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SUMMARY

Reliable surveillance models are an important tool in gubéalth because they aid in miti-
gating disease outbreaks, identify where and when disedbeeaks occur, and predict future
occurrences. While many statistical models have been el surveillance purposes,
none are able to simultaneously achieve important prddicals such as good sensitivity
and specificity, proper use of domain information, inclas@f spatio-temporal dynamics,
and transparent support to decision-makers. In an effatiieve some of these goals, this
paper proposes a spatio-temporal conditional autorageebglden Markov model with an
absorbing state. The model performs well in both a large lsitimn study and in an applica-
tion to influenza/pneumonia fatality data.
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1. INTRODUCTION

The goal of disease and syndromic surveillance is to moaitdrdetect aberrations in disease
prevalence across space and time. Disease surveillanmaltypefers to the monitoring of
confirmed cases of disease while syndromic surveillance si\galromes associated with disease
to detect aberrations. In either situation, any propereallance system should be able to (i)
detect, as early as possible, potentially harmful deumatioom baseline levels of disease while
maintaining low false positive detection rates, (ii) ingorate the spatial and temporal dynamics
of a disease system, (iii) be widely applicable to multipkedses or syndromes, (iv) incorporate
covariate information, and (v) produce results which aeglilg interpretable by policy decision
makers.

The literature describes many methods, algorithms, ancetaatsigned to support surveil-
lance systems; it spans multiple disciplines includingistias, computer science, epidemiology,
and public health. Early approaches to surveillance weragsily computational algorithms.
For example, the CUSUM [1] technique and its variants [seg, 2, 3, 4] monitor the cumula-
tive deviation (over time) of disease counts from some @seate. Qiu and Hawkins [5] and
Mason et al. [6] adapt the CUSUM technique for monitoring tipleé diseases. While CUSUM
techniques have been popular, they are quite sensitiveetbdkeline level and are difficult to
adapt to situations in which there is spatial correlation.

A second line of work uses spatial scan statistics, origyrmaioposed by Kulldorff [7] with
later extensions given in Walther [8], Neill and Cooper [Riilldorff et al. [10], and Neill et al.
[11]. Scan statistics are designed to find spatial clustdrsrevdisease occurrences are high.
However, these algorithms are often computationally egpendo not easily account for covari-
ate information, and fail to provide an easily interpre¢afbleasure of uncertainty associated with
the identified cluster.

The majority of recent surveillance techniques are modskd approaches. Advantages of
model-based approaches include the ability to incorparat@riate information, the flexibility
in accounting for spatial and temporal dynamics in a hidriaed framework, and direct inter-
pretability of model parameters which facilitates deaisinaking. For example, LeStrat and
Carrat [12] pioneered the use of hidden Markov models (HMidsyse in surveillance applica-
tions. Because of their work, HMM based surveillance meshuave seen widespread use—an
overview of such models is provided in Madigan [13]. MagtirBeneito et al. [14] and Rath et al.
[15] detail model-based methods for detecting influenzématks in a purely temporal setting
(i.e., they use a time series analysis but do not accountplatiad structure). Knorr-Held and
Richardson [16] discuss a spatio-temporal HMM for menirmgoal disease incidence; among
the previous research, their approach is the most simildretonethod developed in this paper.

The contribution of this article is to improve model-basadvgillance methods by (i) detail-
ing the structure of a hierarchical HMM for the surveillardelisease across space and time and
(ii) proposing a new, non-separable spatio-temporal agtesssive model. Because surveillance
data is typically gathered at discrete time periods (sucleeks, days, etc.) and at a discrete
number of spatial locations (e.g. hospitals, counties),dfte focus of this paper is on models
that apply to such situations—maodels for continuous spiace/are left for future work. Addi-
tionally, the focus of this article is on surveillance of agle disease or syndrome.

One novelty introduced here is the use of an absorbing statd&dy chain to model the
epidemic state. By considering the epidemic state to berbivgp undesirable behavior such
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as day-to-day switching between epidemic and non-epidstates is avoided. Forcing non-
switching behavior is reasonable in that if an outbreak ofseabse occurs at timg then the
outbreak should still be occurring at time- 1. Of course, by using an absorbing state Markov
chain, the model is limited in application tosengle outbreak of a disease at each location—
this is appropriate when the goal is to quickly discover theegency (as in bioterrorism or
a pandemic). On the other hand, the methods described hemeinot designed to monitor
influenza over several years because multiple outbreaksedfu will have occurred within the
observed time period.

