Marienfeld5, and Tsutakawa6. Di�erent types of spatial correlations among

neighboring regions were proposed by Whittle7, Besag8, and Clayton and Kaldor9. The distinction

between the simultaneously autoregressive model by Whittle and the conditionally autoregressive

model by Clayton and Kaldor has been discussed by Cli� and Ord10 and Cressie11. Clayton and

Bernardinelli12 pointed out that the conditionally autoregressive model in Clayton and Kaldor is

not appropriate for irregular lattices since the conditional variance of the regional e�ect does not

depend on the neighborhood structure. Various modi�cations and generalization with applications

can be found in Besag, York, and Molli�e13, Marshall14, Carlin and Louis15 and Ghosh, Natarajan,

Stroud, and Carlin16, among others.

The e�ects of age, sex, and race on cancer mortality are well known. There is less known about

how to analyze spatio-temporal e�ects. Lee and Lin17 discuss temporal e�ects in the context of

an age-period-cohort model by a Poisson mixed e�ect loglinear model using marginal maximum

likelihood, however without geographic e�ects. Bernardinelli et al.18;19 introduce spatio-temporal

e�ects in terms of a Poisson loglinear model where the rate of change depends on the region, however

without covariates. The analysis of mortality rates for cancer would not be very useful without the

use of age-sex speci�c rates. Waller, Carlin, Xia, and Gelfand20 introduced a spatio-temporal model

where the spatial e�ects are nested within time. For disease such as cancer, one would expect the

spatial e�ects to be systematically cross classi�ed with time and not have a separate distribution

within each time period. There is also some related work on Bayesian hierarchical age-period-cohort

modeling in Besag, et al.21, on the use of random covariates, e.g., amount of smoking, by Xia and

Carlin22 and on the use of time varying covariates by Knorr-Held and Besag23.

Motivated by the Missouri data, topics of special interest in this paper will be the following.

a. Demographic e�ects (age will be used for illustration, though sex and race may also be added.)

b. Spatial e�ects among di�erent geographic units.

c. Temporal e�ects on di�erent demographic groups.

d. Regional changes over time.

e. Spatial correlation among regional changes over time.
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f. Extra variation not explained by the mixed linear model.

g. Propriety of posterior distribution under noninformative prior distributions.

h. MCMC computing and Bayesian model �tting.

The extra variation in f has been considered by Tsutakawa6 through a Poisson-gamma model,

Besag et al.13 in their spatial models, and Ghosh et al.16 as a term in a generalized mixed linear

model, among several others. There is a nice discussion of the interpretation of extra variation and

spatially correlated random e�ects in space-time models in Knorr-Held and Besag23. Our spatial

e�ects have two components, one to represent the overall di�erence among regions and another to

represent the rate of change over time for the di�erent regions.

In Section 2, we introduce a loglinear mixed model for mortality rates, where age e�ects are

�xed and regional e�ects are random. A conditionally autoregressive model (CAR) is used to

model the random e�ects. The model we use here is a modi�cation of an intrinsic autoregressive

model proposed by Besag et al.13 and includes an additional parameter which indicates the amount

of correlation among neighboring regions. Some properties of this model have been presented by

Sun, Tsutakawa and Speckman24. The prior distributions for the variance components and spatial

correlations are speci�ed. In Section 3, we present conditions on the noninformative priors so that

the posterior distributions are proper. In Section 4, estimation of the parameters via MCMC is

proposed. The available conditional distributions are summarized. Numerical results on age e�ects,

regional e�ects, variance components, spatial correlations are interpreted. It will be seen that these

estimates are quite robust in terms of the choices of hyperparameters. The convergence of Gibbs

sampling is investigated along the line of Gelman and Rubin25 diagnostics. Finally, data analysis

via disease mapping is presented in Section 5. Estimated mortality rates are plotted in the maps

for each of the four age groups and four time periods. Various other plots are used to examine the

regional features of the hierarchical model. Readers who are primarily interested in the model and

numerical results may wish to skip the technical details presented in Sections 3 and 4.1.

2 Hierarchical Model for Disease Rates

2.1 Loglinear Model

For a given county, age group, and time period, we �rst assume that the frequency of deaths Y , due

to a speci�c cause during a given time period, has a Poisson distribution with mean np, where n is
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the midperiod population size and p the rate per individual for this target population. Alternatively,

we may consider using the binomial distribution since n is known. However, in dealing with chronic

diseases such as cancer, where relatively few deaths occur \randomly" over time within each age

group, whose members vary throughout the period due to aging, the Poisson distribution is more

appropriate than the binomial, which assumes a constant population of individuals. In order to

represent the variability in p due to county, age and time we model the rate by a loglinear model

containing an extra variation term,

log(pijk) = �j + Zi + (�j +Wi)(tk � �t) + eijk ; (1)

