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Abstract

Early and accurate detection of outbreaks is one of the most important objectives of syn-
dromic surveillance systems. We propose a general Bayesian framework for syndromic surveil-
lance systems. The methodology incorporates Gaussian Markov random field (GMRF) and
Spatio-Temporal conditional autoregressive (CAR) modeling. By contrast, most previous ap-
proaches have been based on only spatial or time series models. The model has appealing
probabilistic representations as well as attractive statistical properties. Based on extensive sim-
ulation studies, the model is capable of capturing outbreaks rapidly, while still limiting false
positives.

Keywords: Syndromic surveillance, spatial statistics, Markov random field, spatio-temporal,
conditional autoregressive process

1 Introduction

Syndromic surveillance uses syndrome (a specific collection of clinical symptoms) data that are
monitored as potential indicators of a disease outbreak. The objective is to detect outbreaks as
rapidly as possible, while also minimizing the number of false positives. In addition to the emphasis
on timeliness, a syndromic surveillance system must also be able to (i) incorporate situation-specific
characteristics such as covariate information for certain diseases; (ii) accommodate the spatial and
temporal dynamics of the disease; (iii) integrate data from multiple sources; and (iv) provide
analysis and visualization tools to help detect unexpected patterns.

In this paper we focus on the early and accurate detection of outbreaks of diseases, which could
be either contagious or noncontagious. In syndromic surveillance, there is no definitive diagnosis
of an outbreak at the early stage. A crucial assumption is that the disease syndrome is identical
to that of the background. For example, the initial symptoms of anthrax are indistinguishable
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from those of several other endemic diseases such as influenza. A central challenge, then, is that
all patients have the same syndrome, but some belong to the background while others have the
disease to be detected. This inability to distinguish is reflected by the additivity in (3.1): the data
are counts of people with the syndrome, who cannot be classified as background or outbreak.

As discussed in Section 3.1, an outbreak differs from the background in two respects: there
is a higher number of cases, and there is temporal and spatial structure that is absent from the
background.

We introduce a flexible hierarchical Bayesian model that can accommodate both spatial effects
and temporal dynamics in a unified framework. We assume that the spatial aspects arise from the
proximity of various measurements taken in adjacent sites. The temporal aspect is a direct result
of a plausible Markov structure. Our results suggest that the model behaves sensibly and may be
useful in even more complicated settings, such as when there are multiple data streams. Accounting
for spatio-temporal correlation improves the assessment of the impact of outbreak distributions,
produces accurate maps of occurrence, and allows for good prediction performance.

This paper is organized as follows. In Section 2 we review the literature on syndromic surveil-
lance and discuss some of the drawbacks of existing models and methodology. In Section 3 we intro-
duce our new spatio-temporal methodology to syndromic surveillance, and describe some properties
of the model. In Section 4 we present some numerical studies and results. Finally, in Section 5 we
discuss possible improvements of our current methods and future research directions.

2 Background

There exists a plethora of surveillance methods in the literature. One of the methods most widely
used by public health departments is the CUSUM chart. This method was first proposed by Page
(1954) to detect small shifts in the mean of a process. There followed many variants in the areas
of quality control and disease surveillance (Ogden and Lynch 1999, Rossi et al. 1999, Cowling et
al. 2006, Fricker et al. 2008). However, the CUSUM technique is relatively slow to respond to
large shifts. Also, special patterns, such as spatial and temporal dynamics, are hard to detect and
analyze.

Spatial scan statistics, proposed by Kulldorff (1997), have been applied to a wide variety of
epidemiological studies for disease cluster detection. However, this method suffers from several
drawbacks. It has difficulty finding small clusters other than the primary cluster, it lacks measures
of uncertainty associated with the identified cluster, and it is unable to account for covariate
information.

From a different direction, there is a long history of Bayesian modeling of change point problems,
including Bayesian analysis of changing linear models and time series models. This subject is also
extensively studied in time series analysis and identification. Many practical problems arising
in quality control, recognition-oriented signal processing, and fault detection and monitoring in
industrial plants, can be modeled with the aid of parametric models in which the parameters are
subject to abrupt changes at unknown time instants.