Beyond the use of an absorbing state, the second contnibatithis article is to allow the
non-absorbing transition probabilities of the Markov c¢hii vary over space and time. Specifi-
cally, the probability of a spatial location transitioniftigm a non-epidemic state to an epidemic
one is assumed to be conditional on the state of its neiglabding previous time period and (po-
tentially) relevant covariates such as population size,digtribution, and so forth. Specifically,
the probability of transitioning from a non-epidemic statéimet — 1 to an epidemic one at time
t depends on the number of neighbors in an epidemic state at timl. Such models appropri-
ately capture the spatial and temporal dynamics of diseagegation within a spatio-temporal
network.

Section 2 presents a general hierarchical framework fomesglance model, including in-
terpretation of model parameters in the surveillance cdrdad details of an absorbing state
surveillance model. Section 3 discusses model infereneetidh 4 evaluates the sensitivity of
the model as a surveillance tool to various parameter spatidns. The model is then applied to
a surveillance data set of deaths due to influenza and pneamomoss 121 cities in the United
States during a single flu season. Section 6 summarizes thegsof this article and provides
directions for future research.

2. SURVEILLANCE MODELS

2.1 Infrastructure of a Surveillance Model

As a general surveillance strategy, the basic model destiibBanks et al. [17] is adopted
here. Specifically, let;(¢) denote a univariate disease or syndrome count for spatiatitm
s=1,...,Sattimet =1,...,T. As the data layer for a hierarchical HMM, let

Yo(t) ~ Plps(t) + 05(0)As(1)) (1)

and assume théY;(t) V s, ¢} are independent given the parameter&), ds(t), and \;(¢). In
the surveillance context(t) > 0 represents a baseline rate of disease during a non-epidemic
stage and,(t) € {0, 1} is an indicator wheré,(t) = 1 implies that an epidemic is occurring at
locations at timet. The parametek,(t) > 0 is the expected additive increase of disease counts
due to the epidemic. Notice that(t) = A:(t)/us(t) > 0 quantifies the proportional increase
in case counts during the epidemic period relative to theemdemic period. When,(t) = 0
the parametei,(¢) is not identified as it will not contribute to the likelihoodence, assuming
As(t) = 0 whend(t) = 0 is necessary for model identifiability.

The use of the Poisson likelihood in (1) is the most naturaladbecause it describes integer
valued random variables. However, for large value¥0f), a Gaussian approximation (perhaps



based on a log-transformation) is also a suitable likelthand may lead to more efficient pa-
rameter estimation. Furthermore, over-dispersion camberporated by assuming a negative
binomial distribution as in [18] and Held et al. [19]. Sinaergrimary focus is on the detection
of outbreaks early in the epidemic, then small disease sametto be expected; therefore (1) is
an appropriate likelihood specification.

For the baseline rate, let

log(ps(t)) = a + @ (£) By + &:(1), )
whereq,, is a global baseline rate,(t) = (z51(t), ..., zs,(t))" is a vector op covariates3, =
(Bu1s-- -, Bup) is the associated vector of coefficients, aft) is a spatio-temporal random

effect. Ther,(¢) contains information describing locatierat timet, such as population density,
age distribution, income level, and so forth.

In the presence of informative covariates, a simplifyinguasption for the baseline rate is
that the covariate information accounts for all residualtisph and temporal correlation such that
&(t) = 0 for all s andt. However, if an application lacks essential covariate rimfation this
assumption will be inappropriate, necessitating a spatigporal model foi,(¢). Knorr-Held
and Richardson [16] assume a separable space-time modelrai¢,(t) = s + v, where
follows an intrinsic autoregressive model [20, 21 sec. ar8]~, is a temporal term account-
ing for seasonal and other temporal correlations. Whilepaisble space-time effect may be
appropriate for some applications, more general space-timadels are needed. For example,
contagious disease processes motivate the non-sepapabke-ttme model presented in Section
2.2.