where �t = K�1
PK

k=1 tk . Let Yijk be the corresponding observed frequency of deaths for the ith

county, jth age group and kth time period, i = 1; � � � ; I ; j = 1; � � � ; J ; k = 1; � � � ; K: For the data

set considered in the paper, (I; J;K) = (115; 4; 4). Thus �j represents the e�ect of the jth age

group, Zi the e�ect of the ith county and tk the midpoint of the kth time period. The change

over time is represented by rate of change (�j +Wi) for the jth age group in the ith county. We

treat �j and �j as �xed e�ects with some prior distribution and Zi and Wi as random e�ects with

some distribution whose hyperparameters will in turn have prior distributions. The extra variations

eijk are random e�ects, which have a prior distribution whose hyperparameters also have priors.

These extra variations include other sources of variations not explained by the linear part and could

include higher order interactions as well as unknown sources of variability in p: The non-uniqueness

of the above parameterization will be eliminated through prior distributions to be discussed later.

Conditionally on the rate pijk; we assume Yijk are independent Poisson random variables with

means nijkpijk, where nijk are the population sizes.

This model incorporates a particular form of spatio-temporal interaction, namely, increase in

log disease risk where the county slopes are allowed to have spatial correlation. Waller, Carlin and

Xia26 consider an extension of the Waller et al.20 model where they include a random e�ect to each

year, independent of the spatial e�ects. Their model allows a more general time trend than the

linear one by considering an autoregressive prior for the temporal e�ects, but does not explicitly

deal with space-time interaction.

2.2 Distributions of Zi and Wi

We represent the spatial correlation among counties by a modi�cation of the intrinsically autore-

gressive model introduced by Besag et al. 13. We �rst de�ne the I � I adjacency matrix CCC = (Cuv)
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where Cuv = 1 if two regions u and v share a common boundary, Cuv = 0 otherwise, with Cuu = 0.

Let Di consists of all regions adjacent to region i. We assume the CAR model de�ned by the

conditional probability density function

f(ZijZj; j 6= i) =
� di

2��1

�1=2
exp

n
�

di

2�1

�
Zi � �1 �Z�i

�2o
; (2)

where �1 > 0, j�1j < 1, �Z�i = d�1i
P

j2Di
Zj and di is the number of regions in Di.

The limiting case where �1 = 1 has been used by Besag et al. 13; Waller et al. 20, Ghosh et

al. 16, among others. Sun, Tsutakawa and Speckman24 have shown that when �1 = 1, the joint

distribution of ZZZ = (Z1; � � � ; ZI) is not singular normal but partially informative and improper. For

j�1j < 1, they apply Besag's3;p:201 result on an auto-regressive scheme to show that ZZZ is multivariate

normal with mean 0 and nonsingular covariance matrix �1(DDD��1CCC)
�1, where DDD = diag(d1; � � � ; dI):

We note that when �1 = 0, the Z0

is are independent and, when 0 � �1 � 1; �1 may be interpreted

as the shrinkage factor in the conditional mean,

E(ZijZj ; j 6= i) = (1� �1)� 0 + �1 �Z�i;

which is the weighted average of the prior mean 0 and the average of the neighboring Zj , with more

(less) weight given to the prior mean when �1 is small (large). Thus �1 serves as an index of spatial

dependence, a feature not present when �1 is restricted to 1.

Similarly, we assume that WWW = (W1; � � � ;WI)
0 has a multivariate normal distribution with

mean 0 and covariance matrix �2(DDD��2CCC)�1 for j�2j < 1. The conditional distribution of Wi given

Wj ; j 6= i; is then normal with mean �2W�i and variance �2=di, where W�i = d�1i
P

j2Di
Wj : We

note that correlation coe�cients �1 and �2 are assumed to be independent of age group and time

period.

For our illustration we have chosen to use the CAR model (2) for both ZZZ and WWW, which has,

to the best our knowledge, not previously been used in disease mapping. This model not only has

a proper joint distribution, but is simpler to implement in the MCMC algorithm than the model

previously used by Besag et al.13. Moreover, unlike the previous model, one can assess the degree

of correlations among neighboring regions through the posterior distribution of �1 or �2:

2.3 Choice of Priors

First de�ne ppp = (p111; � � � ; p11K; p121; � � � ; pIJK)0, ��� = (�1; � � � ; �J)0; ��� = (�1; � � � ; �J)0; ��� = (�1; �2)0

and ��� = (�1; �2)
0:
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We assume that for given (���; ���;ZZZ;WWW), the �rst stage prior distributions of pijk follows Equation

(1), where eijk are iid N(0; �0). The following conditional independence assumptions are needed.

