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SUMMARY

Reliable surveillance models are an important tool in public health because they aid in miti-
gating disease outbreaks, identify where and when disease outbreaks occur, and predict future
occurrences. While many statistical models have been devised for surveillance purposes,
none are able to simultaneously achieve important practical goals such as good sensitivity
and specificity, proper use of domain information, inclusion of spatio-temporal dynamics,
and transparent support to decision-makers. In an effort toachieve some of these goals, this
paper proposes a spatio-temporal conditional autoregressive hidden Markov model with an
absorbing state. The model performs well in both a large simulation study and in an applica-
tion to influenza/pneumonia fatality data.
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1. INTRODUCTION

The goal of disease and syndromic surveillance is to monitorand detect aberrations in disease
prevalence across space and time. Disease surveillance typically refers to the monitoring of
confirmed cases of disease while syndromic surveillance uses syndromes associated with disease
to detect aberrations. In either situation, any proper surveillance system should be able to (i)
detect, as early as possible, potentially harmful deviations from baseline levels of disease while
maintaining low false positive detection rates, (ii) incorporate the spatial and temporal dynamics
of a disease system, (iii) be widely applicable to multiple diseases or syndromes, (iv) incorporate
covariate information, and (v) produce results which are readily interpretable by policy decision
makers.

The literature describes many methods, algorithms, and models designed to support surveil-
lance systems; it spans multiple disciplines including statistics, computer science, epidemiology,
and public health. Early approaches to surveillance were primarily computational algorithms.
For example, the CUSUM [1] technique and its variants [see, e.g., 2, 3, 4] monitor the cumula-
tive deviation (over time) of disease counts from some baseline rate. Qiu and Hawkins [5] and
Mason et al. [6] adapt the CUSUM technique for monitoring multiple diseases. While CUSUM
techniques have been popular, they are quite sensitive to the baseline level and are difficult to
adapt to situations in which there is spatial correlation.

A second line of work uses spatial scan statistics, originally proposed by Kulldorff [7] with
later extensions given in Walther [8], Neill and Cooper [9],Kulldorff et al. [10], and Neill et al.
[11]. Scan statistics are designed to find spatial clusters where disease occurrences are high.
However, these algorithms are often computationally expensive, do not easily account for covari-
ate information, and fail to provide an easily interpretable measure of uncertainty associated with
the identified cluster.

The majority of recent surveillance techniques are model-based approaches. Advantages of
model-based approaches include the ability to incorporatecovariate information, the flexibility
in accounting for spatial and temporal dynamics in a hierarchical framework, and direct inter-
pretability of model parameters which facilitates decision-making. For example, LeStrat and
Carrat [12] pioneered the use of hidden Markov models (HMMs)for use in surveillance applica-
tions. Because of their work, HMM based surveillance methods have seen widespread use—an
overview of such models is provided in Madigan [13]. Martı́nez-Beneito et al. [14] and Rath et al.
[15] detail model-based methods for detecting influenza outbreaks in a purely temporal setting
(i.e., they use a time series analysis but do not account for spatial structure). Knorr-Held and
Richardson [16] discuss a spatio-temporal HMM for meningococcal disease incidence; among
the previous research, their approach is the most similar tothe method developed in this paper.

The contribution of this article is to improve model-based surveillance methods by (i) detail-
ing the structure of a hierarchical HMM for the surveillanceof disease across space and time and
(ii) proposing a new, non-separable spatio-temporal autoregressive model. Because surveillance
data is typically gathered at discrete time periods (such asweeks, days, etc.) and at a discrete
number of spatial locations (e.g. hospitals, counties, etc.), the focus of this paper is on models
that apply to such situations—models for continuous space/time are left for future work. Addi-
tionally, the focus of this article is on surveillance of a single disease or syndrome.

One novelty introduced here is the use of an absorbing state Markov chain to model the
epidemic state. By considering the epidemic state to be absorbing, undesirable behavior such
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as day-to-day switching between epidemic and non-epidemicstates is avoided. Forcing non-
switching behavior is reasonable in that if an outbreak of a disease occurs at timet, then the
outbreak should still be occurring at timet + 1. Of course, by using an absorbing state Markov
chain, the model is limited in application to asingleoutbreak of a disease at each location—
this is appropriate when the goal is to quickly discover the emergency (as in bioterrorism or
a pandemic). On the other hand, the methods described hereinare not designed to monitor
influenza over several years because multiple outbreaks of the flu will have occurred within the
observed time period.