The indicatorg J,(t) } are typically modeled as a two-state Markov chain with titears ma-
trix I's(¢) = {v,.4,(t)} where~, ;;(t) represents the probability that, starting in statecations
transitions to state¢ in the interval from time to ¢t + 1. The common simplifying assumption is
thatT's(¢) = T for all s and¢ but this assumption is inappropriate when surveilling as&s over
a large spatial region and many time periods (and thus teisnagtion is not used here). Further-
more, the support of;(¢) need not bg0, 1} (although this is commonly assumed). For example,
Mugglin et al. [22] used &-state Markov chain to describe various stages of an epijdraw-
ever, ak-state model is tuned to describe stages of an epidemic asego detecting the first
outbreak.

The parametek,(t) represents the additive increase due to the presence ofdengp. As
a general model fok,(t), we assume a similar structureig(t), so

log(As(t)) = an + hi(t)Bx + 0s(1), 3)

wherea, is the global increasehs(t) = (hsi(t),...,hsm(t)) is a vector of covariates with
associated coefficient$,, andd,(¢) is the spatio-temporal random effect. Most applicatiorls wi
either assuméy,(t) = x,(t) in which cases, represents the additive effect of each covariate
in an epidemic state, or el$g(t) = 0. Perhaps in some special cage$t) can contain some
information on the disease or syndrome being surveilledshoh cases are rare. The spatio-
temporal structure df,(¢) is bound to be more complex than that{oft) due to complex social
and spatial networks when a disease is present. For exaimple epidemic state, Los Angeles
and New York City could be considered spatial neighbors duarttransportation but in a non-
epidemic state these two regions are expected to behaeestiffy due to spatial location.
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2.2 An Absorbing State Model

With the infrastructure for a spatio-temporal surveillanmodel described in Section 2.1 in
place, this section describes an absorbing state model wdreovel modeling strategies. First,
assume,(t) = &, for all ¢ so that the baseline rate of disease for spatial locationa non-
epidemic period iexp{c, + &}. As such, any day-to-day or week-to-week variation in disea
counts is assumed to be attributable to chance variationa A®del for¢,, let &, follow an
intrinsic autoregressive model [23] such that

1 of
Es | Eigs ~ N ( ng,zs&, @) (4)

w£7+s z;és

wherew ;, is the spatial weight of locationon locations during a non-epidemic period and
We s = Zi;és We s And let

(5)

1 if < ands share a border,
We is = .
& 0 otherwise.

This simple spatial model fof, is appropriate in this setting because spatial neighbaraldh
exhibit similar baseline rates of disease. As mentionedandgjee et al. [21], the intrinsic au-
toregressive model is improper in the sense that the jogttidution|[¢,, . . ., &s] is improper. To
ensure propriety, théS,} are constrained such that ¢, = 0. With this constrainte, provides
the centering of the baseline disease rate.

As mentioned previously, the spatio-temporal proces# farn should be more complicated
than that of. Indeed, the assumption tha(t) = 0, for all ¢ is incorrect for an epidemic period
because once a disease is present, counts will certainig¢f tneward over time and high disease
counts will tend to persist. As such, assufé) follows a non-separable space time model
similar to that described in Banks et al. [17], so

0s(8) | 6z (2), PaSt~ N (ﬂees@— 1)+ — Zwe,z-sei(w,gig) (6)

We s its we,+ s +1

wherewy ;s iS a spatial weight of locatiohon locations during an epidemic state ang , ; =
> wais. The parametepy € (0,1) describes the dependence of disease counts atttione
disease counts at tinte— 1 with higher values indicating a higher degree of dependeiibe
spatial process is again taken to be an intrinsic autorsiyeeprocess. Propriety for the non-
separable spatio-temporal model given by (6) is ensurettdyganstraint tha} __ 6,(¢t) = 0 for
all t; in this caseq, provides the centering. The variance terfris scaled by a factony ., + 1
to reflect the information aboét (¢) given by itswy s+ 1 neighbors (i.e.wy ;s Spatial neighbors
and one temporal neighbor, itself in the previous time mhrio

