NISS

Intrinsic Priors for Testing
 Ordered Exponential Means

Dongchu Sun and Seong W. Kim

Technical Report Number 99
 April, 1999

National Institute of Statistical Sciences
19 T. W. Alexander Drive
PO Box 14006
Research Triangle Park, NC 27709-4006
www.niss.org

Intrinsic Priors for Testing Ordered Exponential Means

Dongchu Sun and Seong W. Kim
Department of Statistics, The University of Missouri, Columbia, MO 65211, USA

Summary

In Bayesian model selection or testing problems Γ Bayes factors under proper priors have been very successful. In practice Γ however Γ limited information and time constraints often require us to use noninformative priors which are typically improper and are defined only up to arbitrary constants. The resulting Bayes factors are then not well defined. A recently proposed model selection criterion Γ the intrinsic Bayes factor Γ overcomes such problems by using a part of the sample as a training sample to get a proper posterior and then use the posterior as the prior for the remaining observations to compute the Bayes factor. SurprisinglyTsuch a Bayes factor can also be computed directly from the full sample by using some proper priors Γ namely intrinsic priors. The present paper explains how to derive intrinsic priors for ordered exponential means. Some simulation results are also given to illustrate the method and compare it with classical methods.

Some Keywords: Intrinsic Bayes factorCIntrinsic priorsएJeffreys prior \bar{C} Noninformative priors Γ Restricted maximum likelihood estimator.

1 Introduction

In reliability theory or survival analysis for comparing treatmentsFwe often need to test the following hypotheses

$$
\begin{align*}
& M_{1}: \mu_{1}=\mu_{2}=\cdots=\mu_{k}, \text { vs } \\
& M_{2}: \mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{k}, \tag{1}
\end{align*}
$$

where the μ_{i} 's are the means of certain distributions such as exponential distributions. Robertson Γ Wright and Dykstra (1988) found the asymptotic distribution of the generalized likelihood ratio test statistic for M_{1} versus $M_{2}-M_{1}$ for the exponential family using level probabilities. However Γ for small sample sizes Γ the results from asymptotic approximations are often undesirable.

It has been noticed that the generalized likelihood ratio test or the most powerful test could be misleading「even when the sample sizes are large. For exampleГBergerГBrown and Wolpert (1994)
showed that the test for a simple hypothesis against a simple alternative on the normal means with known variance rejects the null hypothesis systematically while the Bayes factor is just 1 . This motivated the following example.

Example 1. Let $\operatorname{Exp}(\mu)$ denote the exponential distribution with mean μ. Suppose that we have independent observations $X_{i j}$ Twhere $X_{i j}$ is $\operatorname{Exp}\left(\mu_{i}\right), i=1,2 ; j=1, \ldots, n$. Consider the following testing problemए

$$
H_{0}: \frac{\mu_{1}}{\mu_{2}}=2, \text { vs } H_{1}: \frac{\mu_{1}}{\mu_{2}}=\frac{1}{2} .
$$

Define $\boldsymbol{X}=\left(X_{11}, \cdots, X_{1 n}, X_{21}, \cdots, X_{2 n}\right)^{t} \Gamma \bar{X}_{i}=\sum_{j=1}^{n} X_{i j} / n$ and $G(\boldsymbol{X})=\bar{X}_{1} / \bar{X}_{2}$. The generalized likelihood ratio test will reject H_{0} if $G(\boldsymbol{X})<C$ Гand accept H_{0} if $G(\boldsymbol{X}) \geq C$. Let α and β denote the probabilities of Type I and Type II errors respectively. If we assume that $\alpha=\beta \Gamma$ then the critical value C should be 1 Tand $\alpha=\beta=F(0.5 ; 2 n, 2 n)$ Twhere $F(\cdot ; 2 n, 2 n)$ is the cdf (cumulative distribution function) of an F distribution with $2 n$ and $2 n$ degrees of freedom. The corresponding P-values are $F(G(\boldsymbol{X}) / 2 ; 2 n, 2 n)$. The values of α and β when $n=12,20,30$ are given in the second column of Table 1. If we observe $\bar{X}_{1}=\bar{X}_{2}$ Ithe data would support both H_{0} and H_{1} equally. The generalized likelihood ratio test would conclude H_{0} and probabilities for both type I and type II errors are less than 0.05 as long as the sample size is 12 or more. Now let us apply Bayesian model selection for this problem. Suppose that we choose vague model probabilitiesTi.e.Twe have a 50% chance to select either H_{0} or H_{1}. Also $\Gamma \mu_{1}$ follows an informative prior such as the inverse gamma (1II) prior under both H_{0} and H_{1}. Then the posterior probabilities of H_{0} and H_{1} given \boldsymbol{X} are

$$
P\left(H_{0} \mid \boldsymbol{X}\right)=\frac{1}{1+B}, \text { and } P\left(H_{1} \mid \boldsymbol{X}\right)=\frac{B}{1+B},
$$

respectively Γ where B is the Bayes factor Γ given by

$$
B=\left[\frac{G(\boldsymbol{X}) / 2+\left(n \bar{X}_{2}\right)^{-1}+1}{G(\boldsymbol{X})+\left(n \bar{X}_{2}\right)^{-1}+1 / 2}\right]^{2 n+1} .
$$

The numerical values of the P -value C Bayes factor Iand posterior probabilities for some \bar{X}_{1} and \bar{X}_{2} are also given in Table 1. Clearly「the Bayesian method gives a better solution.

Ideally「one would choose proper priors or informative priors in computing Bayes factors. HoweverClimited information and time constraints often require the use of noninformative priors. In this paperCwe use a Bayesian approach to test the problem given by (1) for the exponential distribution using noninformative priors. Since noninformative priors such as Jeffreys' (1961) priors or
reference priors (Berger and Bernado「1989Г1992) are typically improper so that such priors are only defined up to arbitrary constants which affects the values of Bayes factors. Many people have made efforts to compensate for that arbitrariness. See Geisser and Eddy (1979)TSpiegelhalter and Smith (1982) Гand San Martini and Spezzaferri (1984) for related works.

Berger and Pericchi (1996b) introduced a new model selection criterion Γ called the Intrinsic Bayes factor (IBF) using a data-splitting ideaTwhich would eliminate the arbitrariness of improper priors. This approach has shown to be quite useful. See Berger and Pericchi (1996a)「Varshavsky (1996) and Lingham and Sivaganesan (1997).

The paper is arranged as follows. In Section 2Γ we review the concept of Bayes factors and intrinsic priorsTand derive a general form of intrinsic priors for testing equal means against ordered means for k independent exponential distributions. Special cases when $k=2$ and $k=3$ are studied in detail. In Section 3 Twe give some numerical results along with real data analysis to illustrate theoretical results. Finally 1 few comments are given in Section 4.

2 Intrinsic Priors for Ordered Exponential Means

2.1 Preliminaries

Suppose that there are q different models Γ say $M_{1}, \ldots, M_{q} \Gamma$ any of which would be possible for a statistical problem. If the model M_{i} holds Γ the data $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)^{t}$ follow a parametric distribution with the density function $f_{i}\left(\boldsymbol{X} \mid \theta_{i}\right) \Gamma$ where θ_{i} is a vector of unknown parameters. Let Θ_{i} be the parameter space for θ_{i}. Based on the observations \boldsymbol{X}. . M_{i} among q possible models. Bayesian model selection proceeds by choosing a prior distribution $\pi_{i}\left(\theta_{i}\right)$ for θ_{i} under M_{i} ए and a model probability $p\left(M_{i}\right)$ of M_{i} being true for $i=1, \ldots, q$. The posterior probability that M_{i} is true is then

$$
\begin{equation*}
P\left(M_{i} \mid \boldsymbol{X}\right)=\left[\sum_{j=1}^{q} \frac{p\left(M_{j}\right)}{p\left(M_{i}\right)} B_{j i}\right]^{-1}, \tag{2}
\end{equation*}
$$

where $B_{j i}$ Tthe Bayes factor of the model M_{j} to the model M_{i} Tis defined by

$$
\begin{equation*}
B_{j i}=\frac{m_{j}(\boldsymbol{X})}{m_{i}(\boldsymbol{X})}=\frac{\int_{\Theta_{j}} f_{j}\left(\boldsymbol{X} \mid \theta_{j}\right) \pi_{j}\left(\theta_{j}\right) d \theta_{j}}{\int_{\boldsymbol{\Theta}_{i}} f_{i}\left(\boldsymbol{X} \mid \theta_{i}\right) \pi_{i}\left(\theta_{i}\right) d \theta_{i}}, \tag{3}
\end{equation*}
$$

where $m_{i}(\boldsymbol{X})$ is the marginal or predictive density of \boldsymbol{X} under M_{i}. The posterior probabilities in (2) are used for selecting the most plausible model.