This topic can be divided into retrospective or off-line analysis of the change point problem and
sequential change point detection such as the Wald-type sequential probability ratio tests (Spiegel-
halter, et al. 2003). While retrospective change point analysis typically focuses on estimation of
when the change point occurred, sequential analysis is a hypothesis testing problem which can be
formulated as a Bayesian model selection problem (Giron, Moreno and Casella 2007). Smith (1975)
developed a Bayesian approach that was restricted to discrete time analysis, where the index of a
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sequence of random variables corresponding to the change point was estimated. Carlin, Gelfand
and Smith (1992) developed a Bayesian approach for change points having continuous support.
They considered Bayesian analysis of a Poisson process with a single change point using Dirichlet
priors on the transition matrix. Barry and Hartigan (1993) discussed alternative formulations of
the change points in terms of product partition distributions. They assume that the observations
are independently and normally distributed, and that the probability of a change point at a position
i is p. The independence can be weakened, but some kind of conditional independence is required,
for instance that observations in different blocks are mutually independent. McCulloch and Tsay
(1993) give a Bayesian method for estimating random level and variance shifts in an autoregressive
time series. Their method is based on estimation of the probability and size of a shift at each time
point, and is a generalization of the usual odds ratio for model discrimination in Bayesian inference.
Chib (1998) proposed models for multiple change points in which the change point probability is
not constant but depends on the regime. Giron, Moreno and Casella (2007) proposed an objective
Bayesian method for multiple change points in linear models based on the intrinsic priors.

Change point models are not directly applicable to our setting of syndromic surveillance because
changes occur at different times in different locations. Moreover, none of these methods accounts
for spatial or temporal correlation in the data, which can lead to higher prediction errors and
underestimated standard errors in the inference results.

Bayesian hierarchical models have become increasingly popular in the analysis of spatial and
spatio-temporal data (Banerjee, Carlin and Gelfand 2004). The advantage of such models is that
they can make use of available prior information while simultaneously borrowing strength from
the data when estimating the quantities of interest. They also provide explicit quantification of
uncertainties, which is essential in real applications. Numerous models have been developed for
disease mapping and the spread of existing outbreaks. To model spatial similarity in a conditional
fashion, Besag (1974, 1975) pioneered the use of conditional autoregressive (CAR) models, whose
computational convenience motivates much of the recent disease mapping literature (Clayton and
Kaldor 1987; Besag, York and Mollie 1991; Besag and Kooperberg 1995; Waller et al. 1997 and
Sun et al. 2000).

To date, there have been several Bayesian treatments in the area of syndromic surveillance.
For example, Banks et al. (2010) proposed to accommodate spatial variations using a conditional
probabilistic approach. They used the CAR model to account for spatial dependence among the
locations of the drug abuse reporting centers. Similar model-based approach has been considered in
Knorr-Held and Richardson (2003), Mart́ınez-Beneito et al. (2008), and Zhou and Lawson (2008).

3 Methods

In this paper, we mainly focus on abrupt changes happening in discrete time and on contagious
diseases.

3.1 Model

The basic model described in Banks et al. (2010) is adopted here. Specifically, let Yi(t) be the
number of individuals with a specific syndrome recorded at hospital i on day t, where i = 1, . . . ,m
and t = 1, . . . , T . We assume that when a disease outbreak occurs, both the level and the spatio-
temporal structure of the Yi(t) change.

Spatial relationships between hospitals are represented by an adjacency matrix W = (wij): if
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hospitals i and j are adjacent, then wij = 1, and otherwise wij = 0. In the example in Section 4,
the reporting units, rather than hospitals, are the 100 counties in the state of North Carolina, and
adjacency means “share a common border.” More complicated definitions, such as the “piecewise
linear decay” in Green and Richardson (2002), can readily be accommodated, but may cause W
no longer to be sparse, adding to the computational effort in the inference procedure.