The main interest here is in the early detection of epidemic®ther words, the goal here
is to develop a model to detect thiest outbreak as opposed to modeling the outbreak itself
or subsequent waves of outbreaks in the same location. Heéme@urpose of the model has
been realized once an outbreak has been detected. As suddehwhich frequently switches
between an epidemic and a non-epidemic state is undesiratdeit can be shown that if a
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model is allowed to switch, it generates a large number gkfalarms. To avoid frequent state
switching,d,(t) is assumed to be a realization of an absorbing state Markancire.,

g _ . — — ZiENS 6Z(t) i =
]Pr(és(t + 1) _ 1 ‘ 6(t>) _ {Vs(t) ﬂ-lI[{(Si(t)—OVZGNs} + 1 (1 7T2) If 5S(t) 07

if 05(t) =1,
(7)
whered(t) = (6:(1),...,95(t)) is a vector containing ali,(¢) up to timet, I 4 is an indicator

for the setA4, m € (0,1) is a spontaneous disease generation rates (0, 1) is a contagion
rate, andV, is a set of spatial and/or social network neighbors of leceti Notice that if the
disease is absent at all neighbors: @it timet, a disease spontaneously arises at tingel with
probability ;. Alternatively, if a disease is present at neighbors @ut not at locatiors) then
the probability of location becoming infected at timer 1 is given byl — (1 —m,)Zens %(® This
probability model is chosen to reflect the intuition for cagibus diseases that the probability of
an outbreak is an increasing function in (i) the number o§hlkeors ofs infected at time and
(i) mo. Thus, ifT, ~ 1 then the disease under surveillance has a high rate of spread

The specification for transitions from non-epidemic to epmit states given by (7) is novel in
a few respects. First, the transition probabilitie§) vary by spatial location and time. Previous
work by, among others, Martinez-Beneito et al. [14] and Kitdeld and Richardson [16] assume
time and space homogenous transition probabilities. Skdyrassuming an absorbing epidemic
state, the model will not fluctuate rapidly between states.

3. MODEL INFERENCE

To complete the hierarchical specification and to perforndehanference, prior distribu-
tions are required for the model parametefs v, B8, B, ag, o3, pe, 1, andm,. Independent
Gaussian prior distributions are convenient prior disttidms forc,, a, 8, and3,. The ini-
tial temptation is to let these Gaussian prior distribugitse non-informative or even improper,
but recall that each of these parameters is defined on thechlg ef u,(t) and \;(¢). Hence,
informative Gaussian distributions such/&30, 10) are relatively non-informative on the count
scale. Assumingg andaﬁ follow independent inverse-gamma prior distributions c@avenient
choice because these lead to closed form complete coralitigstributions from which samples
can be drawn directly. A natural prior distribution fay does not exist. Simulations (not shown)
indicate thatp, is difficult to estimate but that results are quite insewusitp its value. Hence,
either a discrete prior or fixing the value @f is most appropriate. For the simulations and appli-
cations performed here, the valuegfis fixed at0.5. Finally, because; € (0,1) fori = 1,2,
the natural prior is the beta distribution. Generatlyandr, are expected to be small; hence, the
Be(1, 30) distribution is used here.

Given the prior distributions above, model inference is&leia Markov chain Monte Carlo
(MCMC) simulation. Unfortunately, the majority of compéetonditional distributions are not
available in closed form and thus Metropolis-Hastings tgslare needed. Becau&gt) is
discrete, a forward filtering backward smoothing (FFBSpatgm [see 24 sec. 2.5] can be im-
plemented to sampl&, = (J5(1),...,ds(7))" directly, which greatly improves mixing. A de-
scription of the FFBS algorithm is included in the Appendidmittedly, the use of MCMC for



model inference requires expert input to ensure properngiand convergence. However, re-
cent work on “black box” implementations such as adaptiveN@Jsee 25] or integrated nested
Laplace approximations [see 26] show promise that suchadstban soon be implemented and
used by non-statisticians in the public health community.