Beyond the use of an absorbing state, the second contribution of this article is to allow the
non-absorbing transition probabilities of the Markov chain to vary over space and time. Specifi-
cally, the probability of a spatial location transitioningfrom a non-epidemic state to an epidemic
one is assumed to be conditional on the state of its neighborsat the previous time period and (po-
tentially) relevant covariates such as population size, age distribution, and so forth. Specifically,
the probability of transitioning from a non-epidemic stateat timet−1 to an epidemic one at time
t depends on the number of neighbors in an epidemic state at time t− 1. Such models appropri-
ately capture the spatial and temporal dynamics of disease propagation within a spatio-temporal
network.

Section 2 presents a general hierarchical framework for a surveillance model, including in-
terpretation of model parameters in the surveillance context and details of an absorbing state
surveillance model. Section 3 discusses model inference. Section 4 evaluates the sensitivity of
the model as a surveillance tool to various parameter specifications. The model is then applied to
a surveillance data set of deaths due to influenza and pneumonia across 121 cities in the United
States during a single flu season. Section 6 summarizes the findings of this article and provides
directions for future research.

2. SURVEILLANCE MODELS

2.1 Infrastructure of a Surveillance Model

As a general surveillance strategy, the basic model described in Banks et al. [17] is adopted
here. Specifically, letYs(t) denote a univariate disease or syndrome count for spatial location
s = 1, . . . , S at timet = 1, . . . , T . As the data layer for a hierarchical HMM, let

Ys(t) ∼ P(µs(t) + δs(t)λs(t)) (1)

and assume the{Ys(t) ∀ s, t} are independent given the parametersµs(t), δs(t), andλs(t). In
the surveillance context,µs(t) > 0 represents a baseline rate of disease during a non-epidemic
stage andδs(t) ∈ {0, 1} is an indicator whereδs(t) = 1 implies that an epidemic is occurring at
locations at timet. The parameterλs(t) > 0 is the expected additive increase of disease counts
due to the epidemic. Notice thatκs(t) ≡ λs(t)/µs(t) > 0 quantifies the proportional increase
in case counts during the epidemic period relative to the non-epidemic period. Whenδs(t) = 0
the parameterλs(t) is not identified as it will not contribute to the likelihood;hence, assuming
λs(t) ≡ 0 whenδs(t) = 0 is necessary for model identifiability.

The use of the Poisson likelihood in (1) is the most natural choice because it describes integer
valued random variables. However, for large values ofYs(t), a Gaussian approximation (perhaps
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based on a log-transformation) is also a suitable likelihood and may lead to more efficient pa-
rameter estimation. Furthermore, over-dispersion can be incorporated by assuming a negative
binomial distribution as in [18] and Held et al. [19]. Since our primary focus is on the detection
of outbreaks early in the epidemic, then small disease counts are to be expected; therefore (1) is
an appropriate likelihood specification.

For the baseline rate, let

log(µs(t)) ≡ αµ + x′
s(t)βµ + ξs(t), (2)

whereαµ is a global baseline rate,xs(t) = (xs,1(t), . . . , xs,p(t))
′ is a vector ofp covariates,βµ =

(βµ,1, . . . , βµ,p) is the associated vector of coefficients, andξs(t) is a spatio-temporal random
effect. Thexs(t) contains information describing locations at timet, such as population density,
age distribution, income level, and so forth.

In the presence of informative covariates, a simplifying assumption for the baseline rate is
that the covariate information accounts for all residual spatial and temporal correlation such that
ξs(t) ≡ 0 for all s andt. However, if an application lacks essential covariate information this
assumption will be inappropriate, necessitating a spatio-temporal model forξs(t). Knorr-Held
and Richardson [16] assume a separable space-time model such thatξs(t) = ψs + γt whereψs

follows an intrinsic autoregressive model [20, 21 sec. 3.3]andγt is a temporal term account-
ing for seasonal and other temporal correlations. While a separable space-time effect may be
appropriate for some applications, more general space-time models are needed. For example,
contagious disease processes motivate the non-separable space-time model presented in Section
2.2.