We model the number of counts Yi(t) by a Bayesian hierarchical model. We assume the first
stage is Poisson with canonical link (log linear), so that in the absence of an epidemic, the mean
function of the Poisson count at hospital i is µi(t). When there is an epidemic, a second component
is added (recall that counts are of people with a syndrome shared by the background and disease.)
to the baseline. We use an indicator function δi(t) as the mark of whether the epidemic is present.
The additional intensity in epidemic state is represented by λi(t). Thus, the first stage model
becomes

Yi(t) ∼ Pois (µi(t) + δi(t)λi(t)) , (3.1)

where we assume µ, δ and λ are mutually independent.
Model for µ. Let θi(t) = log(µi(t)). We assume that θi(t) = XT

i (t)βµ + εi(t), where Xi =

(1, Xi,1, · · · , Xi,p)
T , i = 1, . . . ,m, represent covariates such as population size, βµ = (βµ,0, βµ,1, · · · , βµ,p)T

are covariate coefficients, and εi(t) ∼ N(0, σ2
µ). Spatial and temporal variations can be incorpo-

rated in the covariates. Nevertheless, when βµ = 0 as illustrated in Section 4, the background is
devoid of both spatial and temporal structure.

Model for λ. When there is an outbreak, we assume that the additional intensity λi(t) follows
a model with spatio-temporal structure. Specifically, let ηi(t) = log(λi(t)); then,

ηi(t) = UT
i (t)βλ + ξi(t),

where βλ = (βλ,0, βλ,1, · · · , βλ,q)T are covariate coefficients. We assume that the first column of U i

consists entirely of ones, in which case βλ,0 becomes a scaling factor that can be interpreted as the
relative size of the outbreak compared to the baseline. The ξi(t) are stipulated to satisfy

ξi(t)|ξ−i(t), ξ(t− 1) ∼ N

 ρ1
wi+

∑
j ̸=i

wijξj(t) + ρ2ξi(t− 1),
σ2
λ

wi+

 . (3.2)

In (3.2), ξ−i(t) = (ξ1, · · · , ξi−1, ξi+1, · · · , ξm)T , wi+ =
∑

j ̸=iwij , ρ1 is a spatial correlation and ρ2
is a temporal correlation. We take ξ(1) = (0, · · · , 0)T as the initial values at t = 1.

Since our goal is to detect outbreaks as early as possible, it is of primary interest to study
scenarios when the size of the additional counts is relatively small: λ is of the same order as µ.
However, it is very hard to distinguish the “signal” λ from the “noise” µ when the relative change
eβλ,0 is too small, in which case the system may have too many false alarms. This issue motivates
our proposing different model structures for µ and λ. By assuming white noise background and
spatio-temporal heterogeneity in the signal, we increase the power to detect.

Model for δ. Let δi(t) = 1 if the disease is present at hospital i on day t and δi(t) = 0
otherwise. Currently, we employ an absorbing state model for δ:

P (δi(t+ 1) = 1|δ(t)) =

{
1 if δi(t) = 1,

ps1(δj(t) = 0 ∀j ∈ Ni) + 1− (1− pc)
∑

j∈Ni
δj(t) if δi(t) = 0.

(3.3)

where Ni is the set of spatial neighbors of i, that is, Ni = {j : Wij = 1}. We assume that the
δi(t+1) are conditionally independent given δ(t). The two parameters in (3.3) have straightforward
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interpretations: ps is spontaneous generation rate for outbreaks, i.e., the probability of an outbreak
when neither the site nor any neighbors has an outbreak, and pc is contagion rate for transfer of
outbreaks at neighbors to a site without an outbreak.

Notice that the two terms involving ps and pc represent mutually exclusive behaviors. That
is, if the outbreak is absent at all neighbors of i at time t, then it is generated spontaneously at
time t + 1 with probability ps; or if the outbreak is present at any of the neighbors of i then the

probability of location i being infected at time t+ 1 is 1− (1− pc)
∑

j∈Ni
δj(t).

3.2 Properties

In this section, we look at some properties of the model given in (3.2).
First, recall the model for the spatio-temporal random effect

ξi(t)|ξ−i(t), ξ(t− 1) ∼ N

 ρ1
wi+

∑
j ̸=i

wijξj(t) + ρ2ξi(t− 1),
σ2
λ

wi+

 (3.4)

From (3.4), we have the conditional mean of the form

E [ξi(t)|ξ−i(t), ξ(t− 1)] =
∑
j ̸=i

ρ1
wij

wi+
ξj(t) + ei, (3.5)

where ei = ρ2ξi(t− 1). Next we need to find the distribution (i.e., the mean vector and covariance
matrix) of (ξ1(t), · · · , ξm(t))T given ξ(1), · · · , ξ(t− 1). Let

ν(t) = E [ξ(t)|ξ(1), · · · , ξ(t− 1)] .