Let $\pi_{i}^{N}\left(\theta_{i}\right)$ be a noninformative prior for θ_{i} in model M_{i}. Then $B_{j i}$ Ithe Bayes factor of M_{j} to M_{i} Гcould be defined by

$$
\begin{equation*}
B_{j i}^{N}=\frac{m_{j}^{N}(\boldsymbol{X})}{m_{i}^{N}(\boldsymbol{X})}=\frac{\int f_{j}\left(\boldsymbol{X} \mid \theta_{j}\right) \pi_{j}^{N}\left(\theta_{j}\right) d \theta_{j}}{\int f_{i}\left(\boldsymbol{X} \mid \theta_{i}\right) \pi_{i}^{N}\left(\theta_{i}\right) d \theta_{i}} . \tag{4}
\end{equation*}
$$

A noninformative prior $\pi_{i}^{N}\left(\theta_{i}\right)$ is often improper Γ and is defined only up to an arbitrary constant c_{i}. Thus $\Gamma B_{j i}^{N}$ is defined only up to $\left(c_{j} / c_{i}\right) \Gamma$ which is also arbitrary so that the Bayes factor is not well defined. To overcome the problem Γ one may use a part of the data as a so-called training sample Γ say $\boldsymbol{X}(l)$. The idea is to obtain the (intermediate) posterior $\pi_{i}^{N}\left(\theta_{i} \mid \boldsymbol{X}(l)\right)$ then use $\pi_{i}^{N}\left(\theta_{i} \mid \boldsymbol{X}(l)\right)$ as the prior to compute the Bayes factor for the $\boldsymbol{X}(-l)$ Гthe remainder of the data. Consequently Cthe Bayes factor is as follows:

$$
\begin{align*}
B_{j i}(l) & =\frac{\int_{\Theta_{j}} f_{j}\left(\boldsymbol{X}(-l) \mid \theta_{j}, \boldsymbol{X}(l)\right) \pi_{j}^{N}\left(\theta_{j} \mid \boldsymbol{X}(l)\right) d \theta_{j}}{\int_{\Theta_{i}} f_{i}\left(\boldsymbol{X}(-l) \mid \theta_{i}, \boldsymbol{X}(l)\right) \pi_{i}^{N}\left(\theta_{i} \mid \boldsymbol{X}(l)\right) d \theta_{i}} \\
& =B_{j i}^{N} \cdot B_{i j}^{N}(\boldsymbol{X}(l)) \tag{5}
\end{align*}
$$

where for $h=i, j \Gamma$

$$
m_{h}^{N}(\boldsymbol{X}(l))=\int_{\Theta_{h}} f_{h}\left(\boldsymbol{X}(l) \mid \theta_{h}\right) \pi_{h}^{N}\left(\theta_{h}\right) d \theta_{h} .
$$

In practice $\Gamma \boldsymbol{X}(l)$ is chosen to be a minimal training sample in the sense that the marginal $m_{h}^{N}(\boldsymbol{X}(l))$ is finite for all possible models Γ and no subset of $\boldsymbol{X}(l)$ gives finite marginals. Clearly $\Gamma B_{j i}(l)$ does not depends on $\left(c_{i}, c_{j}\right)$. FurthermoreГthe Bayes factor defined in (5) Гdepends on the choice of the minimal training sample. To avoid this dependenceГBerger and Pericchi (1996b) suggested to take the average of $B_{j i}(l)$ over all $\boldsymbol{X}(l)$.

Definition 1 The arithmetic intrinsic Bayes factor (AI) of M_{j} to M_{i} is given by

$$
\begin{equation*}
B_{j i}^{A I}=\frac{1}{R} \sum_{l=1}^{R} B_{j i}(l)=B_{j i}^{N} \cdot \frac{1}{R} \sum_{l=1}^{R} B_{i j}^{N}(\boldsymbol{X}(l)), \tag{6}
\end{equation*}
$$

where R is the number of all possible minimal training samples. Noticing that computation can be a problem if R is large Berger and Pericchi (1996b) proposed the use of the following quantity.

Definition 2 The expected arithmetic intrinsic Bayes factor (EAI) of M_{j} to M_{i} is given by

$$
\begin{equation*}
B_{j i}^{E A I}=B_{j i}^{N} \cdot \frac{1}{R} \sum_{l=1}^{R} E_{\hat{\theta}_{j}}^{M_{j}}\left[B_{i j}^{N}(\boldsymbol{X}(l))\right], \tag{7}
\end{equation*}
$$

where $\hat{\theta}_{j}=\hat{\theta}_{n j}$ is the MLE of θ_{j}. Alternativelyए Berger and Pericchi (1996b) suggested finding a pair of proper priors such that the Bayes factor using the proper priors will be asymptotically equivalent to $B_{j i}^{A I}$. Such proper priors are called intrinsic priors if they exist. We need the following conditions to define intrinsic priors.
Condition 1 Under $M_{j}, \quad \hat{\theta}_{j} \rightarrow \theta_{j}$, a.s. and $\hat{\theta}_{i} \rightarrow \psi_{i}\left(\theta_{j}\right) \Gamma$ as $n \rightarrow \infty$.
Condition 2 Under $M_{i}, \quad \hat{\theta}_{i} \rightarrow \theta_{i}$, a.s. and $\hat{\theta}_{j} \rightarrow \psi_{j}\left(\theta_{i}\right)$ Гas $n \rightarrow \infty$.
Here $\hat{\theta}_{h}$ is the MLE of θ_{h} under model M_{h} and ψ_{h} is a known function Γ for $h=i, j$ NNormally we use

$$
\begin{equation*}
\psi_{i}\left(\theta_{j}\right)=\lim _{n \rightarrow \infty} E_{\theta_{j}}^{M_{j}}\left(\hat{\theta}_{i}\right) . \tag{8}
\end{equation*}
$$

Berger and Pericchi (1996b) showed that a pair of intrinsic priors (π_{i}^{I}, π_{j}^{I}) is a solution of the following system of functional equations:

$$
\left\{\begin{array}{l}
\frac{\pi_{j}^{I}\left(\theta_{j}\right) \pi_{i}^{N}\left(\psi_{i}\left(\theta_{j}\right)\right)}{\pi_{j}^{N}\left(\theta_{j}\right) \pi_{i}^{I}\left(\psi_{i}\left(\theta_{j}\right)\right)}=B_{j}^{*}\left(\theta_{j}\right) \tag{9}\\
\frac{\pi_{j}^{I}\left(\psi_{j}\left(\theta_{i}\right)\right) \pi_{i}^{N}\left(\theta_{i}\right)}{\pi_{j}^{N}\left(\psi_{j}\left(\theta_{i}\right)\right) \pi_{i}^{I}\left(\theta_{i}\right)}=B_{i}^{*}\left(\theta_{i}\right)
\end{array}\right.
$$

where for $h=i \Gamma j \Gamma$

$$
\begin{equation*}
B_{h}^{*}\left(\theta_{h}\right)=\lim _{R \rightarrow \infty} E_{\theta_{h}}^{M_{h}}\left[\frac{1}{R} \sum_{l=1}^{R} B_{i j}^{N}(\boldsymbol{X}(l))\right] . \tag{10}
\end{equation*}
$$

The noninformative priors $\pi_{i}^{N}\left(\theta_{i}\right)$ and $\pi_{j}^{N}\left(\theta_{j}\right)$ are called starting priors. We note that solutions are not necessarily unique Γ nor necessarily proper. It is of interest to find proper intrinsic priors for given starting priors. Once we derive proper intrinsic priors $\Gamma B_{j i}^{A I}$ can be replaced by the ordinary Bayes factors computed based on intrinsic priors.

2.2 Main Results

Suppose that we have independent observations $X_{i j} \sim \operatorname{Exp}\left(\mu_{i}\right), i=1,2, \ldots, k ; j=1,2 \ldots, n_{i}$. We want to test whether the k population means are equal or in ascending order. That is to sayए to select between two competing models given by (1). Let

$$
X_{i} .=\sum_{j=1}^{n_{i}} X_{i j} \text { and } \bar{X}_{i}=\frac{X_{i} .}{n_{i}} .
$$

Define the total sample size N by $N=\sum_{i=1}^{k} n_{i}$. Assume that there are k constants $a_{i} \in(0,1)$ such that $a_{1}+a_{2}+\cdots+a_{k}=1$ and for $i=1, \ldots, k$,

$$
\begin{equation*}
\frac{n_{i}}{N} \rightarrow a_{i} \text { as } N \rightarrow \infty . \tag{11}
\end{equation*}
$$

Let $\mathbf{L}_{k}=\left\{\boldsymbol{\mu}_{k}=\left(\mu_{1}, \ldots, \mu_{k}\right): 0<\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{k}<\infty\right\}$. We use Jeffreys' priors as starting priors for both models M_{1} and M_{2}. The reason to choose Jeffreys' prior under model M_{1} is obvious. Under model M_{2} and $k=2$ ГJeffreys' prior is both the reference prior and the matching prior when either parameter is of interest (cf. Ghosh and SunT 1997). Analogously we start from Jeffreys' prior for arbitrary k. Let μ be the common value of μ_{i} under M_{1}. Then

$$
\pi_{1}^{N}(\mu)=\frac{1}{\mu}, \mu>0, \text { and } \pi_{2}^{N}\left(\boldsymbol{\mu}_{k}\right)=\frac{1}{\mu_{1} \cdots \mu_{k}}, \boldsymbol{\mu}_{k} \in \mathbf{L}_{k} .
$$