� Given (���; ���;ZZZ;WWW); ppp is conditionally independent of ��� and ���;

� Given ��� and ���, ZZZ; WWW and (���; ���; �0) are mutually independent;

� �1; � � � ; �J ; �1; � � � ; �J ; �1; �2; �1; �2 and �0 are mutually independent.

To specify the Bayesian hierarchical model, we must specify the prior distributions of ���, ���, ���; ���;

and �0. In particular, the following conditional distributions are assumed.

� The age e�ect, �j � N(�mj; �mj), j = 1; � � � ; J ;

� The mean slope, �j � N(�sj ; �sj), j = 1; � � � ; J ;

� �l � Inverse Gamma type (al; bl); l = 0; 1; 2; with density

p(�l) / �
�(al+1)
l e�bl=�l ; �1 < al <1; and bl � 0:

� �1 and �2 are iid uniform on the interval (�1; 1):

Here the hyperparameters (�mj ; �mj), (�sj ; �sj), (al; bl) are �xed constants. When al > 0 and

bl > 0; �l has a proper distribution.

3 Propriety of Posterior Distribution

To complete the hierarchical model, we need to specify the hyperparameters (�mj ; �mj), (�sj ; �sj)

and (al; bl): In practice, it may not be easy to �nd these hyperparameters. Alternatively, it is more

convenient to �nd the noninformative priors for such a hierarchical model. The commonly used

noninformative prior for ��� and ��� are 
at priors, i.e. a constant prior for ��� and ���. Of course, this

can be a limiting case when �mj and �sj go to 1. Note that a 
at prior for �1 or �2 was also

assumed. Noninformative priors for �l are quite tricky. Following tradition, one may want to use

the prior 1=�l for �l, i.e. log(�l) has a constant prior. However, Sun, Tsutakawa and He27 show

that the posterior from using such a prior will be improper. For a linear mixed model we prefer

using the prior for �0 whose density is proportional to 1=�0 and constants priors for other variance

components (cf. Sun, Tsutakawa and He27). However, in doing so in our model the propriety of the

posterior may no longer hold. Our procedure for estimation is based on a theorem on the existence

of the posterior, which is given in the appendix.
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4 Estimation via MCMC

The number of parameters (ppp; ���; ���;ZZZ;WWW; ���; ���; �0) is IJK+2J+2I+2+2+1. In our case, because

(I; J;K) = (115; 4; 4), there are 2; 083 parameters. Clearly, Bayesian computation via numerical

integration is not feasible. Instead we used Gibbs sampling for the computation. For this, we need

to sample successively from full conditional distributions. In the next subsection, we �rst list these

full conditional distributions. Some of them are standard distributions such as normal and inverse

gamma, while many others require sampling from log-concave densities.

4.1 Available Conditional Distributions and Algorithm

We have found all the full conditional distributions for the above hierarchical structure. The proof

of these results are straight forward and thus omitted.

(i) For given (���; ���;ZZZ;WWW; ���; ���; �0); log(p111); � � � ; log(p11k); � � � ; log(pIJK)) are independent. For any

(i; j; k); the conditional density of vijk = log(pijk) given (���; ���;ZZZ;WWW; ���; ���; �0) is proportional

to

exp
n
yijkvijk � nijke

vijk �
1

2�0
(vijk � aijk)

2
o
; (3)

where

aijk = �j + Zi + (�j +Wi)(tk � �t): (4)

(ii) For any j = 1; � � � ; J , the conditional distribution of �j given (ppp; ���;ZZZ;WWW; ���; ���; �0) is

N
� �mj

�mj

+ 1
�0

P
i;k(vijk � Zi)

(IK=�0) + (1=�mj)
;

1

(IK=�0) + (1=�mj)

�
:

(iii) De�ne ci = ��10

P
j;k(vijk � �j); ccc = (c1; � � � ; cI)0, the I � I identity matrix by III, and AAAi =

DDD� �iCCC, i = 1; 2: Then the conditional distribution of ZZZ given (ppp; ���; ���;WWW; ���; ���; �0) is

MVNI

��JK
�0

III +
1

�1
AAA1

��1
ccc;
�JK
�0

III +
1

�1
AAA1

��1�
: (5)

(iv) The conditional distribution of �1 given (ppp; ���; ���;ZZZ;WWW; �2; ���; �0) is others is Inverse Gamma

(a1 +
1
2
I; b1 +

1
2
ZZZ0AAA1ZZZ):

(v) The conditional density of �1 given (ppp; �; ���;ZZZ;WWW; ���; �2; �0) is proportional to

jDDD� �1CCCj
1=2 exp

n �1

2�1
ZZZ0CCCZZZ

o
: (6)
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(vi) Let s2t =
PK

k=1(tk � �t)2. Then the conditional distribution of �j given (ppp; �;ZZZ;WWW; ���; �2; �0) is

proportional to

N
� �sj
�sj

+ 1
�0
[
P

i;k vijk(tk � �t)� s2t
P

iWi]