Then from (3.5) we get

νi(t) =
∑
j ̸=i

ρ1
wij

wi+
νj(t) + ei, i = 1, . . . ,m, (3.6)

so that
ν(t) = ρ1W̃ν(t) + e, (3.7)

where e = (e1, · · · , em)T and W̃ = (w̃ij) = (wij/wi+) is the scaled adjacency matrix. That is,

B̃ν(t) = e, (3.8)

where B̃ = I−ρ1W̃ has diagonal elements 1 and off-diagonal elements −ρ1w̃ij . If B̃ is nonsingular,
then

ν(t) = B̃−1e = ρ2B̃
−1ξ(t− 1). (3.9)

Using (3.8), we can rewrite (3.5) as

E [ξi(t)|ξ−i(t), ξ(t− 1)] = νi(t) +
∑
j ̸=i

ρ1w̃ij (ξj(t)− νj(t)) . (3.10)

Also we have conditional variances

Var [ξi(t)|ξ−i(t), ξ(t− 1)] =
σ2
λ

wi+
= σ2

i (say). (3.11)
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Then after simplification we get

Var [ξ(t)|ξ(t− 1)] = B̃−1D = [I − ρ1W̃ ]−1D,

where D = Diag(σ2
i ). Here note that in order to have a symmetric covariance matrix, we specify

W̃ = Diag(1/wi+)W . Thus,

ξ(t)|ξ(1), . . . , ξ(t− 1) ∼ MVN
(
ρ2B̃

−1ξ(t− 1), B̃−1D
)
. (3.12)

With Dw = Diag(wi+) and σ2
i = σ2

λ/wi+, then

B̃−1D = (I − ρ1D
−1
w W )−1D−1

w σ2
λ = (Dw − ρ1W )−1σ2

λ. (3.13)

Therefore, provided that (Dw − ρ1W ) is positive definite, the conditional joint distribution of
ξ(t) given ξ(t− 1) is

ξ(t)|ξ(t− 1) ∼ (2π)−m/2|B̃−1D|−1/2 exp

{
− 1

2σ2

(
ξ(t)− ρ2B̃

−1ξ(t− 1)
)T

(Dw − ρ1W )
(
ξ(t)− ρ2B̃

−1ξ(t− 1)
)}

. (3.14)

Next, we discuss two special cases. First, suppose that ρ2 = 0, in which case (3.2) becomes
a CAR model. We write τ = Σ−1

ξ = Dw − ρ1W , that is, we choose ρ1 to make τ nonsingular.
According to Banerjee, Carlin and Gelfand (2005), τ is positive definite if ρ1 ∈ (1/λ(1), 1/λ(n))

where λ(1) and λ(n) are the smallest and the largest eigenvalues of D
−1/2
w WD

−1/2
w . Note that the

spatial neighborhood structure is determined by the precision matrix. For i ̸= j, (Σ−1
ξ )ij = 0, or

equivalently wij = 0, implies that ξi(t) and ξj(t) are conditionally independent given the other ξ’s.
This is referred to as the local Markov property with first-order neighbor structure, which expresses
the independence of the vertices with its neighbors in a graph. If this property holds for all the
vertices and its neighbors, then we have a Gaussian Markov random field (GMRF), and vice versa.

Another note about the network model is that we can easily incorporate weights on different
locations and edges, but the precision matrix needs to be adjusted according to the weights. For
example, we can take the weight between two neighbors to be inversely proportional to the distance
between them. Then our τii = w∗

i+/σ
2 and τij = w∗

i+/w
∗
ij where W ∗ is the weighted adjacency

matrix.
By contrast, suppose that ρ1 = 0, in which case (3.2) becomes a VAR(1) model, which can also

be expressed as
ξ(t) = Φξ(t− 1) + ϵ(t) (3.15)

where Φ = Diag(ρ2) for −1 < ρ2 < 1, t = 2, . . . , n and ϵi(t)
iid∼ N(0, σ2). Then the joint distribution

of ξ is a multivariate normal with covariance matrix having the Toeplitz form

Σ =
σ2

1− ρ22



1 ρ2 ρ22 . . . . . . ρn−1
2

ρ2 1 ρ2
. . .

...