Recall that $B_{21}^{N}=m_{2}^{N}(\boldsymbol{X}) / m_{1}^{N}(\boldsymbol{X})$ Twhere

$$
m_{1}^{N}(\boldsymbol{X})=\int_{0}^{\infty} \frac{1}{\mu^{N+1}} \exp \left\{-\left[\frac{\sum_{i=1}^{k} X_{i}}{\mu}\right]\right\} d \mu=\frac{\Gamma(N)}{\left(\sum_{i=1}^{k} X_{i} .\right)^{N}}
$$

and

$$
m_{2}^{N}(\boldsymbol{X})=\int_{\mathbf{L}_{k}} \frac{1}{\mu_{1}^{n_{1}+1}} \cdots \frac{1}{\mu_{k}^{n_{k}+1}} \exp \left\{-\sum_{i=1}^{k} \frac{X_{i}}{\mu_{i}}\right\} d \boldsymbol{\mu}_{k} .
$$

A typical minimal training sample is $\boldsymbol{X}(l)=\left(X_{1 h_{1}}, X_{2 h_{2}}, \ldots, X_{k h_{k}}\right)^{t}$. Then the marginal densities of $\boldsymbol{X}(l)$ are

$$
\begin{aligned}
m_{1}^{N}(\boldsymbol{X}(l)) & =\frac{\Gamma(k)}{\left(X_{1 h_{1}}+\cdots+X_{k h_{k}}\right)^{k}} ; \\
m_{2}^{N}(\boldsymbol{X}(l)) & =\frac{1}{X_{1 h_{1}}\left(X_{1 h_{1}}+X_{2 h_{2}}\right) \cdots\left(X_{1 h_{1}}+X_{2 h_{2}}+\cdots+X_{k h_{k}}\right)} .
\end{aligned}
$$

Thus the Bayes factor based on the training sample $\boldsymbol{X}(l)$ is

$$
\begin{equation*}
B_{12}^{N}(\boldsymbol{X}(l))=\frac{\Gamma(k) X_{1 h_{1}}\left(X_{1 h_{1}}+X_{2 h_{2}}\right) \cdots\left(X_{1 h_{1}}+\cdots+X_{k-1, h_{k-1}}\right)}{\left(X_{1 h_{1}}+\cdots+X_{k h_{k}}\right)^{k-1}} . \tag{12}
\end{equation*}
$$

Consequently「the AI Bayes factor and the EAI Bayes factors are

$$
\begin{equation*}
B_{21}^{A I}=B_{21}^{N} \cdot \frac{1}{n_{1} \cdots n_{k}} \sum_{h_{1}=1}^{n_{1}} \cdots \sum_{h_{k}=1}^{n_{k}} B_{12}^{N}(\boldsymbol{X}(l)), \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{21}^{E A I}=B_{21}^{N} \cdot E_{\hat{\theta}_{2}}^{M_{2}} B_{12}^{N}(\boldsymbol{X}(l)), \tag{14}
\end{equation*}
$$

respectively. We need to find $\psi_{1}\left(\theta_{2}\right)$ and $\psi_{2}\left(\theta_{1}\right)$ in Conditions 1 and 2. Here $\theta_{1}=\mu$ and $\theta_{2}=\boldsymbol{\mu}_{k}$.
Fact 1 a) The MLE of μ under M_{1} is given by

$$
\begin{equation*}
\hat{\mu}=N^{-1} \sum_{i=1}^{k} X_{i} . \tag{15}
\end{equation*}
$$

b) The unrestricted MLE of μ_{i} is given by

$$
\begin{equation*}
\hat{\mu}_{i}^{*}=\bar{X}_{i}, i=1, \ldots, k . \tag{16}
\end{equation*}
$$

Proof: It is simple.
Let $\hat{\boldsymbol{\mu}}_{k}=\left(\hat{\mu}_{1}, \ldots, \hat{\mu}_{k}\right)^{t}$ be the restricted MLE of $\boldsymbol{\mu}_{k}$ under M_{2}. Note that $\hat{\boldsymbol{\mu}}_{k}$ can be computed by several algorithms. See Robertson et al. (1988).

Proposition 1 a) Under M_{2} Twhen $N \rightarrow \infty \Gamma$ we have

$$
\hat{\theta}_{1}=\hat{\mu} \longrightarrow \psi_{1}\left(\boldsymbol{\mu}_{k}\right) \equiv \sum_{i=1}^{k} a_{i} \mu_{i}, \text { a.s. }
$$

where $\hat{\mu}$ is given by (15) and a_{i} is given by (11).
b) Under M_{1} Twhen $N \rightarrow \infty$ Twe have

$$
\hat{\boldsymbol{\theta}}_{2}=\hat{\boldsymbol{\mu}}_{k} \longrightarrow \psi_{2}(\mu) \equiv(\mu, \ldots, \mu)^{t}, \text { a.s.. }
$$

Proof: For a) it is simple. For b) Γ under M_{2} we have the following inequality (see Robertson et al.Г1988Гр. 40)Г

$$
\begin{equation*}
\sum_{i=1}^{k}\left[\hat{\mu}_{i}-\mu_{i}\right]^{2} \frac{n_{i}}{N} \leq \sum_{i=1}^{k}\left[\hat{\mu}_{i}^{*}-\mu_{i}\right]^{2} \frac{n_{i}}{N} \tag{17}
\end{equation*}
$$

where $\hat{\mu}_{i}^{*}$ is given by (16). By the strong consistency of the unrestricted MLE of μ_{i} and the assumption (11) Гthe right-hand side of (17) converges to zero as $N \rightarrow \infty$. Thus Γ the left-hand side of (17) also converges to zero. The result follows from the fact that under $M_{1} \Gamma \mu_{i}=\mu$ for each $i=1, \ldots, k$.

Clearly $B_{h}^{*}\left(\theta_{h}\right)$ depends on k 「the total number of populations. To distinguish the quantities $B_{h}^{*}\left(\theta_{h}\right)$ for different k Twe write $B_{h k}^{*}\left(\theta_{h}\right)=B_{h}^{*}\left(\theta_{h}\right)$. From the definition (10) Twe see that

$$
B_{h k}^{*}\left(\theta_{h}\right)=\Gamma(k) E_{\theta_{h}}^{M_{h}}\left[\frac{X_{11}\left(X_{11}+X_{21}\right) \cdots\left(X_{11}+\cdots+X_{k-1,1}\right)}{\left(X_{11}+\cdots+X_{k 1}\right)^{k-1}}\right], h=1,2 .
$$

For any $k \geq 1$ Tdefine

$$
\begin{equation*}
\mathbf{A}_{k}=\left\{\mathbf{w}_{k}=\left(w_{1}, \ldots, w_{k}\right)^{t}: 0<w_{1}, \ldots, w_{k}<1\right\} . \tag{18}
\end{equation*}
$$

Proposition 2 The quantities $B_{1 k}^{*}\left(\theta_{1}\right)$ and $B_{2 k}^{*}\left(\theta_{2}\right)$ are given by

$$
\begin{equation*}
B_{1 k}^{*}(\mu)=\Gamma(k)^{2} \int_{\mathbf{A}_{k-1}} \frac{w_{1} w_{2}^{3} \cdots w_{k-1}^{2 k-3}}{\left(q_{0}+q_{1}+\cdots+q_{k-1}\right)^{k}} d \mathbf{w}_{k-1}=\frac{\Gamma(k)}{2^{k-1}} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{2 k}^{*}\left(\boldsymbol{\mu}_{k}\right)=\frac{\Gamma(k)^{2}}{\mu_{1} \cdots \mu_{k}} \int_{\mathbf{A}_{k-1}} \frac{w_{1} w_{2}^{3} \cdots w_{k-1}^{2 k-3}}{\left[q_{0} / \mu_{1}+\cdots+q_{k-1} / \mu_{k}\right]^{k}} d \mathbf{w}_{k-1}, \tag{20}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
q_{0}=w_{1} w_{2} \cdots w_{k-1}, q_{1}=\left(1-w_{1}\right) w_{2} \cdots w_{k-1}, \cdots \tag{21}\\
q_{k-2}=\left(1-w_{k-2}\right) w_{k-1}, q_{k-1}=1-w_{k-1}
\end{array}\right.
$$

Proof: We first derive $B_{2 k}^{*}$. The joint density of $\left(X_{11}, \ldots, X_{k 1}\right)$ is given by

$$
f\left(x_{11}, \ldots, x_{k 1}\right)=\left(\prod_{i=1}^{k} \frac{1}{\mu_{i}}\right) \exp \left\{-\left(\frac{x_{11}}{\mu_{1}}+\cdots+\frac{x_{k 1}}{\mu_{k}}\right)\right\}, x_{i 1}>0
$$

Making the following transformations Γ

$$
\left\{\begin{array} { l }
{ W _ { 1 } = \frac { X _ { 1 1 } } { (X _ { 1 1 } + X _ { 2 1 }) } , } \tag{22}\\
{ W _ { 2 } = \frac { (X _ { 1 1 } + X _ { 2 1 }) } { (X _ { 1 1 } + X _ { 2 1 } + X _ { 3 1 }) } , } \\
{ \cdots } \\
{ W _ { k - 1 } = \frac { (X _ { 1 1 } + \cdots + X _ { k - 1 , 1 }) } { (X _ { 1 1 } + \cdots + X _ { k 1 }) } , } \\
{ W _ { k } = X _ { 1 1 } + \cdots + X _ { k 1 } , }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
X_{11}=W_{1} W_{2} \cdots W_{k} \\
X_{21}=\left(1-W_{1}\right) W_{2} \cdots W_{k} \\
\cdots \\
X_{k-1,1}=\left(1-W_{k-2}\right) W_{k-1} W_{k} \\
X_{k 1}=\left(1-W_{k-1}\right) W_{k}
\end{array}\right.\right.
$$