For prospective analyses (i.e. analyses with the goal ettiag the current disease state), the
main quantity of interest is the posterior distribut{é(") | Y] whered(T) = (6:(T),...,ds(T))’,
Y is all the observed data up to tinig& and|[-] is a general probability distribution. However,
a retrospective analysis @f(¢) | Y] can provide useful forensic insight on where and when
the disease was likely to have been introduced. Regardieskeather the prospective or retro-
spective approach is adopted, a decision rule needs to ls¢rgored such that time periods and
spatial locations are determined to be in an epidemic stat®t Given the application of the
model, a full decision theoretic treatment including casftfalse-positives (declaring a disease
to be present when it is not) and false-negatives (declarligease to be absent when it is not) is
necessary in forming this decision rule. However, as aistppoint, a convenient decision rule
is based on the posterior mean[@f(t) | Y] becausél(d,(t) | Y) = Pr(és(t) = 1| Y') and the
posterior mean is the Bayes estimator under squared eg®r 8election of the decision rule is
investigated further in Section 4.

4. SIMULATIONS

The effectiveness of the absorbing state model describ8dation 2.2 as a surveillance tool
is dependent on several factors. To name a few, diseasedowitpidemic-to-baseline ratios
(rs(t) = As(t)/ps(t)) will be hard to detect because the rate in an epidemic statmikar to the
rate in the non-epidemic state. Similarly, more uncerjaimthe baseline ratg,(¢) may lead to
less power in detecting the epidemic disease rate. Thi®sat#tscribes a simulation study aimed
at determining the sensitivity of the absorbing state madeh surveillance tool under various
scenarios.

For this simulation study, assume that an initial trainiegipd ofd € {1,3,7,14} days is
available in which the disease is known to be in a non-epidestaite. To simulate a single data
set, an initiald days of data are first simulated under non-epidemic comditissing (2) and
(4). After the initiald days,T = 21 days are simulated fof = 100 spatial locations using
the parameter valuesr, ) = (0.01,0.10), 05 = o7 = 0.05, exp{e,} € {1,2,4,8}, and
r = exp{ay —a,} € {0.2,0.5,1.0,1.5,2,4}. The parameter. here represents the expected
percentage increase in the epidemic rate from the baseliee Twenty-five data sets were sim-
ulated for each combination ofxp{c,}, , d) making, in total, 2400 simulated data sets. The
spatial networks fo€, andé,(¢) were assumed to come from the spatial network of 100 coun-
ties with connectivity pattern corresponding to the coesitn North Carolina and with weights
we ;s = Wy ;s defined in (5). No demographic covariates were used for tiialation study. The
prior distributions described in Section 3 were used antl data set was fit using MCMC with
an initial burn-in period of 2500 draws, after which 10,00@wls were obtained for posterior
analysis.

The decision rule used for the simulation study is based erptsterior probability of an
epidemic. For example, for prospective analyses, the idecisle is to declare an epidemic at
timetif Pr(ds(t) = 1| Y (1:¢)) > rforsomerwhereY (1 : ¢) is all data up to time. Similarly,



in a retrospective analysis, an epidemic is declared at#ih&r(d;(t) = 1 | Y') > r whereY

is all data. A simple decision rule is to let= 0.5 in which case, if the evidence in favor of
an epidemic state is more than the evidence in favor of a pademic state, then an epidemic
is declared. However, this rule may not be optimal for allgpaeter settings. Table 1 displays
the value ofr which minimizes the misclassification rate of a prospecanalysis based on the
results from fitting the absorbing state model to the sinedatata.

Table 1 shows that higher valuesiddire preferred for cases where eithep{«,, } or « is low.
This result is intuitive in that iexp{ca,, } or x are low then the two states are similar and weighty
evidence is needed before declaring an epidemic. Basedese findings, the value ofused
for the decision rule in the simulation study was determibasled on the posterior distribution
of model parameters. Specifically, an epidemic was decié®do,(t) = 1| Y) > r where

0.75 ifr <1,
r=1¢065 ifl<®r<L1.75, (8)
0.50 otherwise,

andx is the posterior mean ef.

