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SUMMARY

Survey estimators of population quantities such as distribution functions and quantiles contain
nondifferentiable functions of estimated quantities. The theoretical properties of such estimators
are substantially more complicated to derive than those of differentiable estimators. In this ar-
ticle, we provide a unified framework for obtaining the asymptotic design-based properties of
two common types of nondifferentiable estimators. Estimators of the first type have an explicit
expression, while those of the second are defined only as the solution to estimating equations.
We propose both analytical and replication-based design consistent variance estimators for both
cases, based on kernel regression. The practical behavior of the variance estimators is demon-
strated in a simulation experiment. Our simulation suggests that the proposed variance estimators
work reasonably well under the appropriate bandwidth.

Some key words: estimating equation, kernel regression, nondifferentiable estimator, replication variance estimation.

1. INTRODUCTION

A number of common survey estimators, including estimators of population distribution func-
tions and quantiles, involve nondifferentiable functions of estimated quantities. Because of this
nondifferentiability, these estimators do not follow the standard paradigm for obtaining the sta-
tistical properties of survey estimators, which relies on Taylor linearization. Statisticians wanting
to work with this type of estimators are faced with the choice of either developing a customized
approach for their particular estimator, or of glossing over the nondifferentiability. In this arti-
cle, we shall consider two types of nondifferentiable estimators and provide a unified theoretical
framework under which their properties can be obtained. The first comprises explicitly defined
estimators, in which one or several estimated quantities are embedded inside a nondifferentiable
function. The second comprises estimators defined as the solution to estimating equations, with
the equations containing nondifferentiable components.

Examples of the first type of estimators include estimators of population distribution func-
tion using auxiliary information (Dunstan & Chambers, 1986; Rao et al., 1990; Chambers et al.,
1992; Wang & Dorfman, 1996), estimators of population fraction above or below an estimated
quantity (Shao & Rao, 1993; Binder & Kovacevic, 1995; Preston, 1996; Eurostat, 2000; Berger
& Skinner, 2003), the endogenous post-stratification estimator (Breidt & Opsomer, 2008) and the
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2 J.C. WANG AND J.D. OPSOMER

estimator of the population distribution of distances to subpopulation centre (Wang & Opsomer,
2010). In all these cases, the estimation targets are finite population quantities, so we focus ex-
clusively on design-based estimators. Many of the authors above obtained theoretical properties
of their specific estimators, often taking advantage of the fact that the nondifferentiability is
due to indicator functions. A more general treatment of nondifferentiable estimators in survey
context is provided by Deville (1999), who described variance estimation for complex statistics
using influence functions and introduced kernel smoothing in variance estimation. However, no
formal proof was provided and there is no unified theoretical work establishing the asymptotic
properties of this class of estimators under a complex survey design.

The second type of nondifferentiable estimators under consideration involves design-weighted
estimating equations. Godambe & Thompson (2009) gave a general treatment of estimating
equations in survey sampling, and showed how quantities of interest can be defined through
estimating equations, including means, quantiles and generalized linear model parameters (see
also Binder, 1983; Wu & Sitter, 2001). Section 1.3.4 of Fuller (2009) derived properties of esti-
mators defined by estimating equations in complex surveys when the estimating function satisfies
a differentiability condition. A specific example of an estimator defined as the solution to non-
differentiable estimating equations is the sample quantile. Kuk & Mak (1989) discussed median
estimation using auxiliary information under simple random sampling. Rao et al. (1990) fur-
nished a thorough treatment of estimating distribution functions and quantiles in the presence of
auxiliary information under a general sampling design. Francisco & Fuller (1991) derived the
design normality of both distribution function and quantile estimators, and proposed a number
of confidence intervals for quantiles, including Woodruff confidence intervals, further examined
by Sitter & Wu (2001). To our knowledge, a general theoretical treatment of survey estimators
with nondifferentiable estimating equations is not available in literature.

Many of the above estimators are readily handled in a model-based context, where the sample
observations can be treated as independent and identically realizations from a model. The seminal
article by Randles (1982) gave a unified treatment of nondifferentiable functions with estimated
parameters when the estimator can be written as a U -statistic. However, when these estimators
are considered under an unequal-probability design-based paradigm in which the randomness
comes from the sampling design and the population remains fixed, a corresponding unified treat-
ment is not available. Given the prevalence of design-based inference for government and other
surveys, we attempt to provide a unified approach for handling nondifferentiable survey estima-
tors. For both types of estimators described above, we state a full set of design, population and
estimator assumptions that are sufficient to obtain design consistency and asymptotic normality.
We also propose design consistent variance estimators that use kernel regression to estimate the
smooth limit of the nondifferentiable functions.