We have

$$
\begin{equation*}
B_{2 k}^{*}\left(\mu_{1}, \ldots, \mu_{k}\right)=\Gamma(k) E\left(W_{1} W_{2}^{2} \cdots W_{k-1}^{k-1}\right) \tag{23}
\end{equation*}
$$

The Jacobian of this transformation is

$$
\begin{aligned}
& |J|=\left|\frac{\partial\left(x_{11}, x_{21}, \ldots, x_{k 1}\right)}{\partial\left(w_{1}, w_{2}, \ldots, w_{k}\right)}\right| \\
& =\left|\begin{array}{cccc}
w_{2} \cdots w_{k} & w_{1} w_{3} \cdots w_{k} & \cdots & w_{1} \cdots w_{k-1} \\
-w_{2} \cdots w_{k} & \left(1-w_{1}\right) w_{3} \cdots w_{k} & \cdots & \left(1-w_{1}\right) w_{2} \cdots w_{k-1} \\
0 & -w_{3} \cdots w_{k} & \cdots & \left(1-w_{2}\right) w_{3} \cdots w_{k-1} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1-w_{k-1}
\end{array}\right| \\
& =\left|\begin{array}{cccc}
w_{2} \cdots w_{k} & w_{1} w_{3} \cdots w_{k} & \cdots & w_{1} \cdots w_{k-1} \\
0 & w_{3} \cdots w_{k} & \cdots & w_{2} \cdots w_{k-1} \\
0 & 0 & w_{4} \cdots w_{k} & w_{3} \cdots w_{k-1} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right| \\
& =w_{2} w_{3}^{2} \cdots w_{k}^{k-1} \text {. }
\end{aligned}
$$

The joint density of $\left(W_{1}, \ldots, W_{k}\right)^{t}$ is then

$$
f\left(w_{1}, \ldots, w_{k}\right)=\frac{w_{2} w_{3}^{2} \cdots w_{k}^{k-1}}{\mu_{1} \cdots \mu_{k}} \exp \left\{-w_{k}\left(\frac{q_{0}}{\mu_{1}}+\cdots+\frac{q_{k-1}}{\mu_{k}}\right)\right\}
$$

where $\mathbf{w}_{k-1}=\left(w_{1}, \ldots, w_{k-1}\right)^{t} \in \mathbf{A}_{k-1}$ and $w_{k}>0$. Integrating out with respect to $w_{k} \Gamma$ we get the following joint density of $\left(W_{1}, \ldots, W_{k-1}\right)^{t}$

$$
g\left(\mathbf{w}_{k-1}\right)=\frac{\Gamma(k)}{\mu_{1} \cdots \mu_{k}} \frac{w_{2} w_{3}^{2} \cdots w_{k-1}^{k-2}}{\left[q_{0} / \mu_{1}+\cdots+q_{k-1} / \mu_{k}\right]^{k}}, \quad \mathbf{w}_{k-1} \in \mathbf{A}_{k-1},
$$

where q_{i} 's are given by (21). Hence equation (20) is established. Note that $\sum_{i=0}^{k-1} q_{i}=1$ in (21). Since $\mu_{i}=\mu$ under M_{1} Tequation (19) immediately follows from (20). This completes the proof.

Denote $\mathbf{1}_{k}=(1, \ldots, 1)^{t} \in \mathbb{R}^{k}$. The system of equations (9) becomes

$$
\left\{\begin{array}{l}
\frac{\pi_{2}^{I}\left(\boldsymbol{\mu}_{k}\right) /\left(a_{1} \mu_{1}+\cdots+a_{k} \mu_{k}\right)}{\pi_{1}^{I}\left(a_{1} \mu_{1}+\cdots+a_{k} \mu_{k}\right) /\left(\mu_{1} \cdots \mu_{k}\right)}=B_{2 k}^{*}\left(\boldsymbol{\mu}_{k}\right), \boldsymbol{\mu}_{k} \in \mathbf{L}_{k} \tag{24}\\
\frac{\pi_{2}^{I}\left(\mu 1_{k}\right) / \mu}{\pi_{1}^{I}(\mu) / \mu^{k}}=B_{1 k}^{*}(\mu), \mu>0
\end{array}\right.
$$

Lemma $1 \quad B_{2 k}^{*}\left(\boldsymbol{\mu}_{k}\right) \longrightarrow B_{1 k}^{*}(\mu)$ as $\boldsymbol{\mu}_{k} \rightarrow \mu \mathbf{1}_{k}$ Twhere the limit $\boldsymbol{\mu}_{k} \rightarrow \mu \mathbf{1}_{k}$ is taken within the region $\boldsymbol{\mu}_{k} \in \mathrm{~L}_{k}$.

Proof: Since $W_{1}^{1} W_{2}^{2} \cdots W_{k-1}^{k-1}$ is bounded Γ it follows from (23) that $B_{2 k}^{*} \rightarrow B_{1 k}^{*}$ as $\boldsymbol{\mu}_{k} \longrightarrow \mu \mathbf{1}_{k}$. This completes the proof.

Lemma 2 For any integer $l \geq 1$ Гand any constants $q_{i} \in(0,1)$ satisfying $q_{0}+\cdots+q_{l}=1 \Gamma$

$$
\begin{aligned}
& \int_{\mathbf{A}_{l}} \frac{1}{t_{1}^{2} t_{2}^{3} \cdots t_{l}^{l+1}\left[q_{0} /\left(\prod_{h=1}^{l} t_{h}\right)+q_{1} /\left(\prod_{h=2}^{l} t_{h}\right)+\cdots+q_{l-1} / t_{l}+q_{l}\right]^{l+1}} d \mathbf{t}_{l} \\
= & \frac{1}{l!q_{0}\left(q_{0}+q_{1}\right) \cdots\left(q_{0}+q_{1}+\cdots+q_{l}\right)} .
\end{aligned}
$$

Proof: We use induction. For $l=1$ Twe have

$$
\int_{\mathbf{A}_{1}} \frac{1}{t_{1}^{2}\left(q_{0} / t_{1}+q_{1}\right)^{2}} d t_{1}=\frac{1}{q_{0}\left(q_{0}+q_{1}\right)}=\frac{1}{q_{0}} .
$$

Assume that the result holds for $l-1$. Now for l Twe have

$$
\begin{align*}
& \int_{\mathbf{A}_{l}} \frac{1}{t_{1}^{2} t_{2}^{3} \cdots t_{l}^{l+1}\left[q_{0} /\left(\prod_{h=1}^{l} t_{h}\right)+q_{1} /\left(\prod_{h=2}^{l} t_{h}\right)+\cdots+q_{l-1} / t_{l}+q_{l}\right]^{l+1}} d \mathbf{t}_{l} \\
= & \frac{1}{l q_{l}} \int_{\mathbf{A}_{l-1}} \frac{1}{t_{1}^{2} t_{2}^{3} \cdots t_{l-1}^{l}}\left\{\frac{1}{\left[q_{0} /\left(\prod_{h=1}^{l-1} t_{h}\right)+q_{1} /\left(\prod_{h=2}^{l-1} t_{h}\right)+\cdots+q_{l-2} / t_{l-1}+q_{l-1}\right]^{l}}\right. \\
- & \left.\frac{1}{\left[q_{0} /\left(\prod_{h=1}^{l-1} t_{h}\right)+q_{1} /\left(\prod_{h=2}^{l-1} t_{h}\right)+\cdots+q_{l-2} / t_{l-1}+q_{l-1}+q_{l}\right]^{l}}\right\} d \mathbf{t}_{l-1} . \tag{25}
\end{align*}
$$

Let $\xi=\sum_{i=0}^{l-1} q_{i}$. Then

$$
\begin{aligned}
& \int_{\mathbf{A}_{l-1}} \frac{1}{t_{1}^{2} t_{2}^{3} \cdots t_{l-1}^{l}\left[q_{0} /\left(\prod_{h=1}^{l-1} t_{h}\right)+q_{1} /\left(\prod_{h=2}^{l-1} t_{h}\right)+\cdots+q_{l-2} / t_{l-1}+q_{l-1}\right]^{l}} d \mathbf{t}_{l-1} \\
= & \frac{1}{\xi^{l}} \int_{\mathbf{A}_{l-1}} \frac{1}{t_{1}^{2} t_{2}^{3} \cdots t_{l-1}^{l}\left[\left(q_{0} / \xi\right) /\left(\prod_{h=1}^{l-1} t_{h}\right)+\left(q_{1} / \xi\right) /\left(\prod_{h=2}^{l-1} t_{h}\right)+\cdots+q_{l-1} / \xi\right]} d \mathbf{t}_{l-1} .
\end{aligned}
$$

Since $\sum_{i=0}^{l-1} q_{i} / \xi=1$ Гit follows from the induction assumption for $l-1$ that the integral equals

$$
=\begin{aligned}
& \frac{1}{\xi^{l}(l-1)!\left(q_{0} / \xi\right)\left(q_{0} / \xi+q_{1} / \xi\right) \cdots\left(q_{0} / \xi+\cdots+q_{l-1} / \xi\right)} \\
= & \frac{1}{(l-1)!q_{0}\left(q_{0}+q_{1}\right) \cdots\left(q_{0}+\cdots+q_{l-1}\right)} .
\end{aligned}
$$