Figure 1 and 2 display the results from the simulation stualseld on prospective and retro-
spective analyses, respectively. Specifically, the mésifi@ation rate (MR) for the prospective
analysis in Figure 1 is given by

M Rpro ST Z H{]P’r =1|Y(1:t)) >r}I[{N0 epidemic at location at timet} + -
ST Z H{]P’r =1|Y(1: t))<r}I[{Ep|dem|c at locatiors at timet } 5

wherer is given in (8), andY (1:¢) is all data up to time. Similarly, the misclassification rate
for the retrospective analysis in Figure 2 is

MRret - ST Z H{]P’r =1|Y (1:T)) >r}I[{N0 epidemic at location at timet } + -
ST Z H{]P’r =1|Y(1: T))<r}I[{Ep|dem|c at locatiors at timet } -

Holding all else constant, as the global baseline paramegtercreases, the empirical misclassi-
fication rate decreases in both the prospective and rettgpstudies. Similarly, as increases,
the empirical misclassification rate decreases. Additipnthe rate of decrease in the misclas-
sification increases as both, andx increase. These findings are reasonable in thay ibr
increases while holding the other constant, the discrgpbetwveen non-epidemic and epidemic
states increases because= log(x) + .

Somewhat surprisingly, the length of the training peridd seems to have little effect on
misclassification rates. In fact, empirical intervals gaxedence that the misclassification rates
across each level of are the same. This result indicates that the model is ablstimate the
baseline rate with sufficient accuracy after only a few ddysaining data (probably because
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Figure 1. Empirical misclassification rates of the absorpstate model for a prospective analysis
when (a)o, = log(1), (b) o, = log(2), (¢) a, = log(4), and (d)a,, = log(8). Asc, and/orx
increase, empirical misclassification rates decrease.

there are a relatively large number of counties, all with gngpvariate structure, making it easy
to borrow strength across counties in order to estimatedbkelme).

One concern is the high misclassification rate whes 0.2. Indeed, when: = 0.2 and
a, = log(1), both the prospective and retrospective analyses havdasssication rates near
0.20. However, for cases whenis small, the problem is nearly equivalent to properly dfsssy
observations &B (exp{c,, }) or P((1+x)xexp{c,}) random variables. For example, when=
log(1), then observations are essentially classified as eRlieror P(1.2) random variables, and
on information-theoretic grounds, these two distribusiane nearly indistinguishable.

5. ILLUSTRATIVE APPLICATION

As an illustration, this section applies the absorbingestabdel to weekly influenza and
pneumonia mortality data from thiéorbidity and Mortality Weekly RepartThe data set is
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Figure 2. Empirical misclassification rates of the absopstate model for a retrospective anal-
ysis when (a)y, = log(1), (b) o, = log(2), (c) v, = log(4), and (d)ay, = log(8). Asc, and/or
k increase, empirical misclassification rates decrease.

publicly available aht t p: / / www. cdc. gov/ mmwr . Specifically, the mortality data analyzed
here is weekly counts of deaths resulting from influenza @upmonia in 2009 for 122 cities

across the United States; however, due to contiguity readdanolulu, Hawaii was excluded
from this analysis. Figure 3 displays the 121 locations i@red for this study. Furthermore,
because the absorbing state model is only useful for datgetttefirst incidence of an outbreak,

the analysis is confined to data collected after the weelngridiay 2, 2009.

One particular challenge in the mortality data set is thatd%he data is missing. To com-
plicate matters further, all the data for Fort Worth, TX anelNOrleans, LA are missing. Other
cities with a noteworthy amount of missing data are Chicéigdpetroit, MI, and Baton Rouge,
LA with 60%, 29%, and 26% missing data, respectively. Traddl surveillance approaches such
as the CUSUM and spatial scan statistic mentioned in thedattion are not well equipped to
deal with missing data. However, from a model-based approacssing data is treated straight-
forwardly as an additional unknown. Specifically, with nimgsdata, the distribution of interest
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Figure 3. The 121 city locations for the flu and pneumonia addyt study.

is the posterior distributiofl,,,, ® | Y,] whereY,, andY, represent the missing and observed
data, respectively, an@ is all model parameters. Using a partially collapsed Gilalmsder [27]
which samples the joint distribution by first obtaining awlrgom [® | Y,] and then obtaining

a draw from[Y,, | ©,Y,] will, typically, be more efficient than sampling the full adition-
als[® | Y,, Y, and[Y,, | ©,Y,]. Inference for® is carried out via the marginal posterior
distribution[® | Y,] and incorporates the uncertainty associated with the ngsatay;, .