The indicators{δs(t)} are typically modeled as a two-state Markov chain with transition ma-
trix Γs(t) = {γs,ij(t)} whereγs,ij(t) represents the probability that, starting in statei, locations
transitions to statej in the interval from timet to t+ 1. The common simplifying assumption is
thatΓs(t) ≡ Γ for all s andt but this assumption is inappropriate when surveilling diseases over
a large spatial region and many time periods (and thus this assumption is not used here). Further-
more, the support ofδs(t) need not be{0, 1} (although this is commonly assumed). For example,
Mugglin et al. [22] used ak-state Markov chain to describe various stages of an epidemic; how-
ever, ak-state model is tuned to describe stages of an epidemic as opposed to detecting the first
outbreak.

The parameterλs(t) represents the additive increase due to the presence of an epidemic. As
a general model forλs(t), we assume a similar structure toµs(t), so

log(λs(t)) = αλ + h′
s(t)βλ + θs(t), (3)

whereαλ is the global increase,hs(t) = (hs,1(t), . . . , hs,m(t))′ is a vector of covariates with
associated coefficientsβλ, andθs(t) is the spatio-temporal random effect. Most applications will
either assumehs(t) = xs(t) in which caseβλ represents the additive effect of each covariate
in an epidemic state, or elsehs(t) = 0. Perhaps in some special caseshs(t) can contain some
information on the disease or syndrome being surveilled butsuch cases are rare. The spatio-
temporal structure ofθs(t) is bound to be more complex than that ofξs(t) due to complex social
and spatial networks when a disease is present. For example,in an epidemic state, Los Angeles
and New York City could be considered spatial neighbors due to air transportation but in a non-
epidemic state these two regions are expected to behave differently due to spatial location.
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2.2 An Absorbing State Model

With the infrastructure for a spatio-temporal surveillance model described in Section 2.1 in
place, this section describes an absorbing state model and afew novel modeling strategies. First,
assumeξs(t) ≡ ξs for all t so that the baseline rate of disease for spatial locations in a non-
epidemic period isexp{αµ + ξs}. As such, any day-to-day or week-to-week variation in disease
counts is assumed to be attributable to chance variation. Asa model forξs, let ξs follow an
intrinsic autoregressive model [23] such that

ξs | ξi6=s ∼ N

(
1

wξ,+s

∑

i6=s

wξ,isξi,
σ2

ξ

wξ,+s

)

(4)

wherewξ,is is the spatial weight of locationi on locations during a non-epidemic period and
wξ,+s =

∑
i6=swξ,is. And let

wξ,is =

{
1 if i ands share a border,

0 otherwise.
(5)

This simple spatial model forξs is appropriate in this setting because spatial neighbors should
exhibit similar baseline rates of disease. As mentioned in Banerjee et al. [21], the intrinsic au-
toregressive model is improper in the sense that the joint distribution[ξ1, . . . , ξS] is improper. To
ensure propriety, the{ξs} are constrained such that

∑
s ξs = 0. With this constraint,αµ provides

the centering of the baseline disease rate.
As mentioned previously, the spatio-temporal process forθs(t) should be more complicated

than that ofξs. Indeed, the assumption thatθs(t) ≡ θs for all t is incorrect for an epidemic period
because once a disease is present, counts will certainly trend upward over time and high disease
counts will tend to persist. As such, assumeθs(t) follows a non-separable space time model
similar to that described in Banks et al. [17], so

θs(t) | θi6=s(t), past∼ N

(
ρθθs(t− 1) +

1

wθ,+s

∑

i6=s

wθ,isθi(t),
σ2

θ

wθ,+s + 1

)
(6)

wherewθ,is is a spatial weight of locationi on locations during an epidemic state andwθ,+s =∑
i wθ,is. The parameterρθ ∈ (0, 1) describes the dependence of disease counts at timet on

disease counts at timet − 1 with higher values indicating a higher degree of dependence. The
spatial process is again taken to be an intrinsic autoregressive process. Propriety for the non-
separable spatio-temporal model given by (6) is ensured by the constraint that

∑
s θs(t) = 0 for

all t; in this case,αλ provides the centering. The variance termσ2
θ is scaled by a factorwθ,+s + 1

to reflect the information aboutθs(t) given by itswθ,+s+1 neighbors (i.e.,wθ,+s spatial neighbors
and one temporal neighbor, itself in the previous time period).