ρ22 ρ2
. . .

. . .
. . .

...
...

. . .
. . .

. . . ρ2 ρ22
...

. . . ρ2 1 ρ2
ρn−1
2 . . . . . . ρ22 ρ2 1


. (3.16)
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In this case, the precision matrix has a nice sparse structure as

τ = σ−2



1 −ρ2 0 . . . . . . 0

−ρ2 1 + ρ22 −ρ2
. . .

...

0 −ρ2
. . .

. . .
. . .

...
...

. . .
. . .

. . . −ρ2 0
...

. . . −ρ2 1 + ρ22 −ρ2
0 . . . . . . 0 −ρ2 1


. (3.17)

The band along the diagonal results from the conditional independence of ξ(ti) and ξ(tj) for
|ti − tj | > 1, given the rest.

Therefore, model (3.2) has the feature that if we look at either the space or time domain
separately, we will have conditional independence across space or across time. The idea is similar to
a mixture model; however, the relationship of the conditional independence and the zero structure
of the precision matrix is not evident in the joint model. In addition, the conditional variance
σ2 must be small enough to ensure positive definiteness of the precision matrix. One sufficient
condition is diagonal dominance, that is

τii = wi+/σ
2 >

∑
i̸=j

|τij |.

Finally, in the conditional specification (3.4), we could use two versions of the adjacency matrix,
the 0-1 adjacency matrix W and the scaled adjacency matrix W̃ . These two cases correspond to
constant and nonconstant conditional variance in the model assumptions. Regarding W̃ , there is
an alternative approach that would instead use

ξi(t)|ξ−i(t), ξ(t− 1) ∼ N

ρ1
∑
j ̸=i

wijξj(t) + ρ2ξi(t− 1), σ2

 . (3.18)

The distinction between (3.4) and (3.18) is that the former tries to stabilize the conditional
variance. The conditional mean at a site is additive, based on all its neighbors. On the other hand,
(3.18) focuses on stabilizing the mean, that is, to make the mean shrink towards the average of its
spatial neighbors. However, in this case, extra care should be given to avoid running into the risk
of having the temporal component dominate the spatial term. Furthermore, the model given in
(3.18) does not make so much sense in our setting.

4 Numerical Studies

In this section we present the results of initial simulation experiments. We employ simulations in
order to evaluate our method by comparing its results to a known (albeit simulated) reality.

4.1 Prior Distributions for µ, δ and λ

As discussed previously, in these experiments we take the background process µ(t) to be pure
noise, with neither spatial nor temporal structure. An alternative is to assume that µ(t) has a non-
trivial spatial structure differing from that of λ(t). Hence, we can take advantage of the additional
variability in the observations when the epidemic is present.
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We assume independent prior distributions for µ, δ and λ, i.e.,

p(µ, δ,λ) = p(µ)p(λ)p(δ). (4.1)

The specific forms of these priors are as follows. First,

p(µ) =

T∏
t=1

1

(2π)m/2|Σµ|−1/2
exp

(
−1

2
µ(t)TΣ−1

µ µ(t)

)
(4.2)

where Σµ = Var(µ) = σ2I. The prior distribution p(λ) has the form

p(λ) =

T∏
t=2

1

(2πσ2)n/2|B−1|1/2
exp

{
− 1

2σ2

(
ζ(t)− ρ2B

−1ζ(t− 1)
)T

B
(
ζ(t)− ρ2B

−1ζ(t− 1)
)}

|J2|, (4.3)

where ζ = log(λ), B = I − ρ1W and J2 = Diag(e−ζi). Finally,

p(δ) =

T∏
t=2

m∏
i=1

p
δi(t)
it (1− pit)

1−δi(t)pi1, (4.4)

where pit = P (δi(t+ 1) = 1|δ(t)) and pi1 = ps.
Note that we cannot recover ps and pc exactly from one realization of the model: there is simply

not enough information in the data for consistent estimation. Therefore, prior information must
be available in order to conduct the inference. In reality, we know that ps must be small, and pc
can be empirically estimated from historical data for known diseases.

Another interesting aspect is the effect of a different time scale or frequency of data collection.
For example, if data were collected weekly instead of daily, the inference will differ. One possible
solution is to slow down the process by decreasing the values of ps and pc.

