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Summary

In Bayesian model selection or testing problems, Bayes factors under proper priors have been

very successful. In practice, however, limited information and time constraints often require us

to use noninformative priors which are typically improper and are de�ned only up to arbitrary

constants. The resulting Bayes factors are then not well de�ned. A recently proposed model

selection criterion, the intrinsic Bayes factor, overcomes such problems by using a part of the

sample as a training sample to get a proper posterior and then use the posterior as the prior for

the remaining observations to compute the Bayes factor. Surprisingly, such a Bayes factor can also

be computed directly from the full sample by using some proper priors, namely intrinsic priors.

The present paper explains how to derive intrinsic priors for ordered exponential means. Some

simulation results are also given to illustrate the method and compare it with classical methods.

Some Keywords: Intrinsic Bayes factor, Intrinsic priors, Je�reys prior, Noninformative priors, Re-

stricted maximum likelihood estimator.

1 Introduction

In reliability theory or survival analysis for comparing treatments, we often need to test the following

hypotheses

M1 : �1 = �2 = � � �= �k ; vs

M2 : �1 � �2 � � � � � �k ; (1)

where the �i's are the means of certain distributions such as exponential distributions. Robertson,

Wright and Dykstra (1988) found the asymptotic distribution of the generalized likelihood ratio

test statistic for M1 versus M2 �M1 for the exponential family using level probabilities. However,

for small sample sizes, the results from asymptotic approximations are often undesirable.

It has been noticed that the generalized likelihood ratio test or the most powerful test could be

misleading, even when the sample sizes are large. For example, Berger, Brown and Wolpert (1994)
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showed that the test for a simple hypothesis against a simple alternative on the normal means with

known variance rejects the null hypothesis systematically while the Bayes factor is just 1. This

motivated the following example.

Example 1 . Let Exp(�) denote the exponential distribution with mean �. Suppose that we

have independent observations Xij , where Xij is Exp(�i); i = 1; 2; j = 1; : : : ; n. Consider the

following testing problem,

H0 :
�1

�2
= 2; vs H1 :

�1

�2
=

1

2
:

De�ne XXX = (X11; � � � ; X1n; X21; � � � ; X2n)
t, Xi =

P
n

j=1Xij=n and G(XXX) = X1=X2: The generalized

likelihood ratio test will reject H0 if G(XXX) < C, and accept H0 if G(XXX) � C. Let � and � denote

the probabilities of Type I and Type II errors respectively. If we assume that � = �, then the

critical value C should be 1, and � = � = F (0:5; 2n; 2n), where F (�; 2n; 2n) is the cdf (cumulative

distribution function) of an F distribution with 2n and 2n degrees of freedom. The corresponding

P-values are F (G(XXX)=2; 2n; 2n). The values of � and � when n = 12; 20; 30 are given in the second

column of Table 1. If we observe X1 = X2, the data would support both H0 and H1 equally. The

generalized likelihood ratio test would conclude H0 and probabilities for both type I and type II

errors are less than 0:05 as long as the sample size is 12 or more. Now let us apply Bayesian model

selection for this problem. Suppose that we choose vague model probabilities, i.e., we have a 50%

chance to select either H0 or H1. Also, �1 follows an informative prior such as the inverse gamma

(1,1) prior under both H0 and H1. Then the posterior probabilities of H0 and H1 given XXX are

P (H0jXXX) =
1

1 +B
; and P (H1jXXX) =

B

1 + B
;

respectively, where B is the Bayes factor, given by

B =

�
G(XXX)=2 + (nX2)

�1 + 1

G(XXX) + (nX2)�1 + 1=2

�2n+1
:

The numerical values of the P-value, Bayes factor, and posterior probabilities for some X1 and X2

are also given in Table 1. Clearly, the Bayesian method gives a better solution.

Ideally, one would choose proper priors or informative priors in computing Bayes factors. How-

ever, limited information and time constraints often require the use of noninformative priors. In

this paper, we use a Bayesian approach to test the problem given by (1) for the exponential distri-

bution using noninformative priors. Since noninformative priors such as Je�reys' (1961) priors or
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reference priors (Berger and Bernado, 1989, 1992) are typically improper so that such priors are

only de�ned up to arbitrary constants which a�ects the values of Bayes factors. Many people have

made e�orts to compensate for that arbitrariness. See Geisser and Eddy (1979), Spiegelhalter and

Smith (1982), and San Martini and Spezzaferri (1984) for related works.

Berger and Pericchi (1996b) introduced a new model selection criterion, called the Intrinsic

Bayes factor (IBF) using a data-splitting idea, which would eliminate the arbitrariness of improper

priors. This approach has shown to be quite useful. See Berger and Pericchi (1996a), Varshavsky

(1996) and Lingham and Sivaganesan (1997).

The paper is arranged as follows. In Section 2, we review the concept of Bayes factors and

intrinsic priors, and derive a general form of intrinsic priors for testing equal means against ordered

means for k independent exponential distributions. Special cases when k = 2 and k = 3 are studied

in detail. In Section 3, we give some numerical results along with real data analysis to illustrate

theoretical results. Finally, few comments are given in Section 4.