The main interest here is in the early detection of epidemics. In other words, the goal here
is to develop a model to detect thefirst outbreak as opposed to modeling the outbreak itself
or subsequent waves of outbreaks in the same location. Hence, the purpose of the model has
been realized once an outbreak has been detected. As such, a model which frequently switches
between an epidemic and a non-epidemic state is undesirable, and it can be shown that if a
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model is allowed to switch, it generates a large number of false alarms. To avoid frequent state
switching,δs(t) is assumed to be a realization of an absorbing state Markov chain; i.e.,

Pr(δs(t+ 1) = 1 | δ(t)) =

{
γs(t) = π1I{δi(t)=0 ∀ i∈Ns} + 1 − (1 − π2)

P

i∈Ns
δi(t) if δs(t) = 0,

1 if δs(t) = 1,

(7)

whereδ(t) = (δ1(1), . . . , δS(t)) is a vector containing allδs(t) up to timet, IA is an indicator
for the setA, π1 ∈ (0, 1) is a spontaneous disease generation rate,π2 ∈ (0, 1) is a contagion
rate, andNs is a set of spatial and/or social network neighbors of location s. Notice that if the
disease is absent at all neighbors ofs at timet, a disease spontaneously arises at timet+ 1 with
probabilityπ1. Alternatively, if a disease is present at neighbors ofs (but not at locations) then
the probability of locations becoming infected at timet+1 is given by1−(1−π2)

P

i∈Ns
δi(t). This

probability model is chosen to reflect the intuition for contagious diseases that the probability of
an outbreak is an increasing function in (i) the number of neighbors ofs infected at timet and
(ii) π2. Thus, ifπ2 ≈ 1 then the disease under surveillance has a high rate of spread.

The specification for transitions from non-epidemic to epidemic states given by (7) is novel in
a few respects. First, the transition probabilitiesγs(t) vary by spatial location and time. Previous
work by, among others, Martı́nez-Beneito et al. [14] and Knorr-Held and Richardson [16] assume
time and space homogenous transition probabilities. Second, by assuming an absorbing epidemic
state, the model will not fluctuate rapidly between states.

3. MODEL INFERENCE

To complete the hierarchical specification and to perform model inference, prior distribu-
tions are required for the model parametersαµ, αλ, βµ, βλ, σ2

ξ , σ2
θ , ρθ, π1, andπ2. Independent

Gaussian prior distributions are convenient prior distributions forαµ, αλ, βµ, andβλ. The ini-
tial temptation is to let these Gaussian prior distributions be non-informative or even improper,
but recall that each of these parameters is defined on the log scale ofµs(t) andλs(t). Hence,
informative Gaussian distributions such asN (0, 10) are relatively non-informative on the count
scale. Assumingσ2

ξ andσ2
µ follow independent inverse-gamma prior distributions is aconvenient

choice because these lead to closed form complete conditional distributions from which samples
can be drawn directly. A natural prior distribution forρθ does not exist. Simulations (not shown)
indicate thatρθ is difficult to estimate but that results are quite insensitive to its value. Hence,
either a discrete prior or fixing the value ofρθ is most appropriate. For the simulations and appli-
cations performed here, the value ofρθ is fixed at0.5. Finally, becauseπi ∈ (0, 1) for i = 1, 2,
the natural prior is the beta distribution. Generally,π1 andπ2 are expected to be small; hence, the
Be(1, 30) distribution is used here.

Given the prior distributions above, model inference is done via Markov chain Monte Carlo
(MCMC) simulation. Unfortunately, the majority of complete conditional distributions are not
available in closed form and thus Metropolis-Hastings updates are needed. Becauseδs(t) is
discrete, a forward filtering backward smoothing (FFBS) algorithm [see 24 sec. 2.5] can be im-
plemented to sampleδs = (δs(1), . . . , δs(T ))′ directly, which greatly improves mixing. A de-
scription of the FFBS algorithm is included in the Appendix.Admittedly, the use of MCMC for
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model inference requires expert input to ensure proper mixing and convergence. However, re-
cent work on “black box” implementations such as adaptive MCMC [see 25] or integrated nested
Laplace approximations [see 26] show promise that such methods can soon be implemented and
used by non-statisticians in the public health community.