(Is2t=�0) + (1=�sj)
;

1

(Is2t=�0) + (1=�sj)

�
:

(vii) De�ne �i = ��10 [
P

j;k vijk(tk � �t) � s2t
P

j �j ] and ��� = (�1; � � � ; �I)
0. Then the conditional

distribution of WWW given (ppp; �; uuu;ZZZ; ���; �2; �0) is

MVNI

��Js2t
�0

III +
1

�2
AAA2

�
�1
���;
�Js2t
�0

III +
1

�2
AAA2

�
�1�

:

(viii) The conditional distribution of �2 given (ppp; �; ���;ZZZ;WWW; �1; ���; �0) is Inverse Gamma (a2 +

1
2
I; b2 +

1
2
WWW0AAA2WWW):

(ix) The conditional density of �2 given (ppp; �; ���;ZZZ;WWW; ���; �1; �0) is proportional to

jDDD� �2CCCj
1=2 exp

n �2

2�2
WWW0CCCWWW

o
:

(x) The conditional distribution of �0 given (ppp; �; ���;ZZZ;WWW; ���; ���) is Inverse Gamma (a0+
1
2
IJK; b0+

1
2

PI
i=1

PJ
j=1

PK
k=1 (vijk �aijk)

2); where aijk is given by (4).

It is easy to generate samples from the normal and inverse gamma distributions given in (ii){(iv),

(vi){(viii) and (x). We can show that if we use the parameter pijk in the computation, the condi-

tional density of pijk given others is not log-concave. However, as shown below, vijk = log(pijk),

which is a monotone transformation of pijk, has a log-concave conditional density. Alternatively,

we can simulate in terms of eijk in place of pijk or vijk : Using vijk makes it easier to relate to

the classical linear mixed model. We will also see that the conditional densities of �1 and �2 are

log-concave. This makes it possible for us to use the adaptive rejection sampling method by Gilks

and Wild28 to sample from these log-concave densities.

Lemma 1 The conditional density of vijk = log(pijk) given in (i) is log-concave.

Proof. Let h(vijk) be the exponent in (3). The second derivative of h with respect to vijk is

�nijk exp(vijk)� ��10 , which is negative.

We note that there are two ways to simulate the conditional distribution of ZZZ (or WWW). The

conventional method is to perform this one Zi at a time. The other is to perform this on the joint

distribution of ZZZ as a block. From (iii) and (vii), we see that the mean and variance matrix of
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conditional density of ZZZ (or WWW) involve the inverse of an I � I matrix, such as JK
�0
III + 1

�1
AAA1 (or

Js2
t

�0
III + 1

�2
AAA2). In our case, this requires computing inverses of J + 1 such matrices within each

Gibbs cycle. Moreover, matrix multiplications are also needed to simulate a sample of (�1; �1) or

(�2; �2). To get accurate Bayesian estimators, a large number of cycles is needed. It would be nice

to reduce the number of matrix multiplications and have a better computational formula which

does not require �nding inverses of such matrices. For our particular problem, it is simpler, for this

reason, to sample the components of ZZZ one at a time. For this we use the conditional distribution

of Zi given (Zj ; j 6= i; ppp; �; ���;WWW; ���; ���; �0) by

N
� 1
�0

P
j;k(vijk � �j) +

�1
�1

P
l cilZl

(JK=�0) + (di=�1)
;

1

(JK=�0) + (di=�1)

�
:

Similarly, the conditional distribution of Wi given (Wj ; j 6= i; ppp; �; ���;ZZZ; ���; ���; �0) is

N
� 1
�0
f
P

j;k vijk(tk � �t)� s2t
P

j �jg+
�2
�2

P
l cilWl

(Js2t =�0) + (di=�2)
;

1

(Js2t =�0) + (di=�2)

�
:

Lemma 2 (a) Let ��1; : : : ; �
�

I be eigenvalues of CCCDDD
�1: The conditional density of �1, given in (6),

is equivalent to

h(�1) / exp
n1
2

IX
i=1

log(1� �1�
�

i ) +
�1

2�1
ZZZ0CCCZZZ

o
; �1 2 (�1; 1): (7)

(b) The conditional density of �1 in (6) is log-concave.

Proof. Part (a) follows from the fact that jDDD � �1CCCj = jDDDj
QI

i=1(1 � �1�
�

i ). For part (b), the

second derivative of h(�1) is

@2

@�21
log[h(�1)] = �

1

2

IX
i=1

��i
2

(1� �1�
�

i )
2
< 0:

This proves the results.

Similarly, we can show that the conditional density of �2 is also log-concave. Note that we

only need to compute the eigenvalues and eigenvectors of CCCDDD�1 once at the beginning of the

computation.