Also ${ }^{\text {bl }}$ y the induction assumption Twe have

$$
\begin{aligned}
& \int_{\mathbf{A}_{l-1}} \frac{1}{t_{1}^{2} t_{2}^{3} \cdots t_{l-1}^{l}\left[q_{0} /\left(\prod_{h=1}^{l-1} t_{h}\right)+q_{1} /\left(\prod_{h=2}^{l-1} t_{h}\right)+\cdots+q_{l-2} / t_{l-1}+q_{l-1}+q_{l}\right]} d \mathbf{t}_{l-1} \\
= & \frac{1}{(l-1)!q_{0}\left(q_{0}+q_{1}\right) \cdots\left(q_{0}+\cdots+q_{l-2}\right)\left(q_{0}+\cdots+q_{l-1}+q_{l}\right)} .
\end{aligned}
$$

Consequently C the left-hand side of (25) equals

$$
\begin{aligned}
& \frac{1}{l q_{l}}\left\{\frac{1}{(l-1)!q_{0}\left(q_{0}+q_{1}\right) \cdots\left(q_{0}+\cdots+q_{l-2}\right)\left(q_{0}+\cdots+q_{l-1}\right)}\right. \\
- & \left.\frac{1}{(l-1)!q_{0}\left(q_{0}+q_{1}\right) \cdots\left(q_{0}+\cdots+q_{l-2}\right)\left(q_{0}+\cdots+q_{l-1}+q_{l}\right)}\right\} \\
= & \frac{1}{l!q_{0}\left(q_{0}+q_{1}\right) \cdots\left(q_{0}+\cdots+q_{l}\right)} .
\end{aligned}
$$

Hence C the result also holds for l which completes the proof.

Lemma 3 Define

$$
\begin{equation*}
t_{1}=\frac{\mu_{1}}{\mu_{2}}, t_{2}=\frac{\mu_{2}}{\mu_{3}}, \ldots, t_{k-1}=\frac{\mu_{k-1}}{\mu_{k}}, t_{k}=\mu_{k} . \tag{26}
\end{equation*}
$$

Then $B_{2 k}^{*}$ depends only on $\mathbf{t}_{k-1}=\left(t_{1}, \ldots, t_{k-1}\right)^{t}$.

Proof: It follows directly from (20).

Theorem 1 For any proper density $g(\cdot)$ on $(0, \infty)$ Гthe system of priors

$$
\left\{\begin{array}{l}
\pi_{1}^{I}(\mu)=g(\mu), 0<\mu<\infty \tag{27}\\
\pi_{2}^{I}\left(\boldsymbol{\mu}_{k}\right)=\frac{a_{1} \mu_{1}+\cdots+a_{k} \mu_{k}}{\mu_{1} \cdots \mu_{k}} B_{2 k}^{*}\left(\boldsymbol{\mu}_{k}\right) \pi_{1}^{I}\left(a_{1} \mu_{1}+\cdots+a_{k} \mu_{k}\right), \boldsymbol{\mu}_{k} \in \mathbf{L}_{k}
\end{array}\right.
$$

is a solution of (24) Гwhere $B_{2 k}^{*}$ is given by (20). Furthermore $\Gamma \pi_{2}^{I}$ is a proper density on \mathbf{L}_{k}.

Proof: From Lemma 1「we can see that (27) is a solution of (24). The Jacobian of the transformation from $\boldsymbol{\mu}_{k}$ to \mathbf{t}_{k} in (26) is

$$
|J|=\left|\frac{\partial\left(\mu_{1}, \ldots, \mu_{k}\right)}{\partial\left(t_{1}, \ldots, t_{k}\right)}\right|=t_{2} t_{3}^{2} \cdots t_{k}^{k-1} .
$$

So F

$$
\begin{align*}
& \int_{\mathbf{A}_{k-1}} \int_{0}^{\infty} \pi_{2}^{I}\left(t_{1}, \ldots, t_{k}\right) d t_{k} d \mathbf{t}_{k-1} \\
= & \Gamma(k)^{2} \int_{\mathbf{A}_{k-1}}\left\{\frac{1}{t_{1}^{2} t_{2}^{3} \cdots t_{k-1}^{k}} \int_{0}^{\infty}\left(a_{1} \prod_{h=1}^{k-1} t_{h}+a_{2} \prod_{h=2}^{k-1} t_{h}+\cdots+a_{k-1} t_{k-1}+a_{k}\right)\right. \\
& \left.\pi_{1}^{I}\left[t_{k}\left(a_{1} \prod_{h=1}^{k-1} t_{h}+a_{2} \prod_{h=2}^{k-1} t_{h}+\cdots+a_{k-1} t_{k-1}+a_{k}\right)\right] d t_{k}\right\} \\
& \left\{\int_{\mathbf{A}_{k-1}} \frac{w_{1} w_{2}^{3} \cdots w_{k-1}^{2 k-3}}{\left[q_{0} /\left(\prod_{h=1}^{k-1} t_{h}\right)+q_{1} /\left(\prod_{h=2}^{k-1} t_{h}\right)+\cdots+q_{k-2} / t_{k-1}+q_{k-1}\right]^{k}} d \mathbf{w}_{k-1}\right\} d \mathbf{t}_{k-1}, \tag{28}
\end{align*}
$$

where \mathbf{A}_{k-1} and the q_{i} 's are defined by (18) and (21) respectively. Let $s=t_{k}\left(a_{1} \prod_{h=1}^{k-1} t_{h}+\right.$ $\left.a_{2} \prod_{h=2}^{k-1} t_{h}+\cdots+a_{k}\right)$. Then $d t_{k} / d s=\left(a_{1} \prod_{h=1}^{k-1} t_{h}+a_{2} \prod_{h=2}^{k-1} t_{h}+\cdots+a_{k}\right)^{-1}$ and (28) equals

$$
\begin{equation*}
\Gamma(k)^{2} \int_{\mathbf{A}_{k-1}} \int_{\mathbf{A}_{k-1}} \frac{w_{1} w_{2}^{3} \cdots w_{k-1}^{2 k-3}}{t_{1}^{2} t_{2}^{3} \cdots t_{k-1}^{k}\left[q_{0} /\left(\prod_{h=1}^{k-1} t_{h}\right)+q_{1} /\left(\prod_{h=2}^{k-1} t_{h}\right)+\cdots+q_{k-1}\right]^{k}} d \mathbf{t}_{k-1} d \mathbf{w}_{k-1} . \tag{29}
\end{equation*}
$$

Notice that $q_{0}\left(q_{0}+q_{1}\right) \cdots\left(q_{0}+\cdots+q_{k-1}\right)=w_{1} w_{2}^{2} \cdots w_{k-1}^{k-1}$. ¿From Lemma $2 \Gamma(29)$ becomes

$$
\Gamma(k) \int_{\mathbf{A}_{k-1}} w_{2} w_{3}^{2} \cdots w_{k-1}^{k-2} d \mathbf{w}_{k-1}=1
$$

This completes the proof.
The following theorem explains the structure of the intrinsic prior $\pi_{2}^{I}\left(\boldsymbol{\mu}_{k}\right)$.

Theorem 2 a) The marginal intrinsic prior of \mathbf{t}_{k-1} is

$$
\pi_{2}^{I}\left(\mathbf{t}_{k-1}\right)=\frac{h_{k-1}\left(\mathbf{t}_{k-1}\right)}{t_{1} t_{2} \cdots t_{k-1}}, \mathbf{t}_{k-1} \in \mathbf{A}_{k-1}
$$

where

$$
\begin{equation*}
h_{k-1}\left(\mathbf{t}_{k-1}\right)=B_{2 k}^{*}\left(\prod_{h=1}^{k-1} t_{h}, \prod_{h=2}^{k-1} t_{h}, \ldots, t_{k-1}, 1\right), \mathbf{t}_{k-1} \in \mathbf{A}_{k-1} . \tag{30}
\end{equation*}
$$

b) The conditional intrinsic prior of t_{k} given \mathbf{t}_{k-1} is

$$
\pi_{2}^{I}\left(t_{k} \mid \mathbf{t}_{k-1}\right) \propto \pi_{1}^{I}\left(\xi t_{k}\right), t_{k}>0
$$

where

$$
\xi=a_{1} \prod_{h=1}^{k-1} t_{h}+a_{2} \prod_{h=2}^{k-1} t_{h}+\cdots+a_{k-1} t_{k-1}+a_{k} .
$$

Proof: For part a) Tit follows from (27) that the joint intrinsic prior of $\left(\mathbf{t}_{k-1}^{t}, t_{k}\right)$ is

$$
\begin{equation*}
\pi_{2}^{I}\left(\mathbf{t}_{k-1}^{t}, t_{k}\right)=\frac{\xi}{t_{1} \cdots t_{k-1}} B_{2 k}^{*}\left(\prod_{h=1}^{k} t_{h}, \prod_{h=2}^{k} t_{h}, \ldots, t_{k}\right) \pi_{1}^{I}\left(\xi t_{k}\right) . \tag{31}
\end{equation*}
$$

Applying Lemma 3 Tthe desired result follows from integrating equation (31) over t_{k}. The proof of part b) follows directly from part a).