For prospective analyses (i.e. analyses with the goal of detecting the current disease state), the
main quantity of interest is the posterior distribution[δ(T ) | Y ] whereδ(T ) = (δ1(T ), . . . , δS(T ))′,
Y is all the observed data up to timeT , and[·] is a general probability distribution. However,
a retrospective analysis of[δs(t) | Y ] can provide useful forensic insight on where and when
the disease was likely to have been introduced. Regardless of whether the prospective or retro-
spective approach is adopted, a decision rule needs to be constructed such that time periods and
spatial locations are determined to be in an epidemic state or not. Given the application of the
model, a full decision theoretic treatment including costsof false-positives (declaring a disease
to be present when it is not) and false-negatives (declaringa disease to be absent when it is not) is
necessary in forming this decision rule. However, as a starting point, a convenient decision rule
is based on the posterior mean of[δs(t) | Y ] becauseE(δs(t) | Y ) = Pr(δs(t) = 1 | Y ) and the
posterior mean is the Bayes estimator under squared error loss. Selection of the decision rule is
investigated further in Section 4.

4. SIMULATIONS

The effectiveness of the absorbing state model described inSection 2.2 as a surveillance tool
is dependent on several factors. To name a few, diseases withlow epidemic-to-baseline ratios
(κs(t) = λs(t)/µs(t)) will be hard to detect because the rate in an epidemic state issimilar to the
rate in the non-epidemic state. Similarly, more uncertainty in the baseline rateµs(t) may lead to
less power in detecting the epidemic disease rate. This section describes a simulation study aimed
at determining the sensitivity of the absorbing state modelas a surveillance tool under various
scenarios.

For this simulation study, assume that an initial training period ofd ∈ {1, 3, 7, 14} days is
available in which the disease is known to be in a non-epidemic state. To simulate a single data
set, an initiald days of data are first simulated under non-epidemic conditions using (2) and
(4). After the initiald days,T = 21 days are simulated forS = 100 spatial locations using
the parameter values(π1, π2) = (0.01, 0.10), σ2

θ = σ2
ξ = 0.05, exp{αµ} ∈ {1, 2, 4, 8}, and

κ = exp{αλ − αµ} ∈ {0.2, 0.5, 1.0, 1.5, 2, 4}. The parameterκ here represents the expected
percentage increase in the epidemic rate from the baseline rate. Twenty-five data sets were sim-
ulated for each combination of (exp{αµ}, κ, d) making, in total, 2400 simulated data sets. The
spatial networks forξs andθs(t) were assumed to come from the spatial network of 100 coun-
ties with connectivity pattern corresponding to the counties in North Carolina and with weights
wξ,is = wθ,is defined in (5). No demographic covariates were used for this simulation study. The
prior distributions described in Section 3 were used and each data set was fit using MCMC with
an initial burn-in period of 2500 draws, after which 10,000 draws were obtained for posterior
analysis.

The decision rule used for the simulation study is based on the posterior probability of an
epidemic. For example, for prospective analyses, the decision rule is to declare an epidemic at
timet if Pr(δs(t) = 1 | Y (1 : t)) > r for somer whereY (1 : t) is all data up to timet. Similarly,
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in a retrospective analysis, an epidemic is declared at timet if Pr(δs(t) = 1 | Y ) > r whereY

is all data. A simple decision rule is to letr = 0.5 in which case, if the evidence in favor of
an epidemic state is more than the evidence in favor of a non-epidemic state, then an epidemic
is declared. However, this rule may not be optimal for all parameter settings. Table 1 displays
the value ofr which minimizes the misclassification rate of a prospectiveanalysis based on the
results from fitting the absorbing state model to the simulated data.

Table 1 shows that higher values ofr are preferred for cases where eitherexp{αµ} orκ is low.
This result is intuitive in that ifexp{αµ} or κ are low then the two states are similar and weighty
evidence is needed before declaring an epidemic. Based on these findings, the value ofr used
for the decision rule in the simulation study was determinedbased on the posterior distribution
of model parameters. Specifically, an epidemic was declaredif Pr(δs(t) = 1 | Y ) > r where

r =






0.75 if κ̂ < 1,

0.65 if 1 ≤ κ̂ ≤ 1.75,

0.50 otherwise,

(8)

andκ̂ is the posterior mean ofκ.
Figure 1 and 2 display the results from the simulation study based on prospective and retro-

spective analyses, respectively. Specifically, the misclassification rate (MR) for the prospective
analysis in Figure 1 is given by