Also, prediction errors are related to the estimation of the parameter ps. For instance, suppose
the estimate of the spontaneous generation rate for outbreaks ps is p̂s, then p̂s > ps will likely result
in predicting outbreaks too early, hence a type I error. On the other hand, p̂s < ps will likely result
in predicting outbreaks too late, corresponding to a type II error.

The model is then completed with the prior specifications for the hyperparameters (βµ,βλ, σµ, σλ, ρ1,
ρ2, ps, pc):

βµ ∼ N(0, dI) (4.5)

βλ ∼ N(0, dI) (4.6)

σ2
µ ∼ IG(a1, b1) (4.7)

σ2
λ ∼ IG(a2, b2) (4.8)

ρ1 ∼ Unif(−1, 1) (4.9)

ρ2 ∼ Unif(−1, 1) (4.10)

ps ∼ LogNormal(c1, d1)I(0, 1) (4.11)

pc ∼ LogNormal(c2, d2)I(0, 1). (4.12)

8



The choices of hyperparameters represent vague prior information and ensure posterior propriety;
see also discussions on the restrictions on some parameters for these hyperpriors in Sun et al. (2000).

All of the previous specifications are expressed in a conditional fashion. That is, each of the
model components is actually a conditional distribution for the stated variable, conditional on
both its immediate parameters and hyperparameters. A useful graphical tool for representing
this hierarchical Bayesian model is the directed acyclic graph, or DAG. In Figure 1, the likelihood
function is represented as the root of the graph; each prior is represented as a separate node pointing
to the node that depends on it. By working through this diagram, which graphically characterizes
the dependence structure between variables, one can identify possible causal effect and decide on
appropriate analytic priors.

Figure 1: Directed acyclic graph for the full model

4.2 Simulation Methodology

As noted earlier, the setting is the 100 counties in the state of North Carolina, with wij = 1
if counties i and j are geographically adjacent, and wij = 0 otherwise. The counties and their
numbers of neighbors are shown in Figure 2. This network has a very sparse adjacency matrix W ,
which makes sparse matrix computational techniques applicable.

It is also reasonable to assume that σλ > σµ, as one may expect larger variability in an epidemic
than in a non-epidemic phase. Therefore, we set σλ = 0.5 and σµ = 0.1 in the data generation
process. To mimic real scenarios, we generated data with parameters ps = 0.001, pc = 0.2, ρ1 =
0.5, ρ2 = 0.5, and βλ,0 = 1. To begin the simulation, we initialized the states at time t = 1 as
ξ(0) = (0, . . . , 0)T , T = 22, and eβµ,0 = 5. We avoid identifiability and posterior propriety issues
by imposing vague proper CAR priors in the inference, We used two parallel chains started from
different values, each run for 1000 iterations as burn-in for the process to reach stationarity, then
the next 5000 iterations are kept for posterior analysis. Trace and autocorrelation plots did not
reveal any convergence problems.

Model inferences are carried out via Markov chain Monte Carlo (MCMC) simulation that pro-
vides samples from the posterior distribution of all quantities of interest. Bayesian computation
is conducted using Bayesian inference Using Gibbs Sampling (BUGS) software. Simulations and
plots are done in R (CRAN). There is also a “R2WinBUGS” package available in R which provides
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Figure 2: Distribution of number of neighbors for each county

convenient functions to call WinBUGS from R, summarize inferences and create tables and graphs.
Since most of the conditionals are not in closed form, an adaptive MCMC algorithm (Haario et al.
2001) is utilized in the sampling procedure. The computation times vary depending on the length
of the time series for the dataset. For our simulation, a complete run including both prospective
and retrospective analyses takes several hours (See Section 4.3 for prospective and retrospective
analyses). Computational time can be significantly reduced if the program is coded in a lower-level
language, e.g., C or Fortran. Nonetheless, the current implementation is still acceptable when data
are collected at daily time intervals.

4.3 Simulation Results

We applied our methods to simulated observations generated by means of model (3.1). We focused
on two families of estimators. The first, P (δ(t) = (·)|Y1:t) where t ≤ T = 22, are the “real time”
estimators that would be used to attempt to detect an outbreak, using which δ(t) is estimated
from Y (1), . . . , Y (t). The second family of estimators P (δ(t) = (·)|Y1:T ), represent ex post facto
(retrospective) reconstruction of the epidemic, using the full data Y (1), . . . , Y (T ) to estimate δ(t)
for each day t.