2 Intrinsic Priors for Ordered Exponential Means

2.1 Preliminaries

Suppose that there are q di�erent models, say M1; : : : ;Mq, any of which would be possible for

a statistical problem. If the model Mi holds, the data XXX = (X1; : : : ; Xn)
t follow a parametric

distribution with the density function fi(XXXj�i), where �i is a vector of unknown parameters. Let

�i be the parameter space for �i. Based on the observationsXXX, one wants to select the correct model

Mi among q possible models. Bayesian model selection proceeds by choosing a prior distribution

�i(�i) for �i under Mi, and a model probability p(Mi) of Mi being true, for i = 1; : : : ; q. The

posterior probability that Mi is true is then

P (MijXXX) =
h qX
j=1

p(Mj)

p(Mi)
Bji

i
�1
; (2)

where Bji, the Bayes factor of the model Mj to the model Mi, is de�ned by

Bji =
mj(XXX)

mi(XXX)
=

R
�j
fj(XXXj�j)�j(�j)d�jR

�i
fi(XXX j�i)�i(�i)d�i

; (3)

where mi(XXX) is the marginal or predictive density of XXX under Mi. The posterior probabilities in

(2) are used for selecting the most plausible model.
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Let �N
i
(�i) be a noninformative prior for �i in model Mi. Then Bji, the Bayes factor of Mj to

Mi, could be de�ned by

BN

ji
=
mN

j
(XXX)

mN

i
(XXX)

=

R
fj(XXXj�j)�

N

j
(�j)d�jR

fi(XXXj�i)�Ni (�i)d�i
: (4)

A noninformative prior �N
i
(�i) is often improper, and is de�ned only up to an arbitrary constant ci.

Thus, BN

ji
is de�ned only up to (cj=ci), which is also arbitrary so that the Bayes factor is not well

de�ned. To overcome the problem, one may use a part of the data as a so-called training sample,

say XXX(l): The idea is to obtain the (intermediate) posterior �N
i
(�ijXXX(l)) then use �N

i
(�ijXXX(l)) as

the prior to compute the Bayes factor for the XXX(�l), the remainder of the data. Consequently, the

Bayes factor is as follows:

Bji(l) =

R
�j
fj(XXX(�l)j�j ; XXX(l))�N

j
(�j jXXX(l))d�jR

�i
fi(XXX(�l)j�i; XXX(l))�N

i
(�ijXXX(l))d�i

= BN

ji
�BN

ij
(XXX(l)); (5)

where for h = i; j,

mN

h
(XXX(l)) =

Z
�h

fh(XXX(l)j�h)�
N

h
(�h)d�h:

In practice, XXX(l) is chosen to be a minimal training sample in the sense that the marginalmN

h
(XXX(l))

is �nite for all possible models, and no subset of XXX(l) gives �nite marginals. Clearly, Bji(l) does

not depends on (ci; cj). Furthermore, the Bayes factor de�ned in (5), depends on the choice of the

minimal training sample. To avoid this dependence, Berger and Pericchi (1996b) suggested to take

the average of Bji(l) over all XXX(l).

De�nition 1 The arithmetic intrinsic Bayes factor (AI) of Mj to Mi is given by

BAI

ji
=

1

R

RX
l=1

Bji(l) = BN

ji
�
1

R

RX
l=1

BN

ij
(XXX(l)); (6)

where R is the number of all possible minimal training samples. Noticing that computation can be

a problem if R is large, Berger and Pericchi (1996b) proposed the use of the following quantity.

De�nition 2 The expected arithmetic intrinsic Bayes factor (EAI) of Mj to Mi is given by

BEAI

ji
= BN

ji
�
1

R

RX
l=1

E
Mj

�̂j
[BN

ij
(XXX(l))]; (7)
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where �̂j = �̂nj is the MLE of �j . Alternatively, Berger and Pericchi (1996b) suggested �nding

a pair of proper priors such that the Bayes factor using the proper priors will be asymptotically

equivalent to BAI

ji
. Such proper priors are called intrinsic priors if they exist. We need the following

conditions to de�ne intrinsic priors.

Condition 1 Under Mj ; �̂j ! �j ; a:s: and �̂i !  i(�j), as n!1:

Condition 2 Under Mi; �̂i ! �i; a:s: and �̂j !  j(�i), as n!1:

Here �̂h is the MLE of �h under model Mh and  h is a known function, for h = i; j, Normally we

use

 i(�j) = lim
n!1

E
Mj

�j
(�̂i): (8)

Berger and Pericchi (1996b) showed that a pair of intrinsic priors (�I
i
; �I

j
) is a solution of the

following system of functional equations:8>>>><
>>>>:

�I
j
(�j)�

N

i
( i(�j))

�N
j
(�j)�Ii ( i(�j))

= B�
j
(�j);

�I
j
( j(�i))�

N

i
(�i)

�N
j
( j(�i))�Ii (�i)

= B�
i
(�i);

(9)

where for h = i, j,

B�
h
(�h) = lim

R!1

E
Mh

�h
[
1

R

RX
l=1

BN

ij
(XXX(l))]: (10)

The noninformative priors �N
i
(�i) and �

N

j
(�j) are called starting priors. We note that solutions are

not necessarily unique, nor necessarily proper. It is of interest to �nd proper intrinsic priors for

given starting priors. Once we derive proper intrinsic priors, BAI

ji
can be replaced by the ordinary

Bayes factors computed based on intrinsic priors.