Another important aspect of this data set is the availgtiitcovariates. Specifically, popu-
lation counts for each city can be obtained from census dataise this covariate information,
let x;(t) = h4(t) be the (centered) log-population estimate of Gitfor s = 1,...,121; i.e.
xs(t) = hys(t) = log(pop,) — (121)7' 3" log(pop,) where pop s the population of city.

Despite the availability of some covariate informatiore thodelé,(¢) = &, in (4) was used
because the spatial region being considered is quite éxéeand baseline death ratés,(t))
are likely to vary over the region. The model (6) was agairduges a neighborhood structure,
cities s ands’ were considered “neighbors” if they are in the same stata oontiguous states.
To perform inference, MCMC methodology was used to obtai@@% draws from the posterior
distribution [Y,,,,® | Y,] after discarding an initial 10,000 draws. Convergence riiatcs
showed evidence of convergence [28]. For comparison, bgifospective and retrospective
analysis were performed.

The mean (95% credible interval) of the posterior distitnufor x = exp{a)\ — a,} was
found to be 0.49 (0.21,0.78) indicating that the outbread veas only, on average, 50% higher
than the baseline rate. Hence, as discussed in Sectionherhiglues of- should be used in the
decision rule. Thus, for the prospective study, the cutoff 0.75 was used; thus the flu season
was declared to have started at locatioifl Pr(ds(¢) = 1 | Y (1 : ¢t)) > r. Similarly, for the
retrospective analysis, the decision rule was to declarstdrt of the flu seasonlfr(d,(t) =1 |
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Y, >r.

Using the decision rule above, the prospective and retobspeanalyses differed on when
and where the influenza season started. The prospectivgsanéitst sounded an alarm in
Rochester, NY, Des Moines, IA, and Providence, RI, in thekvafeSeptember 20, 2009. In
contrast, the retrospective analysis first sounded an ala®an Antonio, TX, three weeks ear-
lier (the week of August 30). To investigate this further, Bies Moines, IA, and Providence, Rl,
averaged.33 and5.67 deaths per week for the three weeks preceding the week oéi@bpt 20.
However, for the week of September 20, Des Moines and Progalsaw 10 and 12 deaths from
influenza and pneumonia which corresponds to more than didgud§ deaths compared to the
previous three weeks. However, in the week following Septem20, Des Moines saw 2 deaths
and Providence saw 3 suggesting that the high count durengélek of September 20 was due to
chance or to some non-contagious event. Subsequentlyrdbpgztive analysis, after observing
the low counts following the week of September 20, “undedaiDes Moines and Providence
to have outbreaks of influenza. This type of behavior for @peative study using the absorbing
state model is encouraging because the model can identifyradal increases in rate but readjust
after more data become available.

To compare the prospective and retrospective analysesidsi@ (a), (c), and (e) display the
prospective posterior probabilitiés (1) = 1 | Y,(1 : ¢)] and Figures 4 (b), (d), and (f) display
the retrospective posterior probabilitigs(t) = 1 | Y,] for three selected weeks. Notice during
the week of October4 (Figure 4 (a) and (b)), the prospective and retrospectiatyaas agree
on declaring an outbreak on several locations but the pobispeanalysis seems to not declare
an outbreak for the western cities of San Antonio, TX, Lasag&dV, and Sacramento, CA. The
prospective analysis didn’t declare an outbreak in San #iotd.as Vegas, and Sacramento until
the week of October 7 for all these cities (based on the decisile above). Notice that for the
week of November 15 (Figures 4 (c) and (d)), the prospective analysis declandsfiuenza
outbreak for Spokane, WA but later corrects that decisigrec8ically, the prospective analysis
declared an influenza outbreak for the entire month of NownmsSpokane but that decision was
later changed when December exhibited lower numbers ohddam influenza and pneumonia.