MRpro =
1

ST

∑

s,t

I{Pr(δs(t)=1|Y (1:t))>r}I{No epidemic at locations at timet} + · · ·

1

ST

∑

s,t

I{Pr(δs(t)=1|Y (1:t))<r}I{Epidemic at locations at timet},

wherer is given in (8), andY (1:t) is all data up to timet. Similarly, the misclassification rate
for the retrospective analysis in Figure 2 is

MRret =
1

ST

∑

s,t

I{Pr(δs(t)=1|Y (1:T ))>r}I{No epidemic at locations at timet} + · · ·

1

ST

∑

s,t

I{Pr(δs(t)=1|Y (1:T ))<r}I{Epidemic at locations at timet}.

Holding all else constant, as the global baseline parameterαµ increases, the empirical misclassi-
fication rate decreases in both the prospective and retrospective studies. Similarly, asκ increases,
the empirical misclassification rate decreases. Additionally, the rate of decrease in the misclas-
sification increases as bothαµ andκ increase. These findings are reasonable in that ifαµ or κ
increases while holding the other constant, the discrepancy between non-epidemic and epidemic
states increases becauseαλ = log(κ) + αµ.

Somewhat surprisingly, the length of the training period(d) seems to have little effect on
misclassification rates. In fact, empirical intervals giveevidence that the misclassification rates
across each level ofd are the same. This result indicates that the model is able to estimate the
baseline rate with sufficient accuracy after only a few days of training data (probably because
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Figure 1. Empirical misclassification rates of the absorbing state model for a prospective analysis
when (a)αµ = log(1), (b) αµ = log(2), (c) αµ = log(4), and (d)αµ = log(8). Asαµ and/orκ
increase, empirical misclassification rates decrease.

there are a relatively large number of counties, all with empty covariate structure, making it easy
to borrow strength across counties in order to estimate the baseline).

One concern is the high misclassification rate whenκ = 0.2. Indeed, whenκ = 0.2 and
αµ = log(1), both the prospective and retrospective analyses have misclassification rates near
0.20. However, for cases whenκ is small, the problem is nearly equivalent to properly classifying
observations asP(exp{αµ}) orP((1+κ)×exp{αµ}) random variables. For example, whenαµ =
log(1), then observations are essentially classified as eitherP(1) orP(1.2) random variables, and
on information-theoretic grounds, these two distributions are nearly indistinguishable.

5. ILLUSTRATIVE APPLICATION

As an illustration, this section applies the absorbing state model to weekly influenza and
pneumonia mortality data from theMorbidity and Mortality Weekly Report. The data set is
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Figure 2. Empirical misclassification rates of the absorbing state model for a retrospective anal-
ysis when (a)αµ = log(1), (b)αµ = log(2), (c)αµ = log(4), and (d)αµ = log(8). Asαµ and/or
κ increase, empirical misclassification rates decrease.

publicly available athttp://www.cdc.gov/mmwr. Specifically, the mortality data analyzed
here is weekly counts of deaths resulting from influenza or pneumonia in 2009 for 122 cities
across the United States; however, due to contiguity reasons, Honolulu, Hawaii was excluded
from this analysis. Figure 3 displays the 121 locations considered for this study. Furthermore,
because the absorbing state model is only useful for detecting thefirst incidence of an outbreak,
the analysis is confined to data collected after the week ending May 2, 2009.

One particular challenge in the mortality data set is that 5%of the data is missing. To com-
plicate matters further, all the data for Fort Worth, TX and New Orleans, LA are missing. Other
cities with a noteworthy amount of missing data are Chicago,IL, Detroit, MI, and Baton Rouge,
LA with 60%, 29%, and 26% missing data, respectively. Traditional surveillance approaches such
as the CUSUM and spatial scan statistic mentioned in the Introduction are not well equipped to
deal with missing data. However, from a model-based approach, missing data is treated straight-
forwardly as an additional unknown. Specifically, with missing data, the distribution of interest
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Figure 3. The 121 city locations for the flu and pneumonia mortality study.

is the posterior distribution[Ym,Θ | Yo] whereYm andYo represent the missing and observed
data, respectively, andΘ is all model parameters. Using a partially collapsed Gibbs sampler [27]
which samples the joint distribution by first obtaining a draw from [Θ | Yo] and then obtaining
a draw from[Ym | Θ,Yo] will, typically, be more efficient than sampling the full condition-
als [Θ | Ym,Yo] and [Ym | Θ,Yo]. Inference forΘ is carried out via the marginal posterior
distribution[Θ | Yo] and incorporates the uncertainty associated with the missing dataYm.