2. GENERAL DESIGN ASSUMPTIONS

In this section, we give assumptions on the sampling design and estimator that are sufficient
to obtain the asymptotic properties of a Horvitz–Thompson estimator for a quantity with certain
moment conditions. Additional assumptions for specific classes of estimators will be stated in
later sections. We follow the framework of Isaki & Fuller (1982) in which the properties of
estimators are established under a fixed sequence of populations and a corresponding sequence
of random sampling designs. Suppose therefore that we have an increasing sequence of finite
populations {UN} of size N , with N →∞. Associated with population element i is a vector of
observations yi = (yi,1, . . . , yi,p), and let FN denote {y1, . . . , yN} containing all the variables
of interest in the N th population.
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Nondifferentiable survey estimators 3

We take a sample S of size n from population UN , and the sampling design generating S may
be a complex design with stratification or multi-stage sampling. Let πi = pr(i ∈ S) represent
the inclusion probability of the ith population element. We write ȳN = N−1

∑N
i=1 yi for the

population mean of variable yi and ȳπ = N−1
∑
S πi

−1yi for its Horvitz–Thompson estimator.
We state three assumptions on the probability sampling design. Assumption 1 sets limits on

the rate of the sample size, with a more restrictive version in Assumption 1(A) that is needed only
for explicitly defined nondifferentiable estimators. Assumption 2 ensures design consistency and
Assumption 3 guarantees asymptotic normality of our estimator under a general design.

ASSUMPTION 1. The expected sample size n∗ = E(n | FN ) = O(Nβ), with 1/2 < β ≤ 1.

ASSUMPTION 1 (A). The expected sample size n∗ = O(Nβ), with 2p/(2p+ 1) < β ≤ 1,
where p denotes the dimension of study variable y,

ASSUMPTION 2. The following conditions hold for the inclusion probabilities πi and the de-
sign variance of the Horvitz–Thompson estimator of the mean,

1. KL ≤ Nπi/n∗ ≤ KU for all i, where KL and KU are positive constants;
2. for any vector z with finite 2 + δ population moments with arbitrarily small δ > 0, we assume

var(z̄π | FN ) ≤ c1n∗−1(N − 1)−1
∑N

i=1(zi − z̄N )(zi − z̄N )T, for some constant c1.

ASSUMPTION 3. For any z with finite fourth population moment and conditional on FN ,

var(z̄π | FN )−1/2(z̄π − z̄N )→N(0, Ip), (1)

in distribution, and

var(z̄π | FN )−1V̂HT(z̄π)− Ip = Op(n
∗−1/2), (2)

where Ip is the p× p identity matrix, the design variance-covariance matrix of z̄π, var(z̄π | FN ),
is positive definite, and V̂HT(z̄π) is the Horvitz–Thompson estimator of var(z̄π | FN ).

In this article and unless specifically indicated otherwise, convergence results are to be inter-
preted as being with respect to the sequence of sampling designs, conditional on FN .

3. EXPLICITLY DEFINED NONDIFFERENTIABLE SURVEY ESTIMATORS

3·1. The Estimators
Assume that a population quantity of interest takes the form of a U -statistic of order one,

TN (λN ) =
1

N

N∑
i=1

h(yi;λN ), (3)

where λN represents a q-dimensional population quantity and h(y;λ) : Rp × Rq → R is not
necessarily a differentiable function of λ. The two integers p and q represent the dimension of the
target variable y and parameter λ respectively, and need not be the same. The sample estimator
of TN (λN ) is the following Horvitz–Thompson estimator with estimated parameter(s),

T̂N (λ̂N ) =
1

N

∑
i∈S

1

πi
h(yi; λ̂N ), (4)

where λ̂N is a sample-based estimator of λN .
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4 J.C. WANG AND J.D. OPSOMER

The case when h(y;λ) is a smooth function of λ is easy to deal with, because we can apply
Taylor linearization and obtain the ignorability of the remainder terms in the expansion using
traditional arguments. But if h(y;λ) is a nondifferentiable function of λ, we cannot express the
extra variation by a direct linearization, so that further steps need to be taken to study the asymp-
totic properties of the estimator. Randles (1982) gave a general treatment of nondifferentiable
estimators in a nonsurvey setting. In the current context, if h(y;λ) is a nonsmooth function of λ,
the expectation of T̂N (λ) under the design, TN (λ), remains as a nonsmooth function of λ, so we
need to modify the approach of Randles (1982) to extend the results to the survey context.

3·2. Assumptions
We provide a set of conditions that need to be satisfied by the parameter estimator λ̂N , its

population target λN and the population quantity (3). Specifically, Assumptions 4 and 5 are
conditions on the population parameter and its sample-based estimator. We also need a number of
regularity conditions on the form and asymptotic behaviour of the population quantity TN (λN )
as N →∞. In particular, Assumption 6 specifies a limiting smooth function for TN (λ) and
Assumption 7 puts an important bound on the variation of necessary population quantities.