2.2 Main Results

Suppose that we have independent observations Xij � Exp(�i); i = 1; 2; : : : ; k; j = 1; 2 : : : ; ni. We

want to test whether the k population means are equal or in ascending order. That is to say, to

select between two competing models given by (1). Let

Xi� =
niX
j=1

Xij and Xi =
Xi�

ni
:

De�ne the total sample size N by N =
P

k

i=1 ni. Assume that there are k constants ai 2 (0; 1) such

that a1 + a2 + � � �+ ak = 1 and for i = 1; : : : ; k;

ni

N
! ai as N !1: (11)
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Let Lk = f�
k
= (�1; : : : ; �k) : 0 < �1 � �2 � � � � � �k < 1g. We use Je�reys' priors as starting

priors for both modelsM1 andM2. The reason to choose Je�reys' prior under modelM1 is obvious.

Under model M2 and k = 2, Je�reys' prior is both the reference prior and the matching prior when

either parameter is of interest (cf. Ghosh and Sun, 1997). Analogously, we start from Je�reys'

prior for arbitrary k. Let � be the common value of �i under M1. Then

�N1 (�) =
1

�
; � > 0; and �N2 (�k) =

1

�1 � � ��k
; �

k
2 Lk:

Recall that BN

21 = mN

2 (XXX)=mN

1 (XXX), where

mN

1 (XXX) =

Z
1

0

1

�N+1
exp

�
�

�P
k

i=1Xi�

�

��
d� =

�(N)

(
P

k

i=1Xi�)N
;

and

mN

2 (XXX) =

Z
Lk

1

�n1+11

� � �
1

�
nk+1
k

exp

�
�

kX
i=1

Xi�

�i

�
d�k :

A typical minimal training sample is XXX(l) = (X1h1 ; X2h2; : : : ; Xkhk
)t. Then the marginal densities

of XXX(l) are

mN

1 (XXX(l)) =
�(k)

(X1h1 + � � �+Xkhk
)k
;

mN

2 (XXX(l)) =
1

X1h1(X1h1 +X2h2) � � �(X1h1 +X2h2 + � � �+Xkhk
)
:

Thus the Bayes factor based on the training sample XXX(l) is

BN

12(XXX(l)) =
�(k)X1h1(X1h1 +X2h2) � � �(X1h1 + � � �+Xk�1;hk�1)

(X1h1 + � � �+Xkhk
)k�1

: (12)

Consequently, the AI Bayes factor and the EAI Bayes factors are

BAI

21 = BN

21 �
1

n1 � � �nk

n1X
h1=1

� � �

nkX
hk=1

BN

12(XXX(l)); (13)

and

BEAI

21 = BN

21 �E
M2

�̂2

BN

12(XXX(l)); (14)

respectively. We need to �nd  1(�2) and  2(�1) in Conditions 1 and 2. Here �1 = � and �2 = �
k
.

Fact 1 a) The MLE of � under M1 is given by

�̂ = N�1
kX
i=1

Xi�: (15)

b) The unrestricted MLE of �i is given by

�̂�
i
= Xi; i = 1; : : : ; k: (16)
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Proof: It is simple.

Let �̂
k
= (�̂1; : : : ; �̂k)

t be the restricted MLE of �
k
under M2. Note that �̂k can be computed

by several algorithms. See Robertson et al. (1988).

Proposition 1 a) Under M2, when N !1, we have

�̂1 = �̂ �!  1(�k) �
kX
i=1

ai�i; a:s:;

where �̂ is given by (15) and ai is given by (11).

b) Under M1, when N !1, we have

�̂2 = �̂
k
�!  2(�) � (�; : : : ; �)t; a:s::

Proof: For a) it is simple. For b), under M2 we have the following inequality (see Robertson et

al., 1988, p. 40),

kX
i=1

[�̂i � �i]
2ni

N
�

kX
i=1

[�̂�
i
� �i]

2ni

N
; (17)

where �̂�
i
is given by (16). By the strong consistency of the unrestricted MLE of �i and the

assumption (11), the right-hand side of (17) converges to zero as N !1. Thus, the left-hand side

of (17) also converges to zero. The result follows from the fact that under M1, �i = � for each

i = 1; : : : ; k.