Finally, we analyzed 100 synthetic replicate datasets, and two cases are presented in Figures
3 and 4. In these figures, T stands for the true δ process, R stands for real-time probabilities
P (δi(t) = 1|Y1:t), and E represents ex post facto probabilities P (δi(t) = 1|Y1:T ).

From the retrospective analysis, the latent δ process can be recovered almost perfectly. The
posterior means of P (δi(t) = 1|Y1:T ) shows the same spatial patterns as the underlying true δ
process as depicted in the third column of Figures 3 and 4. In Figure 3, two outbreaks occur
simultaneously at time T = 9 and gradually propagate to their neighbors. The ex post facto
probabilities for those two counties at T = 9 both exceed 0.75. The spatial and temporal dynamics
are reflected with high precision in the subsequent plots. Another thing to note is that at the time
point just prior to the start of the epidemic, the model gives some low probabilities in the two
regions. This is a smoothing effect: the model has to trace back and determine the exact place and
time of the outbreak.
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The real-time estimators are, as they must be, less effective than the ex post facto ones. For
instance in column R of Figure 4, there are many counties with medium probabilities of δ = 1
on days 9 and 10; these could constitute false alarms if the threshold is too low. We hypothesize
that this “anxiousness to declare an epidemic” results from the fact that the absorbing state model
assumes an outbreak is going to occur. So the longer time goes without detecting an outbreak, the
more anxious the absorbing state model becomes. However, from the numerical studies we found
that once the epidemic is established, the real-time estimators track its spread accurately.
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Figure 3: True vs Real time vs. ex post facto probabilities

Since there is always a tradeoff between quick detection and fewer false alarms, one must assess
the performance of the surveillance system based on both criteria. A false alarm is defined when
there is no outbreak but a prespecified threshold for P (δi(t) = 1|Y1:t) is exceeded. On the other
hand, we define timeliness by the number of days delayed in detecting an outbreak. Figure 5 shows
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Figure 4: True vs Real time vs. ex post facto probabilities
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a ROC-type (Receiver Operating Characteristic) curve for nine different thresholds ranging from
0.1 to 0.9. The x-axis stands for average maximum days delay for a given threshold over the 100
simulated datasets. The y-axis represents average false alarms for the real-time estimator over
all the counties and replicates. We can see that the improvement in false alarms is obtained by
raising the threshold, whereas resulting in increasing the delay of detection. However, the optimal
threshold should depend on different focuses. The choice of a low threshold reflects an emphasis
on timeliness, whereas choosing a high value stresses on low false alarm rate. This type of graph
is valuable to public health authorities, as it enables decision makers to evaluate the situation and
determine acceptable tradeoffs.
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Figure 5: Average false alarms vs Average maximum number of days delayed
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5 Discussion

In this paper, we have presented a new methodology that adapts the existing Gaussian Markov
random field class of models to deal with spatio-temporal surveillance data. When the data are
mainly spatial and coarsely discretized in time, simple models such as the CAR model will continue
to be valuable for descriptive analysis. However, when data have a fine resolution in both the spatial
and temporal dimensions, our model, which explicitly incorporates the directional nature of time
by conditioning future events on past outcomes, is likely to be more insightful.

Our model for the latent stochastic process ξi(t) is, essentially, a CAR model incorporating a
sensible and computationally convenient Markov dependence structure in time. By contrast, most
previous work only considers either space or time individually, which limits the model’s ability to
borrow strength from the other dimension. Inference for our relatively complex but realistic model
requires computationally intensive Monte Carlo methods.

A natural extension of the model is to deal with multivariate counts. Then we can model the
spatio-temporal random effect ξ(t) by a time-dependent variant MCARmodel as in Banerjee, Carlin
and Gelfand (2004), which assumes that conditional on the previous time period, ξ(t) at the current
time follows a multivariate conditional autoregressive model. Another interesting extension of our
proposed approach would be to include time-dependent predictors, X(t) = (x1(t), . . . , xp(t))

T , that
potentially impact the joint distribution of λ and Y . The model inference can be accomplished by
a dynamic linear model framework (West and Harrison 1997).
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