Corollary 1 When $g(t)$ is the probability density function of Inverse Gamma (λ, η) Ithe pair of intrinsic priors is

$$
\left\{\begin{array}{l}
\pi_{1}^{I}(\mu)=\frac{\eta^{\lambda}}{\Gamma(\lambda) \mu^{\lambda+1}} e^{-\frac{\eta}{\mu}}, 0<\mu<\infty \tag{32}\\
\pi_{2}^{I}\left(\boldsymbol{\mu}_{k}\right)=\frac{\eta^{\lambda} \exp \left\{-\eta /\left(a_{1} \mu_{1}+\cdots+a_{k} \mu_{k}\right)\right\}}{\Gamma(\lambda)\left(a_{1} \mu_{1}+\cdots+a_{k} \mu_{k}\right)^{\lambda} \mu_{1} \cdots \mu_{k}} B_{2 k}^{*}\left(\boldsymbol{\mu}_{k}\right), \boldsymbol{\mu}_{k} \in \mathbf{L}_{k} .
\end{array}\right.
$$

2.3 Special cases when $k=2$ and $k=3$

We now derive the closed forms of $\pi_{2}^{I}\left(\mathbf{t}_{k-1}\right)$ when $k=2$ and $k=3$.
Proposition 3 The quantities $h_{1}\left(t_{1}\right)$ and $h_{2}\left(t_{1}, t_{2}\right)$ are given by
a) $h_{1}\left(t_{1}\right)=B_{22}^{*}\left(t_{1}, 1\right), 0<t_{1}<1$,
b) $h_{2}\left(t_{1}, t_{2}\right)=B_{23}^{*}\left(t_{1} t_{2}, t_{2}, 1\right), 0<t_{1}, t_{2}<1$,
where

$$
\begin{equation*}
h_{1}\left(t_{1}\right)=\frac{t_{1}\left(-\log t_{1}+t_{1}-1\right)}{\left(1-t_{1}\right)^{2}}, 0<t_{1}<1 \tag{33}
\end{equation*}
$$

and

$$
\begin{align*}
h_{2}\left(t_{1}, t_{2}\right) & =2 t_{1} t_{2}\left\{-\frac{t_{1}^{2} t_{2}}{\left(1-t_{1}\right)\left(1-t_{1} t_{2}\right)^{2}}+\frac{1}{\left(1-t_{2}\right)\left(1-t_{1} t_{2}\right)^{2}}\right. \\
& \left.+\frac{t_{2} \log t_{2}}{\left(1-t_{1}\right)^{2}\left(1-t_{2}\right)^{2}}-\frac{t_{1}^{2} t_{2}\left(3-2 t_{1}-t_{1} t_{2}\right) \log \left(t_{1} t_{2}\right)}{\left(1-t_{1}\right)^{2}\left(1-t_{1} t_{2}\right)^{3}}\right\}, 0<t_{1}, t_{2}<1 \tag{34}
\end{align*}
$$

Proof: From (20) the quantities B_{22}^{*} and B_{23}^{*} are

$$
\begin{align*}
B_{22}^{*}\left(\mu_{1}, \mu_{2}\right) & =\mu_{1} \mu_{2} \int_{0}^{1} \frac{w_{2}}{\left[\mu_{1}+\left(\mu_{2}-\mu_{1}\right) w_{2}\right]^{2}} d w_{2}=\frac{\mu_{1} \mu_{2}}{\left(\mu_{2}-\mu_{1}\right)^{2}}\left[\log \left(\frac{\mu_{2}}{\mu_{1}}\right)+\frac{\mu_{1}}{\mu_{2}}-1\right], \\
B_{23}^{*}\left(\mu_{1}, \mu_{2}, \mu_{3}\right) & =\frac{4}{\mu_{1} \mu_{2} \mu_{3}} \int_{0}^{1} \int_{0}^{1} \frac{w_{1} w_{2}^{3}}{\left(\frac{w_{1} w_{2}}{\mu_{1}}+\frac{w_{2}\left(1-w_{1}\right)}{\mu_{2}}+\frac{1-w_{2}}{\mu_{3}}\right)^{3}} d w_{1} d w_{2} \\
& =2 \mu_{1}\left[\frac{\mu_{1}^{2}}{\left(\mu_{1}-\mu_{2}\right)\left(\mu_{1}-\mu_{3}\right)^{2}}-\frac{\mu_{3}^{2}}{\left(\mu_{2}-\mu_{3}\right)\left(\mu_{1}-\mu_{3}\right)^{2}}\right. \\
& \left.+\frac{\mu_{2}^{3} \log \left(\mu_{2} / \mu_{3}\right)}{\left(\mu_{1}-\mu_{2}\right)^{2}\left(\mu_{2}-\mu_{3}\right)^{2}}+\frac{\mu_{1}^{2}\left(3 \mu_{2} \mu_{3}-\mu_{1} \mu_{2}-2 \mu_{1} \mu_{3}\right)}{\left(\mu_{1}-\mu_{2}\right)^{2}\left(\mu_{1}-\mu_{3}\right)^{3}} \log \left(\frac{\mu_{1}}{\mu_{3}}\right)\right] . \tag{35}
\end{align*}
$$

By (30) the desired results are established.
Figure 1 is the plot of the marginal intrinsic prior density $\pi_{2}^{I}\left(t_{1}\right)$ of $t_{1}=\mu_{1} / \mu_{2}$ when $k=2$. Here $\pi_{2}^{I}\left(t_{1}\right)=h_{1}\left(t_{1}\right) / t_{1}$, Note that $\pi_{2}^{I}\left(t_{1}\right)$ is monotonic decreasingTand goes to 0.5 when $t_{1} \rightarrow 1$. Although $\pi_{2}^{I}\left(t_{1}\right)$ is unbounded at $t_{1}=0$ Гit is integrable. Figure 2 is the contour plot of the marginal intrinsic prior density of $t_{1}=\mu_{1} / \mu_{2}$ and $\mu+2 \mu_{3}$ wen $k=3$. Here $\pi_{2}^{I}\left(t_{1}, t_{2}\right)=h_{2}\left(t_{1}, t_{2}\right) /\left(t_{1} t_{2}\right)$, which is unbounded as either t_{1} or $t_{2} \rightarrow 0$, but it is integrable.

For $k=2$ and 3 Twith the pair of intrinsic priors given by Corollary 1 Twe compute the analytic forms of ordinary Bayes factors which are denoted by $B_{21}^{I 2}(\boldsymbol{X})$ and $B_{21}^{I 3}(\boldsymbol{X})$ respectively.

Proposition 4 For a pair of intrinsic priors in (32) we have

$$
\begin{equation*}
B_{21}^{I 2}(\boldsymbol{X})=\left(X_{1}+X_{2 .}+\eta\right)^{\lambda+n_{1}+n_{2}} H_{1}\left(X_{1 .}, X_{2 .}, a_{1}, a_{2}\right), \tag{36}
\end{equation*}
$$

where

$$
H_{1}\left(X_{1}, X_{2}, a_{1}, a_{2}\right)=\int_{0}^{1} \frac{t_{1}^{\lambda+n_{2}-1}\left(a_{1} t_{1}+a_{2}\right)^{n_{1}+n_{2}} h_{1}\left(t_{1}\right)}{\left[\left(a_{1} t_{1}+a_{2}\right) X_{1 .}+t_{1}\left(a_{1} t_{1}+a_{2}\right) X_{2 .}+\eta t_{1}\right]^{\lambda+n_{1}+n_{2}}} d t_{1},
$$

where $h_{1}(\cdot)$ is defined by (33).
Proof: Under M_{1} Гthe marginal density of \boldsymbol{X} is

$$
m_{1}^{I 2}(\boldsymbol{X})=\frac{\eta^{\lambda} \Gamma\left(\lambda+n_{1}+n_{2}\right)}{\Gamma(\lambda)\left(X_{1}+X_{2}+\eta\right)^{\lambda+n_{1}+n_{2}}}
$$

¿From (26) Funder $M_{2} \Gamma t_{1}=\mu_{1} / \mu_{2}$ and $t_{2}=\mu_{2}$. Then the likelihood function becomes

$$
f\left(\boldsymbol{X} \mid t_{1}, t_{2}\right)=\frac{1}{t_{1}^{n_{1}} t_{2}^{n_{1}+n_{2}}} \exp \left\{-\frac{1}{t_{2}}\left[\frac{X_{1} .}{t_{1}}+X_{2} \cdot\right]\right\}, 0<t_{1}<1, t_{2}>0 .
$$

¿From (31) the intrinsic prior $\pi_{2}^{I}\left(t_{1}, t_{2}\right)$ is given by

$$
\pi_{2}^{I}\left(t_{1}, t_{2}\right)=\frac{\eta^{\lambda} h_{1}\left(t_{1}\right)}{\Gamma(\lambda) t_{1}\left(a_{1} t_{1}+a_{2}\right)^{\lambda} t_{2}^{\lambda+1}} \exp \left\{-\frac{\eta}{t_{2}\left(a_{1} t_{1}+a_{2}\right)}\right\}, 0<t_{1}<1, t_{2}>0
$$

The marginal density of \boldsymbol{X} is then

$$
\begin{aligned}
m_{2}^{I 2}(\boldsymbol{X}) & =\int_{0}^{1} \int_{0}^{\infty} \frac{\eta^{\lambda}}{\Gamma(\lambda)} \frac{h_{1}\left(t_{1}\right) t_{2}^{-\left(\lambda+n_{1}+n_{2}+1\right)}}{t_{1}^{n_{1}+1}\left(a_{1} t_{1}+a_{2}\right)^{\lambda}} \exp \left\{-\frac{1}{t_{2}}\left[\frac{X_{1} .}{t_{1}}+X_{2}+\frac{\eta}{a_{1} t_{1}+a_{2}}\right]\right\} d t_{2} d t_{1} \\
& =\frac{\eta^{\lambda} \Gamma\left(\lambda+n_{1}+n_{2}\right)}{\Gamma(\lambda)} \int_{0}^{1} \frac{t_{1}^{\lambda+n_{2}-1}\left(a_{1} t_{1}+a_{2}\right)^{n_{1}+n_{2}} h_{1}\left(t_{1}\right)}{\left[\left(a_{1} t_{1}+a_{2}\right) X_{1}+t_{1}\left(a_{1} t_{1}+a_{2}\right) X_{2 .}+\eta t_{1}\right]^{\lambda+n_{1}+n_{2}}} d t_{1} .
\end{aligned}
$$

Since $B_{21}^{I 2}(\boldsymbol{X})=m_{2}^{I 2}(\boldsymbol{X}) / m_{1}^{I 2}(\boldsymbol{X})$ Гthe result follows immediately.