Clearly B�
h
(�h) depends on k, the total number of populations. To distinguish the quantities

B�
h
(�h) for di�erent k, we write B

�

hk
(�h) = B�

h
(�h). From the de�nition (10), we see that

B�
hk
(�h) = �(k)EMh

�h

"
X11(X11 +X21) � � �(X11 + � � �+Xk�1;1)

(X11+ � � �+Xk1)k�1

#
; h = 1; 2:

For any k � 1, de�ne

Ak = fwk = (w1; : : : ; wk)
t : 0 < w1; : : : ; wk < 1g: (18)

Proposition 2 The quantities B�1k(�1) and B
�

2k(�2) are given by

B�1k(�) = �(k)2
Z
Ak�1

w1w
3
2 � � �w

2k�3
k�1

(q0 + q1 + � � �+ qk�1)k
dwk�1 =

�(k)

2k�1
; (19)

and

B�2k(�k) =
�(k)2

�1 � � ��k

Z
Ak�1

w1w
3
2 � � �w

2k�3
k�1

[q0=�1 + � � �+ qk�1=�k ]k
dwk�1; (20)
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where 8><
>:
q0 = w1w2 � � �wk�1; q1 = (1� w1)w2 � � �wk�1; � � � ;

qk�2 = (1� wk�2)wk�1; qk�1 = 1� wk�1:
(21)

Proof: We �rst derive B�2k . The joint density of (X11; : : : ; Xk1) is given by

f(x11; : : : ; xk1) =

� kY
i=1

1

�i

�
exp

�
�(
x11

�1
+ � � �+

xk1

�k
)

�
; xi1 > 0:

Making the following transformations,8>>>>>>>>>>><
>>>>>>>>>>>:

W1 =
X11

(X11+X21)
;

W2 =
(X11+X21)

(X11+X21+X31)
;

� � �

Wk�1 =
(X11+���+Xk�1;1)

(X11+���+Xk1)
;

Wk = X11 + � � �+Xk1;

or

8>>>>>>>>>>><
>>>>>>>>>>>:

X11 = W1W2 � � �Wk;

X21 = (1�W1)W2 � � �Wk ;

� � �

Xk�1;1 = (1�Wk�2)Wk�1Wk;

Xk1 = (1�Wk�1)Wk:

(22)

We have

B�2k(�1; : : : ; �k) = �(k)E(W1W
2
2 � � �W

k�1
k�1 ): (23)

The Jacobian of this transformation is

jJ j =

����@(x11; x21; : : : ; xk1)@(w1; w2; : : : ; wk)

����

=

�����������������

w2 � � �wk w1w3 � � �wk � � � w1 � � �wk�1

�w2 � � �wk (1� w1)w3 � � �wk � � � (1� w1)w2 � � �wk�1

0 �w3 � � �wk � � � (1� w2)w3 � � �wk�1

...
...

...
...

0 0 � � � 1� wk�1

�����������������

=

�����������������

w2 � � �wk w1w3 � � �wk � � � w1 � � �wk�1

0 w3 � � �wk � � � w2 � � �wk�1

0 0 w4 � � �wk w3 � � �wk�1

...
...

...
...

0 0 � � � 1

�����������������
= w2w

2
3 � � �w

k�1
k

:

The joint density of (W1; : : : ;Wk)
t is then

f(w1; : : : ; wk) =
w2w

2
3 � � �w

k�1
k

�1 � � ��k
expf�wk(

q0

�1
+ � � �+

qk�1

�k
)g;
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where wk�1 = (w1; : : : ; wk�1)
t
2 Ak�1 and wk > 0. Integrating out with respect to wk, we get the

following joint density of (W1; : : : ;Wk�1)
t

g(wk�1) =
�(k)

�1 � � ��k

w2w
2
3 � � �w

k�2
k�1

[q0=�1 + � � �+ qk�1=�k]k
; wk�1 2 Ak�1;

where qi's are given by (21). Hence equation (20) is established. Note that
P

k�1
i=0 qi = 1 in (21).

Since �i = � under M1, equation (19) immediately follows from (20). This completes the proof.

Denote 1k = (1; : : : ; 1)t 2 IRk. The system of equations (9) becomes8>>><
>>>:

�I2(�k)=(a1�1 + � � �+ ak�k)

�I1(a1�1 + � � �+ ak�k)=(�1 � � ��k)
= B�2k(�k); �k 2 Lk ;

�I2(�1k)=�

�I1(�)=�
k

= B�1k(�); � > 0:

(24)

Lemma 1 B�2k(�k) �! B�1k(�) as �k �! �1k , where the limit �
k
�! �1k is taken within the

region �
k
2 Lk:

Proof: Since W 1
1W

2
2 � � �W

k�1
k�1 is bounded, it follows from (23) that B�2k ! B�1k as �

k
�! �1k.

This completes the proof.

Lemma 2 For any integer l � 1, and any constants qi 2 (0; 1) satisfying q0 + � � �+ ql = 1,Z
Al

1

t21t
3
2 � � � t

l+1
l

[q0=(
Q
l

h=1 th) + q1=(
Q
l

h=2 th) + � � �+ ql�1=tl + ql]l+1
dtl

=
1

l! q0(q0 + q1) � � �(q0 + q1 + � � �+ ql)
:

Proof: We use induction. For l = 1, we haveZ
A1

1

t21(q0=t1 + q1)2
dt1 =

1

q0(q0 + q1)
=

1

q0
:

Assume that the result holds for l � 1. Now for l, we haveZ
Al

1

t21t
3
2 � � � t

l+1
l

[q0=(
Q
l

h=1 th) + q1=(
Q
l

h=2 th) + � � �+ ql�1=tl + ql]l+1
dtl

=
1

lql

Z
Al�1

1

t21t
3
2 � � � t

l

l�1

�
1

[q0=(
Q
l�1
h=1 th) + q1=(

Q
l�1
h=2 th) + � � �+ ql�2=tl�1 + ql�1]l

�
1

[q0=(
Q
l�1
h=1 th) + q1=(

Q
l�1
h=2 th) + � � �+ ql�2=tl�1 + ql�1 + ql]l

�
dtl�1: (25)

Let � =
P

l�1
i=0 qi. ThenZ

Al�1

1

t21t
3
2 � � � t

l

l�1[q0=(
Q
l�1
h=1 th) + q1=(

Q
l�1
h=2 th) + � � �+ ql�2=tl�1 + ql�1]l

dtl�1

=
1

�l

Z
Al�1

1

t21t
3
2 � � � t

l

l�1[(q0=�)=(
Q
l�1
h=1 th) + (q1=�)=(

Q
l�1
h=2 th) + � � �+ ql�1=�]l

dtl�1:
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Since
P

l�1
i=0 qi=� = 1, it follows from the induction assumption for l� 1 that the integral equals

1

�l(l � 1)!(q0=�)(q0=� + q1=�) � � �(q0=� + � � �+ ql�1=�)

=
1

(l � 1)!q0(q0 + q1) � � �(q0 + � � �+ ql�1)
:

Also, by the induction assumption, we have

Z
Al�1

1

t21t
3
2 � � � t

l

l�1[q0=(
Q
l�1
h=1 th) + q1=(

Q
l�1
h=2 th) + � � �+ ql�2=tl�1 + ql�1 + ql]l

dtl�1

=
1

(l� 1)!q0(q0 + q1) � � �(q0 + � � �+ ql�2)(q0 + � � �+ ql�1 + ql)
:

Consequently, the left-hand side of (25) equals

1

lql

�
1

(l� 1)!q0(q0 + q1) � � �(q0 + � � �+ ql�2)(q0 + � � �+ ql�1)

�
1

(l � 1)!q0(q0 + q1) � � �(q0 + � � �+ ql�2)(q0 + � � �+ ql�1 + ql)

�

=
1

l! q0(q0 + q1) � � �(q0 + � � �+ ql)
:

Hence, the result also holds for l, which completes the proof.

Lemma 3 De�ne

t1 =
�1

�2
; t2 =

�2

�3
; : : : ; tk�1 =

�k�1

�k
; tk = �k : (26)

Then B�2k depends only on tk�1 = (t1; : : : ; tk�1)
t.

Proof: It follows directly from (20).

Theorem 1 For any proper density g(�) on (0;1), the system of priors

8><
>:
�I1(�) = g(�); 0 < � <1;

�I2(�k) =
a1�1 + � � �+ ak�k

�1 � � ��k
B�2k(�k)�

I

1(a1�1 + � � �+ ak�k); �k 2 Lk
(27)

is a solution of (24), where B�2k is given by (20). Furthermore, �I2 is a proper density on Lk .

Proof: From Lemma 1, we can see that (27) is a solution of (24). The Jacobian of the transfor-

mation from �
k
to tk in (26) is

jJ j =

����@(�1; : : : ; �k)@(t1; : : : ; tk)

����= t2t
2
3 � � � t

k�1
k

:

10



So,

Z
Ak�1

Z
1

0

�I2(t1; : : : ; tk)dtkdtk�1

= �(k)2
Z
Ak�1

(
1

t21t
3
2 � � � t

k

k�1

Z
1

0

�
a1

k�1Y
h=1

th + a2

k�1Y
h=2

th + � � �+ ak�1tk�1 + ak

�

�I1

�
tk

�
a1

k�1Y
h=1

th + a2

k�1Y
h=2

th + � � �+ ak�1tk�1 + ak

��
dtk

)
(Z
Ak�1

w1w
3
2 � � �w

2k�3
k�1

[q0=(
Q
k�1
h=1 th) + q1=(

Q
k�1
h=2 th) + � � �+ qk�2=tk�1 + qk�1]k

dwk�1

)
dtk�1; (28)

where Ak�1 and the qi's are de�ned by (18) and (21) respectively. Let s = tk(a1
Q
k�1
h=1 th +

a2
Q
k�1
h=2 th + � � �+ ak): Then dtk=ds = (a1

Q
k�1
h=1 th + a2

Q
k�1
h=2 th + � � �+ ak)

�1 and (28) equals

�(k)2
Z
Ak�1

Z
Ak�1

w1w
3
2 � � �w

2k�3
k�1

t21t
3
2 � � � t

k

k�1[q0=(
Q
k�1
h=1 th) + q1=(

Q
k�1
h=2 th) + � � �+ qk�1]k

dtk�1dwk�1: (29)

Notice that q0(q0 + q1) � � �(q0 + � � �+ qk�1) = w1w
2
2 � � �w

k�1
k�1: >From Lemma 2, (29) becomes

�(k)

Z
Ak�1

w2w
2
3 � � �w

k�2
k�1

dwk�1 = 1:

This completes the proof.

The following theorem explains the structure of the intrinsic prior �I2(�k).