4.2 Numerical Results

4.2.1 Speci�cation of Prior Distributions

In our numerical example, we have used two sets of prior distributions which are speci�ed in

Table 1. The �rst set is used in our main analysis of mortality rates and consists of relatively
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di�use but proper prior distributions. The second set is used to examine the robustness of the

posterior distribution relative to changes in the prior and consists of noninformative distributions.

A summary of the marginal posterior distributions of the parameters (���; ���; ���; ���; �0) under the

informative prior is presented in Table 2. The robustness issue will be addressed in Section 4.3.

4.2.2 Age e�ects ��� and ���

The posterior means of �j indicate a rapid increase with respect to age, except the two oldest

groups which have very similar values. The posterior means of �j show an increase with respect to

age. The negative value for the youngest group indicates an overall decrease in mortality over the

20 year period. A more detailed pattern of the increases is seen in the posterior distributions of �j

and �j plotted in Figure 2. One implication of this is that there is a positive interaction between

age and time.

4.2.3 Variance Components ��� and �0

The variability in ZZZ;WWW and eee may be seen in their variances, �1; �2; and �0, whose posterior

distributions are summarized in Table 2 and plotted in Figure 3. The concentration of the posterior

distribution away from 0 for �0 and �1 indicates the importance of eijk and Zi in the model. In

particular, a positive �0 indicates the lack of �t of the linear term in (1) without the extra variation

eijk . The small values of �2 indicates there is little variability in the changes over time among most

counties. However, we will see some noteworthy exceptions in the disease maps of Wi in Section 5.

We have computed the ordinary sum squares of errors of the �tted loglinear model. About 64:68%

of the total variation in log(p̂ijk) is explained by the linear �t. That is to say, about 35:32% of

total variation remains in the extra variation êijk , which could be due to other e�ects that are not

included in linear terms of the model.

4.2.4 Spatial Correlations �i

Table 2 and the plots of the posterior distributions of the �0s shown in Figure 4 indicate the spatial

correlation �1 for ZZZ is clearly positive but �2 for WWW has distribution widely spread about the origin.

The e�ect of �1 and �2 on ZZZ may be seen by comparing the posterior means of ZZZ with and

without these parameters. Figure 5 gives scatter plots which suggest that the e�ect of �1 on ZZZ is

present, but the e�ect of �2 on ZZZ is negligible.
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The e�ect of �1 and �2 on WWW may be seen, similarly, by comparing the posterior means of Wi

with and without these parameters. The scatter plots in Figure 5 suggest the e�ect of �2 on WWW

but not on ZZZ.

Finally, the e�ect of �1 and �2 on pijk may be seen by comparing p̂ijk and p̂�ijk; the posterior

means with and without (�1; �2); respectively. The scatter plots of these means, shown in Figure

6 have a correlation of 0:9989 and show negligible di�erences, except for in a few isolated cases.

The absolute relative error jp̂ijk � p̂�ijk j=p̂ijk is less than 5% in 93% of the cases. Moreover, the

correlations for the 16 age and time groups range from 0:981 to 0:988.

One conclusion which we have drawn from our graphical analysis is that, spatial correlations

among counties exist in terms of Zi, but not in terms of the change over time Wi. The conclusion is

supported by the Bayes factors which were computed using the method of Meng and Wong (1996).

For the three reduced models:

(i) �1 = 0, (ii) �2 = 0; and (iii) �1 = �2 = 0;

the values of the Bayes factors (in support of the full model) are 31; 912; 2:1; and 62; 028, respec-

tively. Although there are strong correlations among the Zi, the e�ect of these correlations on pijk

is relatively small due to the signi�cant e�ect of eijk.

We have considered using the Bayes factor for �tting other models by employing several meth-

ods, including those proposed by Chib30 and Newton and Raftery31: However, we encountered

di�culties due to the instability of the approximations arising from an occasional extreme value in

the simulation.

4.3 Robustness in terms of Choice of Priors

We examine the sensitivity of the posterior distribution relative to the choice of prior distributions

by comparing the results of the informative prior with the noninformative prior speci�ed in Table

1. We note that the prior distributions for �0; �1 and �2 in the noninformative case are improper

but satisfy the conditions of the theorem.

A simple comparison of the results based on the two priors can be made by comparing the

summary statistics in Table 2 with those in Table 3. We note that there is general agreement in the

marginal posterior distributions of (���; ���; ���; ���; �0). Moreover, the posterior means of pijk under the

informative and noninformative priors, p̂�ijk and p̂ijk; are quite close, with absolute relative error

always less than 0:006 and with 95:1% less than 0:003 (see Figure 6). In using \more" informative
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priors for �0; there were some changes in the posterior of �l and �l; but negligible changes in the

posteriors of the �xed parameters, ��� and ���: We therefore feel that our Bayesian results for the

present example are quite robust with respect to the choice of the hyperparameters, provided they

represent relatively di�use prior distributions.