Proposition 5 For a pair of intrinsic priors in (32) we have

$$
\begin{equation*}
B_{21}^{I 3}(\boldsymbol{X})=\left(X_{1}+X_{2 .}+X_{3 .}+\eta\right)^{\lambda+N} H_{3}\left(X_{1 .}, X_{2}, X_{3 .}, a_{1}, a_{2}, a_{3}\right), \tag{37}
\end{equation*}
$$

where
$H_{3}\left(X_{1}, X_{2}, X_{3 .}, a_{1}, a_{2}, a_{3}\right)=\int_{0}^{1} \int_{0}^{1} \frac{t_{1}^{\lambda+n_{2}+n_{3}-1} t_{2}^{\lambda+n_{3}-1} h_{2}\left(t_{1}, t_{2}\right)\left(a_{1} t_{1} t_{2}+a_{2} t_{2}+a_{3}\right)^{-\lambda}}{\left[X_{1 .}+X_{2} \cdot t_{1}+t_{1} t_{2}\left(X_{3}+\eta /\left(a_{1} t_{1} t_{2}+a_{2} t_{2}+a_{3}\right)\right)\right]^{\lambda+N}} d t_{1} d t_{2}$,
where $N=n_{1}+n_{2}+n_{3}$ and h_{2} is defined by (34).
Proof: Under M_{1} Гthe marginal density of \boldsymbol{X} is

$$
m_{1}^{I 3}(\boldsymbol{X})=\frac{\eta^{\lambda} \Gamma(\lambda+N)}{\Gamma(\lambda)\left(X_{1}+X_{2}+X_{3}+\eta\right)^{\lambda+N}} .
$$

¿From (26) $)$ under $M_{2} \Gamma t_{1}=\mu_{1} / \mu_{2} \Gamma t_{2}=\mu_{2} / \mu_{3}$ and $t_{3}=\mu_{3}$. Then the likelihood function becomes

$$
f\left(\boldsymbol{X} \mid t_{1}, t_{2}, t_{3}\right)=\frac{1}{t_{1}^{n_{1}} t_{2}^{n_{1}+n_{2}} t_{3}^{N}} \exp \left\{-\frac{1}{t_{3}}\left[\frac{X_{1}}{t_{1} t_{2}}+\frac{X_{2} .}{t_{2}}+X_{3} .\right]\right\}, 0<t_{1}, t_{2}<1, t_{3}>0 .
$$

Again from (31) the intrinsic prior $\pi_{2}^{I}\left(t_{1}, t_{2}, t_{3}\right)$ is given by

$$
\pi_{2}^{I}\left(t_{1}, t_{2}, t_{3}\right)=\frac{\eta^{\lambda} h_{2}\left(t_{1}, t_{2}\right)}{\Gamma(\lambda) t_{1} t_{2} t_{3}^{\lambda+1}\left(a_{1} t_{1} t_{2}+a_{2} t_{2}+a_{3}\right)^{\lambda}} \exp \left\{-\frac{\eta}{s\left(a_{1} t_{1} t_{2}+a_{2} t_{2}+a_{3}\right)}\right\}
$$

for $0<t_{1}, t_{2}<1, t_{3}>0$. The marginal density of \boldsymbol{X} is then

$$
\begin{aligned}
m_{2}^{I 3}(\boldsymbol{X})= & \frac{\eta^{\lambda}}{\Gamma(\lambda)} \int_{0}^{1} \int_{0}^{1} \int_{0}^{\infty} \frac{h_{2}\left(t_{1}, t_{2}\right)}{t_{1}^{n_{1}+1} t_{2}^{n_{1}+n_{2}+1} t_{3}^{\lambda+N+1}\left(a_{1} t_{1} t_{2}+a_{2} t_{2}+a_{3}\right)^{\lambda}} \\
& \exp \left\{-\frac{1}{t_{3}}\left[\frac{X_{1} .}{t_{1} t_{2}}+\frac{X_{2} .}{t_{2}}+X_{3}+\frac{\eta}{a_{1} t_{1} t_{2}+a_{2} t_{2}+a_{3}}\right] d d t_{3} d t_{1} d t_{2}\right. \\
= & \frac{\eta^{\lambda} \Gamma(\lambda+N)}{\Gamma(\lambda)} \int_{0}^{1} \int_{0}^{1} \frac{t_{1}^{\lambda+n_{2}+n_{3}-1} t_{2}^{\lambda+n_{3}-1} h_{2}\left(t_{1}, t_{2}\right)\left(a_{1} t_{1} t_{2}+a_{2} t_{2}+a_{3}\right)^{-\lambda}}{\left[X_{1}+X_{2} \cdot t_{1}+t_{1} t_{2}\left(X_{3}+\eta /\left(a_{1} t_{1} t_{2}+a_{2} t_{2}+a_{3}\right)\right)\right]^{\lambda+N} d t_{1} d t_{2} .}
\end{aligned}
$$

Since $B_{21}^{I 3}(\boldsymbol{X})=m_{2}^{I 3}(\boldsymbol{X}) / m_{1}^{I 3}(\boldsymbol{X})$ The result follows immediately.

3 Numerical Examples

Example 2. Suppose that we want to select between the two models $M_{1}: \mu_{1}=\mu_{2}$ and $M_{2}: \mu_{1} \leq \mu_{2}$. The commonly used F-test is the generalized likelihood ratio test. The P-value is $F\left(\bar{X}_{1} / \bar{X}_{2} ; 2 n_{1}, 2 n_{2}\right)$. To illustrate the difference between the F-test and the Bayesian model selection under the intrinsic priors developed in Section 2Γ we examine the cases when $\bar{X}_{1} / \bar{X}_{2}=$ $1,2,3$ Гand $n_{1}=n_{2}=12,20,30$. The numerical values of the P-value for some choices of n_{1} and n_{2}
are given in the column 3 of Table 2. The Bayes factors and the posterior probability of M_{1} are computed for three choices of (λ, η). They are $(0.01,0.01) \Gamma(1.0,1.0)$ and $(10,10)$. We see that the posterior probabilities tend to be bigger than P-values. For the cases when $\bar{X}_{2} / \bar{X}_{1}=2$ or 3 Гas the sample sizes become larger Γ the Bayes factors will select M_{2}. Furthermore Γ the Bayes factors are quite robust in terms of the change of the values (λ, η).

Example 3 . The following data $\begin{aligned} & \text { given by Proschan (1963) } \text { Гare time intervals of successive }\end{aligned}$ failures of the air conditioning system in Boeing 720 jet airplanes. We assume that the time between successive failures for each plane is independent and exponentially distributed.

plane 1	139Г210Г97Г30Г23Г13Г14
plane 2	102Г209Г14Г57Г54Г32Г67Г59Г134Г152Г27Г14Г230Г66Г61Г34
plane 3	90Г10Г60Г186Г61Г49Г14Г24Г56Г20Г79Г84Г44Г59Г29Г118Г 25Г156Г310Г76Г26Г44Г23Г62Г130Г208Г70Г101Г208
plane 4	23Г261Г87Г7Г120Г14Г62Г47Г225Г 71 Г246Г21Г42Г20Г5Г12Г 120Г11Г3Г14Г71Г11Г14Г11Г16Г90Г1Г16Г52Г95
plane 5	97Г 51 Г11Г 4 Г141Г18Г142Г68Г77Г80Г1Г16Г106Г206Г82Г54Г 31Г216Г46Г111Г39Г63Г18Г191Г18Г163Г24
plane 6	$74 \Gamma 57 \Gamma 48$ Г29Г502Г12Г70Г21Г29Г386Г59Г27Г153Г26Г326

In Table 3 Twe provide the P -values Γ Bayes factors and the posterior probabilities $P^{I}\left(M_{1} \mid \boldsymbol{X}\right)$ for testing equal means ($M_{1}: \mu_{1}=\mu_{2}=\mu_{3}$) against ascending ordered means ($M_{2}: \mu_{1} \leq \mu_{2} \leq \mu_{3}$) for failure times for the first 3 planes and the last 3 planes respectively. The P-value is computed based on asymptotic procedures using level probabilities (cf. Robertson「et al.Г1988). For the first 3 sets of data there is no strong evidence for supporting model M_{2} in terms of both the P -value and the $P^{I}\left(M_{1} \mid \boldsymbol{X}\right)$. Moreover Γ the ordinary Bayes factor $B_{21}^{I 3}$ computed by (37) with $\lambda=\eta=1$ is very close to the AI Bayes factor $B_{21}^{A I}$. For the last 3 sets of data . the P-value and Bayes factors. When we just look at the sample means of each set of data i it seems that there is a strong evidence for supporting model M_{2}. However Twe can see that three particular observations $502 \Gamma 386$ and 326 in plane 6 enlarge the sample mean $\bar{X}_{3} \Gamma$ which makes the P -value very small. MeanwhileГ Bayes factors give fairly reasonable answers. We notice that there is about a 9% difference between $B_{21}^{A I}$ and $B_{21}^{I 3}$ Twhich is quite big. To compensate for this inaccuracy $\begin{gathered}\text { we }\end{gathered}$ make some changes for observations in plane 6 . When we change three observations $(502,12,21)$ to
($418,54,63$) Ithe AI Bayes factor $B_{21}^{A I}$ becomes 1.7622 Twhich is almost equal to the intrinsic Bayes factor $B_{21}^{I 3}$.