Theorem 2 a) The marginal intrinsic prior of tk�1 is

�I2(tk�1) =
hk�1(tk�1)

t1t2 � � � tk�1
; tk�1 2 Ak�1;

where

hk�1(tk�1) = B�2k

�k�1Y
h=1

th;

k�1Y
h=2

th; : : : ; tk�1; 1

�
; tk�1 2 Ak�1: (30)

b) The conditional intrinsic prior of tk given tk�1 is

�I2(tkjtk�1) / �I1(�tk); tk > 0;

where

� = a1

k�1Y
h=1

th + a2

k�1Y
h=2

th + � � �+ ak�1tk�1 + ak :

11



Proof: For part a), it follows from (27) that the joint intrinsic prior of (tt
k�1; tk) is

�I2(t
t

k�1; tk) =
�

t1 � � � tk�1
B�2k

� kY
h=1

th;

kY
h=2

th; : : : ; tk

�
�I1(�tk): (31)

Applying Lemma 3, the desired result follows from integrating equation (31) over tk . The proof of

part b) follows directly from part a).

Corollary 1 When g(t) is the probability density function of Inverse Gamma (�; �), the pair of

intrinsic priors is8>>><
>>>:
�I1(�) =

��

�(�)��+1
e
�

�

� ; 0 < � <1;

�I2(�k) =
�� expf��=(a1�1 + � � �+ ak�k)g

�(�)(a1�1 + � � �+ ak�k)��1 � � ��k
B�2k(�k); �k 2 Lk :

(32)

2.3 Special cases when k = 2 and k = 3

We now derive the closed forms of �I2(tk�1) when k = 2 and k = 3.

Proposition 3 The quantities h1(t1) and h2(t1; t2) are given by

a) h1(t1) = B�22(t1; 1); 0 < t1 < 1;

b) h2(t1; t2) = B�23(t1t2; t2; 1); 0 < t1; t2 < 1;

where

h1(t1) =
t1(� log t1 + t1 � 1)

(1� t1)2
; 0 < t1 < 1; (33)

and

h2(t1; t2) = 2t1t2

�
�

t21t2

(1� t1)(1� t1t2)2
+

1

(1� t2)(1� t1t2)2

+
t2 log t2

(1� t1)2(1� t2)2
�
t21t2(3� 2t1 � t1t2) log(t1t2)

(1� t1)2(1� t1t2)3

�
; 0 < t1; t2 < 1: (34)

Proof: From (20) the quantities B�22 and B
�

23 are

B�22(�1; �2) = �1�2

Z 1

0

w2

[�1 + (�2 � �1)w2]2
dw2 =

�1�2

(�2 � �1)2
[log(

�2

�1
) +

�1

�2
� 1];

B�23(�1; �2; �3) =
4

�1�2�3

Z 1

0

Z 1

0

w1w
3
2

(w1w2

�1
+ w2(1�w1)

�2
+ 1�w2

�3
)3
dw1dw2

= 2�1

�
�21

(�1 � �2)(�1 � �3)2
�

�23
(�2 � �3)(�1 � �3)2

+
�32 log(�2=�3)

(�1 � �2)2(�2 � �3)2
+
�21(3�2�3��1�2 � 2�1�3)

(�1 � �2)2(�1 � �3)3
log(

�1

�3
)

�
: (35)

12



By (30) the desired results are established.

Figure 1 is the plot of the marginal intrinsic prior density �I2(t1) of t1 = �1=�2 when k = 2.

Here, �I2(t1) = h1(t1)=t1; Note that �
I

2(t1) is monotonic decreasing, and goes to 0:5 when t1 ! 1.

Although �I2(t1) is unbounded at t1 = 0, it is integrable. Figure 2 is the contour plot of the marginal

intrinsic prior density of t1 = �1=�2 and � + 2�3 wen k = 3. Here �I2(t1; t2) = h2(t1; t2)=(t1t2);

which is unbounded as either t1 or t2 ! 0; but it is integrable.

For k = 2 and 3, with the pair of intrinsic priors given by Corollary 1, we compute the analytic

forms of ordinary Bayes factors, which are denoted by BI2
21(XXX) and BI3

21(XXX) respectively.

Proposition 4 For a pair of intrinsic priors in (32) we have

BI2
21(XXX) = (X1� +X2� + �)�+n1+n2H1(X1�; X2�; a1; a2); (36)

where

H1(X1�; X2�; a1; a2) =

Z 1

0

t�+n2�11 (a1t1 + a2)
n1+n2h1(t1)

[(a1t1 + a2)X1� + t1(a1t1 + a2)X2� + �t1]�+n1+n2
dt1;

where h1(�) is de�ned by (33).