4.4 Convergence Diagnostic

In monitoring the convergence of Gibbs sampling, we have run three parallel MCMC chains with

widely di�erent starting values and used graphical monitoring of the chains for a representative

subset of the parameters including large, moderate and small mortality rates (p95;3;1; p79;2;4; p113;4;3),

and other parameters such as �2; �1; Z79;W113; �2; �2; and �0: Figure 7 shows the updated means of

Gibbs sampling, with respect to the number of iterations, for the subset of parameters. It appears

that the estimators are quite stable after about 20; 000 iterations.

Gelman and Rubin25 have suggested monitoring the estimated scale reduction factor R̂ of the

parallel sequences and to choose the Gibbs cycles so that R̂ is less than 1:2. In our cases, the

estimated scale reduction factor R̂ are less then 1:05 when the Gibbs sample sizes are larger than

20; 000: The same conclusion was shown from Figure 7. Due to the large number of parameters

for our estimates, we used a sample of 40; 000, after discarding the burn-in sample of 10; 000. For

illustration, we used all 50; 000 for Figure 7.

5 Data Analysis via Disease Mapping

In this section we present several mappings to illustrate the use of di�erent components of the

hierarchical model and discuss speci�c topics listed in Section 1. We �rst present the map of the

estimated annual mortality rates per 105 population to illustrate the overall smoothing attained by

the hierarchical model, the patterns of possible changes over time, and the concentration of regions

of high and low rates. We then discuss the map of the regional e�ects, changes over time by age,

and then the extra variation.

Using the full model (1), Figures 8(a) and 8(b) map the posterior means and standard deviations

of the rate pijk, which have been rescaled to represent the annual rates per 105 population. We �rst

note that most of the extreme rates noted in Figure 1 have disappeared. In particular the isolated

cases of high rates among the two lower age groups have disappeared and the isolated lower rates

among the two high age groups have also disappeared. The trend in increasing rates over age can
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now be seen clearly. Moreover we clearly notice how the rates have increased over time for the two

older groups. The decrease over time for the youngest group discussed earlier is less clear due to

the small range of values. There are a few counties where the trends are in the opposite direction.

We also notice geographical clusters of similar rates such as the lower rates in the north and higher

rates in the southeast. The overall pattern we notice in Figure 8 (a) is the general increase in

rate from the upper left to the lower right of the �gure. This is consistent with the simultaneous

increase in �j and �j observed in Figure 2.

Figure 9 (a) shows a map of the regional e�ect Zi in terms of eZi , which corresponds to the

spatially correlated component of the relative risks and should be close to 1 for the \average"

county. We can now notice clusters with lower levels appearing in the north. Higher levels are seen

among the adjacent counties in the southeast quadrant. The highest rate occurs in St. Louis city,

located in the middle of the eastern boundary of the state, and there are few other isolated counties

with higher risks.

Figure 9 (b) is a map of Wi, the rate of change over time, without the age e�ect. We note

clusters of higher Wi in the southwest and south central regions. St. Loius City which had the

largest Zi now shows a closer to average value of Wi, Osage County, located near the center of the

state, has conspicuously low Zi and average Wi values, unlike its neighbors.

In our model, the change over time has two linear components, one due to age (�j) and the other

space (Wi): The age-time interaction is quite evident with �j increasing with age. The space-time

interaction is present but less evident due to the concentration of Wi about zero. We note that

this clustering is close in part to the \shrinkage" property of estimates commonly associated with

Bayesian hierarchical models, which is enhanced in our case by the large number of counties with

small populations.

Figure 10 shows maps of the extra variation, eijk , which remains after the model is �t using

the linear terms. There could be a number of reasons why the linear model (1) with eijk � 0 is

inadequate. One is the nonlinearity of the temporal e�ect on the log rate. Another is the possible

interaction between age and county. There could be a number of other reasons such as race,

environment, and regional variations in smoking habits, for which we have no available data. We

note that other than a few isolated spots the extra variations are fairly evenly dispersed over time

and space. One interesting case is the oldest group in St. Louis county (adjacent to St. Louis city)

where the eijk is high for the two middle periods and closer to 0 for the �rst and fourth periods.

The inclusion of eijk allows for such lack of linearity which cannot be individually addressed with
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the current data alone. Environmental e�ects on lung cancer are often local, both spatially and

temporally, and a�ect di�erent age group di�erently. We feel that a careful examination of eijk can

be very helpful in a study of such local changes. Obviously these mappings suggest regions with

potential problems and a more extensive and thorough analysis is required before health related

conclusions can be drawn.

Appendix. Theorem 1 and a Corollary

We express our model in terms of a more general notation and give su�cient conditions, in-

cluding those on the noninformative prior, which imply that the joint posterior is proper.