To illustrate the usefulness of a model-based approachefaird) with missing data, Figure
5 displays the retrospective reconstruction of the esathaumber of deaths from influenza
and pneumonia for New Orleans, LA. Specifically, Figure Sldigs the posterior expectation
E(Ys(t) | Y,) over time for New Orleans. Intuitively, the estimated numbkdeaths increases
as winter approaches indicating that influenza and pneuaraoeimore prevalent in the winter.

6. DISCUSSION

This article develops the structural framework for disemse syndromic surveillance mod-
els. Specifically, an absorbing state model with a novel sgarable space-time neighborhood
structure was proposed which focuses on detecting the fiicgdlence of an outbreak. Simula-
tions studies revealed that for very small outbreaks, the@eepic and non-epidemic states were
difficult to distinguish. However, for larger epidemics tim@del performed very well in distin-
guishing between the two states. Subsequent applicatemitdfluenza and pneumonia mortality
data set showed that the model was useful for prospectivgsasa

The focus of this article was on the surveillance of univaridiseases or syndromes. Mul-
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tivariate surveillance models are rarely considered inliteeature due to their complexity and

difficulties in computation. Additionally, decision rulessed on multivariate models can be dif-
ficult to construct. However, much power could be gained lnytlp modeling several diseases
or syndromes, and this might lead to improved methodologly significant practical value.
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APPENDIX: FFBS ALGORITHM

The forward filtering backward sampling (FFBS) algorithnuged to drawd, = (0,(1), .. .,
ds(T"))" from its complete conditional distribution. For the absngbstate case, the FFBS algo-
rithm proceeds as follows. Léf denote a general probability distribution that is conditibon
all parameters except.

1. Calculate
Pr(d,(1) =1]Y,(1)) =
= ps(1)
where~,(t) is given by (7) andy,(0) = ;.
2. Fort=2,...,T, let

I
]~

Pr(dy(t) = 1 Vo(1: (t— 1)) = ST0,(0) = 1| 8t — 1) = 2)[dg(t — 1) = 2 | Ya(1: (¢ — 1))]

IS
o

t—1)(1—ps(t — 1)) + pslt — 1)
)
whereY; (1 :t) = (Y,(1),...,Y,(t)) and calculate

[Ys(t) | 6:(t) = 1]ds(2)
[Y(t) | 65(t) = 1]ds(t) + [Ys(t) | 65(2) = 0](1 — ds(2))
- ps(t)

3. Samplei,(7") from a Bernoulli distribution with parametex (7).

I
2

—~

s

Il
IS
3

Pr(ds(t) =1|Yy(1:¢)) =

4. Fort =T —1,...,1,drawd,(t) from a Bernoulli distribution with parameter

s, (141)=13Ps(t)
Pr(os(t) =11 0s 1), Y,(1: = '
r(0s(2) [ 05(8+1),%5(1:1)) L5, ta1)=13ds(t + 1) + (1 — L5, 141)=13 ) (1 — ds(t + 1))
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Figure 4. Comparison of prospective and retrospective e@mpid alarms for influenza and pneu-
monia deaths during 2009 according to the absorbing statéghdriangles, diamonds, squares,
and circles indicate that the posterior probability of antbreak is greater than 0.5, 0.7, 0.8, and
0.9, respectively. Small, unfilled circles represent thmses for which the posterior probability
of an outbreak is less than 0.5.

16



9w
N
o |
N
w o
c ©
=
©
j93
[a]
o |
©
w |
[Te}

T T T T T T T 1
May June July August September October November December

Week

Figure 5. The posterior expectatidt(Y;(¢) | Y,) over time for the city of New Orleans, LA.

17



Table 1. Values of which minimize the empirical misclassification rate of thes@rbing state
model where the decision rule is basedinid,(¢) | Y') > r. For diseases with a small baseline
(exp{a,}) or small epidemic-to-baseline ratio:), larger values of- are preferred in order to
declare an epidemic as opposed to larger baselines.

K
exp {ay, } 0.2 0.5 1 1.5 2 4
1 0.80 0.81 0.80 0.74 0.64 0.50
2 0.80 0.80 0.75 0.61 0.58 0.50
4 0.80 0.75 0.61 0.53 0.53 0.51
8 0.70 0.66 0.53 0.49 0.51 0.53
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