Proof: Under M1, the marginal density of XXX is

mI2
1 (XXX) =

���(�+ n1 + n2)

�(�)(X1�+X2� + �)�+n1+n2
:

>From (26), under M2, t1 = �1=�2 and t2 = �2. Then the likelihood function becomes

f(XXXjt1; t2) =
1

tn11 t
n1+n2
2

expf�
1

t2
[
X1�

t1
+X2�]g; 0 < t1 < 1; t2 > 0:

>From (31) the intrinsic prior �I2(t1; t2) is given by

�I2(t1; t2) =
��h1(t1)

�(�)t1(a1t1 + a2)�t
�+1
2

expf�
�

t2(a1t1 + a2)
g; 0 < t1 < 1; t2 > 0:

The marginal density of XXX is then

mI2
2 (XXX) =

Z 1

0

Z
1

0

��

�(�)

h1(t1)t
�(�+n1+n2+1)
2

tn1+11 (a1t1 + a2)�
expf�

1

t2
[
X1�

t1
+X2� +

�

a1t1 + a2
]gdt2dt1

=
���(�+ n1 + n2)

�(�)

Z 1

0

t�+n2�11 (a1t1 + a2)
n1+n2h1(t1)

[(a1t1 + a2)X1� + t1(a1t1 + a2)X2� + �t1]�+n1+n2
dt1:

Since BI2
21(XXX) = mI2

2 (XXX)=mI2
1 (XXX), the result follows immediately.
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Proposition 5 For a pair of intrinsic priors in (32) we have

BI3
21(XXX) = (X1� +X2� +X3� + �)�+NH3(X1�; X2�; X3�; a1; a2; a3); (37)

where

H3(X1�; X2�; X3�; a1; a2; a3) =

Z 1

0

Z 1

0

t�+n2+n3�11 t�+n3�12 h2(t1; t2)(a1t1t2 + a2t2 + a3)
��

[X1� +X2�t1 + t1t2(X3� + �=(a1t1t2 + a2t2 + a3))]�+N
dt1dt2;

where N = n1 + n2 + n3 and h2 is de�ned by (34).

Proof: Under M1, the marginal density of XXX is

mI3
1 (XXX) =

���(�+N)

�(�)(X1�+X2� +X3� + �)�+N
:

>From (26), under M2, t1 = �1=�2, t2 = �2=�3 and t3 = �3. Then the likelihood function becomes

f(XXXjt1; t2; t3) =
1

tn11 t
n1+n2
2 tN3

expf�
1

t3
[
X1�

t1t2
+
X2�

t2
+X3�]g; 0 < t1; t2 < 1; t3 > 0:

Again from (31) the intrinsic prior �I2(t1; t2; t3) is given by

�I2(t1; t2; t3) =
��h2(t1; t2)

�(�)t1t2t
�+1
3 (a1t1t2 + a2t2 + a3)�

expf�
�

s(a1t1t2 + a2t2 + a3)
g;

for 0 < t1; t2 < 1; t3 > 0. The marginal density of XXX is then

mI3
2 (XXX) =

��

�(�)

Z 1

0

Z 1

0

Z
1

0

h2(t1; t2)

tn1+11 tn1+n2+12 t�+N+1
3 (a1t1t2 + a2t2 + a3)�

exp
n
�
1

t3
[
X1�

t1t2
+
X2�

t2
+X3� +

�

a1t1t2 + a2t2 + a3
]
o
dt3dt1dt2

=
���(�+N)

�(�)

Z 1

0

Z 1

0

t�+n2+n3�11 t�+n3�12 h2(t1; t2)(a1t1t2 + a2t2 + a3)
��h

X1� +X2�t1 + t1t2(X3� + �=(a1t1t2 + a2t2 + a3))
i
�+N

dt1dt2:

Since BI3
21(XXX) = mI3

2 (XXX)=mI3
1 (XXX), the result follows immediately.

3 Numerical Examples

Example 2 . Suppose that we want to select between the two models M1 : �1 = �2 and

M2 : �1 � �2: The commonly used F-test is the generalized likelihood ratio test. The P-value

is F (X1=X2; 2n1; 2n2): To illustrate the di�erence between the F-test and the Bayesian model

selection under the intrinsic priors developed in Section 2, we examine the cases when X1=X2 =

1; 2; 3, and n1 = n2 = 12; 20; 30: The numerical values of the P-value for some choices of n1 and n2

14



are given in the column 3 of Table 2. The Bayes factors and the posterior probability of M1 are

computed for three choices of (�; �): They are (0:01; 0:01), (1:0; 1:0) and (10; 10):We see that the

posterior probabilities tend to be bigger than P-values. For the cases when X2=X1 = 2 or 3, as the

sample sizes become larger, the Bayes factors will select M2. Furthermore, the Bayes factors are

quite robust in terms of the change of the values (�; �).