LetN = IJK. Relabel YYY = (Y1;1;1; � � � ; Y1;1;K; Y1;2;1; � � � ; YI;J;K) as (Y1; � � � ; YN);VVV = (log(p1;1;1);

� � � ; log(p1;1;K); log(p1;2;1); � � � ; log(pI;J;K)) as (V1; � � � ; VN). Let 1I be the I � 1 vector, whose com-

ponents are all ones. De�ne two design matrices by

XXX1 �
�
1I 
 IIIJ 
 1K ; 1I 
 IIIJ 
 (ttt� �t1K)

�
= (x1;1; � � � ; x1;N)

0;

XXX2 �
�
IIII 
 1J 
 1K ; IIII 
 IIIJ 
 (ttt� �t1K)

�
= (x2;1; � � � ; x2;N)

0;

whose dimensions are N �2J and N�I(J+1), respectively. Here AAA
BBB is the Kronecker or direct

product of two matrices AAA and BBB. The model (1) is equivalent to

Vi = x01;i(���
0; ���0)0 + x02;i(ZZZ

0;WWW0)0 +Ei;

where, (E1; � � � ; EN) = (e1;1;1; � � � ; e1;1;K; e1;2;1; � � � ; eI;J;K): This is equivalent to the matrix equa-

tion,

VVV = XXX1

 
���

���

!
+XXX2

 
ZZZ

WWW

!
+ eee:

Theorem 1 Assume that the following conditions hold.

(a) The priors for ��� and ��� are proportional to constants.

(b) The data Yi and the hyperparameters (al; bl); l = 0; 1; 2 satisfy the following conditions.

(b1) Either bj > 0 or aj < bj = 0, j=1,2;

(b2) I + aj > 2, j = 1; 2;

(b3) b0 > 0;

(b4) There exists Yl1 ; � � � ; Yln (1 � l1 < � � � < ln � N ; 2J � n � N) such that

(b4.1) Ylj > 0;
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(b4.2) The n� 2J matrix XXX�

1 = (x1;l1; � � � ; x1;ln)
0 is of full rank (2J);

(b4.3) 1
2
n� J + a0 +min(0; a1) + min(0; a2) > 0:

Then the joint posterior distribution of (ppp; ���; ���;ZZZ;WWW; ���; ���; �0) is proper.

The proof of the Theorem can be found in the Appendix. Some examples of improper priors

for �l, l = 1; 2, satisfying the conditions are

(i) p(�l) / �
�1=2
l , when (al; bl) = (�1

2
; 0);

(ii) p(�l) / 1, when (al; bl) = (�1; 0):

The following immediate corollary will be used in our illustration.

Corollary 1 Under the assumptions of (a) and (b4) in Theorem 1, if (al; bl); l = 0; 1; 2; are all

positive constants, then the joint posterior distribution of (ppp; ���; ���;ZZZ;WWW; ���; ���; �0) is proper.

This is the case where all prior distributions are proper, except for these for ��� and ���:

Note that Yi given Vi has Poisson distribution with mean mie
Vi , where (m1; � � � ; mN) = (n1;1;1;

� � � ; n1;1;K; � � � ; nI;J;K) and Vi = log(pi). Let fi(YijVi) = exp(ViYi�mie
Vi) be the likelihood function

of Vi. Without loss of generality, assume that lj = j; j = 1; � � � ; n. It is easily shown that

8><
>:
Z
fj(Yj jVj)dVj <1; j = 1; � � � ; n;

fj(Yj jVj) < M; j = n+ 1; � � � ; N;
(8)

for some constantM . Let V � = (V1; � � � ; Vn). The posterior density of (VVV; ���; ���;ZZZ;WWW; ���; ���; �0) given

YYY is

p(VVV; ���; ���;ZZZ;WWW; ���; ���; �0)

/

nY
i=1

fi(YijVi)
NY

i=n+1

�
�
�
1

2

0 exp
n
�

1

2�0
[Vi � x01i(���

0; ���0)0 � x02i(ZZZ
0;WWW0)0]2

o�
G�:

where G� is the joint prior density of (VVV�; ���; ���;ZZZ;WWW; ���; ���; �0): Integrating with respect to (Vn+1;

� � � ; VN ), it follows from (8) that

p(VVV�; ���; ���;ZZZ;WWW; ���; ���; �0) / G�:

De�ne the design matrices based on the �rst n observations by XXX�

1 = (x1;1; � � � ; x1;n)
0; XXX�

2 =

(x2;1; � � � ; x2;n)0; and XXX� = (XXX�

1;XXX
�

2). Let (XXX�0XXX�)� denote the generalized inverse of the matrix
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(XXX0XXX): It follows from Theorem 2 of Sun, Tsutakawa and He27 that