Another important aspect of this data set is the availability of covariates. Specifically, popu-
lation counts for each city can be obtained from census data.To use this covariate information,
let xs(t) = hs(t) be the (centered) log-population estimate of citys for s = 1, . . . , 121; i.e.
xs(t) = hs(t) = log(pops) − (121)−1

∑
s log(pops) where pops is the population of citys.

Despite the availability of some covariate information, the modelξs(t) ≡ ξs in (4) was used
because the spatial region being considered is quite extensive and baseline death rates(µs(t))
are likely to vary over the region. The model (6) was again used. As a neighborhood structure,
citiess ands′ were considered “neighbors” if they are in the same state or in contiguous states.
To perform inference, MCMC methodology was used to obtain 25,000 draws from the posterior
distribution [Ym,Θ | Yo] after discarding an initial 10,000 draws. Convergence diagnostics
showed evidence of convergence [28]. For comparison, both aprospective and retrospective
analysis were performed.

The mean (95% credible interval) of the posterior distribution for κ = exp{αλ − αµ} was
found to be 0.49 (0.21,0.78) indicating that the outbreak rate was only, on average, 50% higher
than the baseline rate. Hence, as discussed in Section 4, higher values ofr should be used in the
decision rule. Thus, for the prospective study, the cutoffr = 0.75 was used; thus the flu season
was declared to have started at locations if Pr(δs(t) = 1 | Yo(1 : t)) > r. Similarly, for the
retrospective analysis, the decision rule was to declare the start of the flu season ifPr(δs(t) = 1 |
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Yo) > r.
Using the decision rule above, the prospective and retrospective analyses differed on when

and where the influenza season started. The prospective analysis first sounded an alarm in
Rochester, NY, Des Moines, IA, and Providence, RI, in the week of September 20, 2009. In
contrast, the retrospective analysis first sounded an alarmin San Antonio, TX, three weeks ear-
lier (the week of August 30). To investigate this further, for Des Moines, IA, and Providence, RI,
averaged3.33 and5.67 deaths per week for the three weeks preceding the week of September 20.
However, for the week of September 20, Des Moines and Providence saw 10 and 12 deaths from
influenza and pneumonia which corresponds to more than a doubling of deaths compared to the
previous three weeks. However, in the week following September 20, Des Moines saw 2 deaths
and Providence saw 3 suggesting that the high count during the week of September 20 was due to
chance or to some non-contagious event. Subsequently, the prospective analysis, after observing
the low counts following the week of September 20, “undeclared” Des Moines and Providence
to have outbreaks of influenza. This type of behavior for a prospective study using the absorbing
state model is encouraging because the model can identify abnormal increases in rate but readjust
after more data become available.

To compare the prospective and retrospective analyses, Figures 4 (a), (c), and (e) display the
prospective posterior probabilities[δs(t) = 1 | Yo(1 : t)] and Figures 4 (b), (d), and (f) display
the retrospective posterior probabilities[δs(t) = 1 | Yo] for three selected weeks. Notice during
the week of October 4th (Figure 4 (a) and (b)), the prospective and retrospective analyses agree
on declaring an outbreak on several locations but the prospective analysis seems to not declare
an outbreak for the western cities of San Antonio, TX, Las Vegas, NV, and Sacramento, CA. The
prospective analysis didn’t declare an outbreak in San Antonio, Las Vegas, and Sacramento until
the week of October 7 for all these cities (based on the decision rule above). Notice that for the
week of November 15th (Figures 4 (c) and (d)), the prospective analysis declares an influenza
outbreak for Spokane, WA but later corrects that decision. Specifically, the prospective analysis
declared an influenza outbreak for the entire month of November in Spokane but that decision was
later changed when December exhibited lower numbers of deaths from influenza and pneumonia.

To illustrate the usefulness of a model-based approach for dealing with missing data, Figure
5 displays the retrospective reconstruction of the estimated number of deaths from influenza
and pneumonia for New Orleans, LA. Specifically, Figure 5 displays the posterior expectation
E(Ys(t) | Yo) over time for New Orleans. Intuitively, the estimated number of deaths increases
as winter approaches indicating that influenza and pneumonia are more prevalent in the winter.