Example 3 . The following data, given by Proschan (1963), are time intervals of successive

failures of the air conditioning system in Boeing 720 jet airplanes. We assume that the time

between successive failures for each plane is independent and exponentially distributed.

plane 1 50, 44, 102, 72, 22, 39, 3, 15, 197, 188, 79, 88, 46, 5, 5, 36, 22,

139, 210, 97, 30, 23, 13, 14

plane 2 102, 209, 14, 57, 54, 32, 67, 59, 134, 152, 27, 14, 230, 66, 61, 34

plane 3 90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29, 118,

25, 156, 310, 76, 26, 44, 23, 62, 130, 208, 70, 101, 208

plane 4 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12,

120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95

plane 5 97, 51, 11, 4, 141, 18, 142, 68, 77, 80, 1, 16, 106, 206, 82, 54,

31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24

plane 6 74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27, 153, 26, 326

In Table 3, we provide the P-values, Bayes factors and the posterior probabilities P I (M1jXXX)

for testing equal means (M1 : �1 = �2 = �3) against ascending ordered means (M2 : �1 � �2 � �3)

for failure times for the �rst 3 planes and the last 3 planes respectively. The P-value is computed

based on asymptotic procedures using level probabilities (cf. Robertson, et al., 1988). For the �rst

3 sets of data, there is no strong evidence for supporting model M2 in terms of both the P-value

and the P I(M1jXXX). Moreover, the ordinary Bayes factor BI3
21 computed by (37) with � = � = 1 is

very close to the AI Bayes factor BAI

21 . For the last 3 sets of data, there is a disagreement between

the P-value and Bayes factors. When we just look at the sample means of each set of data, it seems

that there is a strong evidence for supporting model M2. However, we can see that three particular

observations 502, 386 and 326 in plane 6 enlarge the sample mean X3, which makes the P-value

very small. Meanwhile, Bayes factors give fairly reasonable answers. We notice that there is about

a 9% di�erence between BAI

21 and BI3
21 , which is quite big. To compensate for this inaccuracy, we

make some changes for observations in plane 6. When we change three observations (502; 12; 21) to

15



(418; 54; 63), the AI Bayes factor BAI

21 becomes 1:7622, which is almost equal to the intrinsic Bayes

factor BI3
21 .

4 Comments

It has noticed that a P-value often does not agree with the posterior probability that the null

hypothesis is correct. Delampady and Berger (1990) have showed that the lower bounds of Bayes

factors and posterior probabilities in favor of null hypotheses are much larger than the corresponding

P-values of the chi-squared goodness of �t test.

As we see from numerical results, P-values tend to reject the null hypothesis frequently. Fur-

thermore, P-values are computed based only on su�cient statistics, which might be misleading for

some cases. The average intrinsic Bayes factors are computed based on entire observations so that

they give accurate interpretations and fairly steady answers.
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Table 1: Comparison of error probabilities for testing H0 : �1=�2 = 2 versus H1 : �1=�2 = 0:5.

n � = � (X1; X2) P-value B P (H0jXXX) P (H1jXXX)

12 0.0480 (1:0; 1:0) 0:0480 1 0:5 0:5

(1:0; 1:5) 0:0046 24:445 0:0393 0:9607

(1:0; 2:0) 0:0006 216:39 0:0046 0:9954

20 0.0155 (1:0; 1:0) 0:0155 1 0:5 0:5

(1:0; 1:5) 0:0004 207:33 0:0048 0.9952

(1:0; 2:0) 0:000013 4; 999 0:0002 0.9998

30 0.0041 (1:0; 1:0) 0:0041 1 0:5 0:5

(1:0; 1:5) 0:000018 3; 332 0:0003 0.9997

(1:0; 2:0) 0:00000013 666; 666 0:0000015 0:9999985

Table 2: P-values, Bayes factors, and P (M1jXXX) for testing M1 : �1 = �2 versus M2 : �1 � �2:

(�; �) = (:01; :01) (�; �) = (1:0; 1:0) (�; �) = (10; 10)

n (X1; X2) P-value B21 P (M1jXXX) B21 P (M1jXXX) B21 P (M1jXXX)

12 (1:0; 1:0) 0:5 0:23027 0:81283 0:22983 0:81312 0:22711 0:81492

(1:0; 2:0) 0:04805 1:54115 0:39352 1:52474 0:39608 1:44197 0:40950

(1:0; 3:0) 0:00465 10:5823 0:08634 10:4746 0:08715 10:3576 0:08805

20 (1:0; 1:0) 0:5 0:18258 0:84561 0:18244 0:84571 0:18146 0:84641

(1:0; 2:0) 0:01549 3:19048 0:23864 3:17004 0:23981 3:05367 0:24669

(1:0; 3:0) 0:000373 81:8325 0:01207 81:3373 0:01215 81:2479 0:01216

30 (1:0; 1:0) 0:5 0:15129 0:86859 0:15124 0:86863 0:15083 0:86894

(1:0; 2:0) 0:004055 8:56653 0:10453 8:53005 0:10493 8:30891 0:10742

(1:0; 3:0) 0:000018 1182:77 0:00084 1178:03 0:00085 1180:56 0:00085

Table 3: P-values, Bayes factors and P I(M1jXXX) for testing M1 : �1 = �2 = �3 versus

M2 : �1 � �2 � �3 for airplane data.

(n1; n2; n3; X1; X2; X3) P-value BAI

21 BEAI

21 BI3
21 P I (M1jXXX)

(24; 16; 29; 64:13; 82:00; 83:52) 0:2432 0:1054 0:1164 0:1041 0:9058

(30; 27; 15; 59:60; 76:81; 121:27) 0:0222 1:9303 1:9019 1:7621 0:3621
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Figure 1. The marginal intrinsic prior density of �I2(t1).
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Figure 2. The marginal intrinsic prior density of �I2(t1; t2).