Z
G�d���d���d���d��� � H�

�
1

2
(n�2J)�a+�1

0 exp

�
�

1

2�0
VVV0[IIIn �XXX�(XXX�0XXX�)�XXX�0]VVV�

b0

�0

�

� H�
�
1

2
(n�2J)�a+�1

0 exp
n
�
b0

�0

o
; (9)

where a+ = a0 + a1 + a2, and H is a constant depending only on the adjacency matrix CCC and the

design matrix XXX�. The last inequality holds because IIIn�XXX�(XXX�0XXX�)�XXX�0 is a nonnegative de�nite

matrix. From the assumptions (b3) and (b4.3), the right hand side of (9) is integrable with respect

to �0. The result follows immediately.
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Table 1. Choice of Hyperparameters.

Parameter Hyperparameter Informative Noninformative

�1 (�m1; �m1) (�5:684; 0:2880) (0;1)

�2 (�m2; �m2) (�4:515; 0:2616) (0;1)

�3 (�m3; �m3) (�3:877; 0:2620) (0;1)

�4 (�m4; �m4) (�3:805; 0:2663) (0;1)

�1 (�s1; �s1) (�0:01226; 14:12� 10�4) (0;1)

�2 (�s2; �s2) (0:01276; 6:503� 10�4) (0;1)

�3 (�s3; �s3) (0:01821; 5:009� 10�4) (0;1)

�4 (�s4; �s4) (0:03245; 6:265� 10�4) (0;1)

�1 (a1; b1) (2:30; 0:276) (�1; 0:0)

�2 (a2; b2) (0:10; 10�5) (�1; 0:0)

�0 (a0; b0) (4:25; 0:195) (0; 0:1)

�1 uniform(�1; 1) uniform(�1; 1)

�2 uniform(�1; 1) uniform(�1; 1)

Table 2. Posterior quantities based on 50000 Gibbs cycles under the informative prior.

Min. 1st Qua. Median Mean 3rd Qua. Max. Std. Dev.

�1 �5:785 �5:719 �5:688 �5:6876 �5:660 �5:531 0:03892

�2 �4:703 �4:546 �4:517 �4:5167 �4:484 �4:375 0:03496

�3 �4:066 �3:907 �3:879 �3:8785 �3:843 �3:728 0:03391

�4 �3:997 �3:836 �3:807 �3:8068 �3:773 �3:656 0:03503

�1 �0:02878 �0:01483 �0:01226 �0:01223 �0:00966 0:00368 0:003751

�2 �0:00009 0:01103 0:01274 0:01273 0:01441 0:02340 0:002545

�3 �0:00806 0:01684 0:01832 0:01833 0:01985 0:02745 0:002538

�4 0:02181 0:03075 0:03245 0:03245 0:03416 0:04371 0:002561

�1 0:02351 0:04823 0:05537 0:05662 0:06375 0:12670 0:011742

�2 1:22e� 6 1:74e� 5 3:65e� 5 5:60e� 5 7:35e� 5 0:00065 5:787e� 5

�0 0:00773 0:01277 0:01404 0:01412 0:01537 0:02322 0:001907

�1 0:2202 0:8700 0:9236 0:90314 0:9590 0:9900 0:07714

�2 �0:9900 �0:3859 0:1657 0:11834 0:6579 0:9900 0:59080
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Table 3. Posterior quantities based on 50000 Gibbs cycles under the noninformative prior.

Min. 1st Qua. Median Mean 3rd Qua. Max. Std. Dev.

�1 �5:883 �5:719 �5:689 �5:6882 �5:657 �5:567 0:05119

�2 �4:717 �4:547 �4:518 �4:5176 �4:488 �4:304 0:04955

�3 �4:071 �3:908 �3:879 �3:8792 �3:850 �3:665 0:04932

�4 �4:014 �3:837 �3:807 �3:8077 �3:778 �3:587 0:04986

�1 �0:02601 �0:01473 �0:01213 �0:01210 �0:00949 0:00339 0:003826

�2 �0:00141 0:01099 0:01272 0:01272 0:01446 0:02381 0:002578

�3 �0:00887 0:01676 0:01829 0:01830 0:01981 0:02883 0:002285

�4 0:02112 0:03073 0:03248 0:03246 0:03420 0:04383 0:002602

�1 0:02519 0:04818 0:05523 0:05645 0:06329 0:13540 0:011618

�2 1:26e� 6 1:76e� 5 3:76e� 5 5:73e� 5 7:76e� 5 0:00063 5:701e� 5

�0 0:00808 0:01283 0:01405 0:01415 0:01537 0:02236 0:001878

�1 0:0512 0:8717 0:9251 0:9251 0:9603 0:9900 0:07617

�2 �0:9900 �0:4028 0:1415 0:1025 0:6356 0:9899 0:58896
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