4 Comments

It has noticed that a P -value often does not agree with the posterior probability that the null hypothesis is correct. Delampady and Berger (1990) have showed that the lower bounds of Bayes factors and posterior probabilities in favor of null hypotheses are much larger than the corresponding P-values of the chi-squared goodness of fit test.

As we see from numerical results「P-values tend to reject the null hypothesis frequently. Fur-thermoreГP-values are computed based only on sufficient statisticsTwhich might be misleading for some cases. The average intrinsic Bayes factors are computed based on entire observations so that they give accurate interpretations and fairly steady answers.

Acknowledgements

Research supported in part by the US Federal Highway Administration 5 under subcontract E77690017-3Y from Los Alamos National Laboratory to the National Institute of Statistical Sciences.

References

[1] BergerГJ. O. and BernadoГJ. M. (1989). Estimating a product of means: Bayesian analysis with reference priorsए Journal of the American Statistical Association, 84Гpp. 200-207
[2] BergerГJ. O. and BernardoГJ. (1992). On the development of the reference priorsГin Bayesian Statistics 4, (BernardoГJ. M.ГBergerГJ. О.ГDawidГA. P. and SmithГ A. F. M. eds) Г Oxford University Press: LondonTpp. 35-60.
[3] BergerГJ. O.ГBrownГL. D. and WolpertГR. L. (1994). A unified conditional frequentist and Bayesian test for fixed and sequential simple hypothesis Γ The Annals of Statistics, $22 \Gamma \mathrm{pp}$. 1787-1807.
[4] Berger J. O. and PericchiГ L. (1996a). The Intrinsic Bayes factor for linear models (with discussion) Гin Bayesian Analysis VГJ. M. Bernado「et al.Г(Eds.)Гpp. 25-44ГOxford University Press 0 Oxford.
[5] Berger J. O. and PericchiГ L. (1996b). The intrinsic Bayes factor for model selection and prediction Г Journal of the American Statistical Association, 91Гpp. 109-122.
[6] DelampadyГM. and BergerГJ. O. (1990). Lower bounds on the Bayes factors for multinomial distribution Γ with application to chi-squared tests of fit Γ The Annals of Statistics, $18 \Gamma \mathrm{pp}$. 1295-1316.
[7] GeisserTS. and Eddy TW. F. (1979). A predictive approach to model selection J Journal of the American Statistical Association, 74Гpp. 153-160.
[8] GhoshГM. and SunTD. (1997). Recent developments of Bayesian inference for stress-strength models. To appear in the Indian Association for Productivity Quality and Reliability (IAPQR) volume titled "Frontiers in Reliability".
[9] JeffreysГH. (1961). Theory of Probability. London: Oxford University Press.
[10] LinghamГR. T. and SivaganesanTS. (1997). Testing hypotheses about the power law process under failure truncation using intrinsic Bayes factors. To appear in Annals of the Institute of Statistical Mathematics.
[11] ProschanTF. (1963). Theoretical explanation of observed decreasing failure rateГ Technometrics, 5 Грр. 375-383.
[12] RobertsonГT.ГWrightГF. T. and DykstraГR. L. (1988). Order restricted statistical inferenceГ John Wiley \& Sons Ltd.
[13] San MartiniГA. and SpezzaferriГF. (1984). A predictive model selection criterionГ Journal of Royal Statistical Society, ser. B 46Гpp. 296-303.
[14] SpiegelhalterГD. J. and SmithГA. F. M. (1982). Bayes factors for linear and log-linear models with vague prior information J Journal of Royal Statistical Society, ser. B 44Гpp. 377-387.
[15] VarshavskyГJ. A. (1996). Intrinsic Bayes factors for model selection with autoregressive data厂 in Bayesian Analysis VTJ. M. Bernado「et al.Г(Eds.)Гpp. 757-763ГOxford University PressT Oxford.

Table 1: Comparison of error probabilities for testing $H_{0}: \mu_{1} / \mu_{2}=2$ versus $H_{1}: \mu_{1} / \mu_{2}=0.5$.

n	$\alpha=\beta$	$\left(\bar{X}_{1}, \bar{X}_{2}\right)$	P-value	B	$P\left(H_{0} \mid \boldsymbol{X}\right)$	$P\left(H_{1} \mid \boldsymbol{X}\right)$
12	0.0480	$(1.0,1.0)$	0.0480	1	0.5	0.5
		$(1.0,1.5)$	0.0046	24.445	0.0393	0.9607
		$(1.0,2.0)$	0.0006	216.39	0.0046	0.9954
20	0.0155	$(1.0,1.0)$	0.0155	1	0.5	0.5
		$(1.0,1.5)$	0.0004	207.33	0.0048	0.9952
		$(1.0,2.0)$	0.000013	4,999	0.0002	0.9998
30	0.0041	$(1.0,1.0)$	0.0041	1	0.5	0.5
		$(1.0,1.5)$	0.000018	3,332	0.0003	0.9997
		$(1.0,2.0)$	0.00000013	666,666	0.0000015	0.9999985

Table 2: P-values Γ Bayes factorsFand $P\left(M_{1} \mid \boldsymbol{X}\right)$ for testing $M_{1}: \mu_{1}=\mu_{2}$ versus $M_{2}: \mu_{1} \leq \mu_{2}$.

| | | | $(\lambda, \eta)=(.01, .01)$ | | $(\lambda, \eta)=(1.0,1.0)$ | | $(\lambda, \eta)=(10,10)$ | |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| n | $\left(\bar{X}_{1}, \bar{X}_{2}\right)$ | P-value | B_{21} | $P\left(M_{1} \mid \boldsymbol{X}\right)$ | B_{21} | $P\left(M_{1} \mid \boldsymbol{X}\right)$ | B_{21} | $P\left(M_{1} \mid \boldsymbol{X}\right)$ |
| 12 | $(1.0,1.0)$ | 0.5 | 0.23027 | 0.81283 | 0.22983 | 0.81312 | 0.22711 | 0.81492 |
| | $(1.0,2.0)$ | 0.04805 | 1.54115 | 0.39352 | 1.52474 | 0.39608 | 1.44197 | 0.40950 |
| | $(1.0,3.0)$ | 0.00465 | 10.5823 | 0.08634 | 10.4746 | 0.08715 | 10.3576 | 0.08805 |
| 20 | $(1.0,1.0)$ | 0.5 | 0.18258 | 0.84561 | 0.18244 | 0.84571 | 0.18146 | 0.84641 |
| | $(1.0,2.0)$ | 0.01549 | 3.19048 | 0.23864 | 3.17004 | 0.23981 | 3.05367 | 0.24669 |
| | $(1.0,3.0)$ | 0.000373 | 81.8325 | 0.01207 | 81.3373 | 0.01215 | 81.2479 | 0.01216 |
| 30 | $(1.0,1.0)$ | 0.5 | 0.15129 | 0.86859 | 0.15124 | 0.86863 | 0.15083 | 0.86894 |
| | $(1.0,2.0)$ | 0.004055 | 8.56653 | 0.10453 | 8.53005 | 0.10493 | 8.30891 | 0.10742 |
| | $(1.0,3.0)$ | 0.000018 | 1182.77 | 0.00084 | 1178.03 | 0.00085 | 1180.56 | 0.00085 |

Table 3: P-values Γ Bayes factors and $P^{I}\left(M_{1} \mid \boldsymbol{X}\right)$ for testing $M_{1}: \mu_{1}=\mu_{2}=\mu_{3}$ versus $M_{2}: \mu_{1} \leq \mu_{2} \leq \mu_{3}$ for airplane data.

$\left(n_{1}, n_{2}, n_{3}, \bar{X}_{1}, \bar{X}_{2}, \bar{X}_{3}\right)$	P-value	$B_{21}^{A I}$	$B_{21}^{E A I}$	$B_{21}^{I 3}$	$P^{I}\left(M_{1} \mid \boldsymbol{X}\right)$
$(24,16,29,64.13,82.00,83.52)$	0.2432	0.1054	0.1164	0.1041	0.9058
$(30,27,15,59.60,76.81,121.27)$	0.0222	1.9303	1.9019	1.7621	0.3621

Figure 1. The marginal intrinsic prior density of $\pi_{2}^{I}\left(t_{1}\right)$.

Figure 2. The marginal intrinsic prior density of $\pi_{2}^{I}\left(t_{1}, t_{2}\right)$.