6. DISCUSSION

This article develops the structural framework for diseaseand syndromic surveillance mod-
els. Specifically, an absorbing state model with a novel non-separable space-time neighborhood
structure was proposed which focuses on detecting the first incidence of an outbreak. Simula-
tions studies revealed that for very small outbreaks, the epidemic and non-epidemic states were
difficult to distinguish. However, for larger epidemics themodel performed very well in distin-
guishing between the two states. Subsequent application toan influenza and pneumonia mortality
data set showed that the model was useful for prospective analyses.

The focus of this article was on the surveillance of univariate diseases or syndromes. Mul-
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tivariate surveillance models are rarely considered in theliterature due to their complexity and
difficulties in computation. Additionally, decision rulesbased on multivariate models can be dif-
ficult to construct. However, much power could be gained by jointly modeling several diseases
or syndromes, and this might lead to improved methodology with significant practical value.
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APPENDIX: FFBS ALGORITHM

The forward filtering backward sampling (FFBS) algorithm isused to drawδs = (δs(1), . . . ,
δs(T ))′ from its complete conditional distribution. For the absorbing state case, the FFBS algo-
rithm proceeds as follows. Let[·] denote a general probability distribution that is conditional on
all parameters exceptδs.

1. Calculate

Pr(δs(1) = 1 | Ys(1)) =
[Ys(1) | δs(1) = 1]γs(0)

[Ys(1) | δs(1) = 1]γs(0) + [Ys(1) | δs(1) = 0](1 − γs(0))

= ps(1)

whereγs(t) is given by (7) andγs(0) = π1.

2. Fort = 2, . . . , T, let

Pr(δs(t) = 1 | Ys(1 : (t − 1))) =

1∑

z=0

[δs(t) = 1 | δs(t − 1) = z][δs(t − 1) = z | Ys(1 : (t − 1))]

= γs(t − 1)(1 − ps(t − 1)) + ps(t − 1)

= ds(t)

whereYs(1 : t) = (Ys(1), . . . , Ys(t)) and calculate

Pr(δs(t) = 1 | Ys(1 : t)) =
[Ys(t) | δs(t) = 1]ds(t)

[Ys(t) | δs(t) = 1]ds(t) + [Ys(t) | δs(t) = 0](1 − ds(t))

= ps(t)

3. Sampleδs(T ) from a Bernoulli distribution with parameterps(T ).

4. Fort = T − 1, . . . , 1, drawδs(t) from a Bernoulli distribution with parameter

Pr(δs(t) = 1 | δs(t + 1),Ys(1 : t)) =
I{δs(t+1)=1}ps(t)

I{δs(t+1)=1}ds(t + 1) + (1 − I{δs(t+1)=1})(1 − ds(t + 1))
.
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(a) Prospective Results for Week of Oct. 4th

(c) Prospective Results for Week of Nov. 15th

(e) Prospective Results for Week of Dec. 27th

(b) Retrospective Results for Week of Oct. 4th

(d) Retrospective Results for Week of Nov. 15th

(f) Retrospective Results for Week of Dec. 27th

Figure 4. Comparison of prospective and retrospective epidemic alarms for influenza and pneu-
monia deaths during 2009 according to the absorbing state model. Triangles, diamonds, squares,
and circles indicate that the posterior probability of an outbreak is greater than 0.5, 0.7, 0.8, and
0.9, respectively. Small, unfilled circles represent thosecities for which the posterior probability
of an outbreak is less than 0.5.
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Figure 5. The posterior expectationE(Ys(t) | Yo) over time for the city of New Orleans, LA.
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Table 1. Values ofr which minimize the empirical misclassification rate of the absorbing state
model where the decision rule is based onPr(δs(t) | Y ) > r. For diseases with a small baseline
(exp{αµ}) or small epidemic-to-baseline ratio(κ), larger values ofr are preferred in order to
declare an epidemic as opposed to larger baselines.

κ
exp {αµ} 0.2 0.5 1 1.5 2 4

1 0.80 0.81 0.80 0.74 0.64 0.50
2 0.80 0.80 0.75 0.61 0.58 0.50
4 0.80 0.75 0.61 0.53 0.53 0.51
8 0.70 0.66 0.53 0.49 0. 51 0.53
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