ASSUMPTION 4. The population parameter of interest λN lies in a compact set Cλ.

ASSUMPTION 5. 1. The estimator λ̂N is n∗1/2-consistent for λN .
2. The estimator λ̂N can be linearized as λ̂N = λN +N−1

∑
i∈S πi

−1g(yi) + op(n
∗−1/2),

where g(yi) has finite fourth population moments.

ASSUMPTION 6. 1. The absolute value of h(·; ·) is bounded by a constant ch.
2. The population level function TN (λ) converges to a smooth function, limN→∞ TN (λ) =
T (λ), uniformly in Cλ defined in Assumption 4.

3. The limiting function T (λ) is uniformly continuous in λ in a neighbourhood of λ∞ =
limN→∞ λN , say Cλ. Further, T (λ) has finite first and second derivatives.

ASSUMPTION 7. The population quantities satisfy

sup
s∈Cs

Nα
∣∣TN (λN +N−αs)− TN (λN )− T (λN +N−αs) + T (λN )

∣∣→ 0, (5)

and

sup
s∈Cs

N−1
N∑
i=1

∣∣h(yi;λN +N−αs)− h(yi;λN )
∣∣ = O(N−α), (6)

where Cs is a large enough compact set in Rq and α ∈ (1/4, 1/2].

The reasonableness of the population requirements in Assumption 7 is somewhat difficult to
evaluate as stated. Therefore, in Appendix A.1, a superpopulation model version of Assumption
7 is stated under which the yi are generated through a probabilistic mechanism. Based on that
assumption, a number of model results can be shown to hold with probability one. In particular,
we can show that (5) and (6) hold almost surely under the superpopulation model as in Lemma
4. We here assume that the fixed population sequence from which we are sampling is such that
these results hold, without the almost sure condition.

3·3. Design-based results
The key intermediate result we need in this section is stated in Lemma 1, which allows us

to use the limiting smooth function T (λ) instead of nonsmooth population quantity TN (λ) in
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Nondifferentiable survey estimators 5

asymptotic expansions. We then establish the asymptotic normality of estimator (4) in Theo-
rem 1. Proofs are deferred to Appendix A.2.

LEMMA 1. Under Assumptions 1(A), 2, 5(1), and 6-7, conditional on FN ,

Nβ/2
{
T̂N (λ̂N )− T̂N (λN )− T (λ̂N ) + T (λN )

}
= op(1).

THEOREM 1. Under Assumptions 1(A) and 2-7, the sample estimator T̂N (λ̂N ) is design con-
sistent for TN (λN ) and asymptotically normally distributed, i.e. conditional on FN ,[

AV {T̂N (λ̂N )}
]−1/2 {

T̂N (λ̂N )− TN (λN )
}
→N(0, 1),

in distribution, where AV {T̂N (λ̂N )} =
{

1, ζ(λN )T
}

var (z̄π | FN )
{

1, ζ(λN )T
}T, ζ(λ) de-

notes the first derivative of T (λ) and z̄π = N−1
∑
i∈S

πi
−1 {h(yi;λN ), g(yi)

T
}T.

Generally speaking, for nondifferentiable survey estimators with estimated parameters, we can
first replace the estimated parameter λ̂N with an arbitrary constant λ in Cλ, then take expecta-
tion with respect to sampling design to obtain the population quantity TN (λ). The population
quantity usually remains as a nondifferentiable function of λ, but we can often reasonably as-
sume a differentiable limit for TN (λ) as in Assumption 6. The differentiable limit is then used in
asymptotic expansion and variance expression.

In practice, many complex survey estimators cannot be written in the simple form of a survey
weighted order-1 U -statistic, but are differentiable functions of estimators with expression (4).
Properties of such estimators are straightforward extensions of Theorem 1, since the additional
effect of the differentiable function is easily handled by traditional methods.

3·4. Applications
We discuss two examples of nondifferentiable estimators with estimated parameters that have

appeared in the survey literature. As noted in Section 1, there exists extensive literature on es-
timating the population distribution function of a target variable when auxiliary information is
present. To incorporate auxiliary information in estimating a distribution function, we generally
estimate some model or population parameter(s) first and then substitute the estimated param-
eter(s) into an indicator function to construct a distribution function estimator. The sample dis-
tribution estimator is a nondifferentiable function of the estimated parameter(s), like the model-
based estimator in Dunstan & Chambers (1986) or the ratio, difference and Rao–Kovar–Mantel
estimators in Rao et al. (1990).

Rao et al. (1990) stated that one can ignore the variation due to estimating parameters in the
last three estimators, but no rigorous proof was presented. We shall show that this is because
the derivative ζ(λN ) in Theorem 1 is either strictly zero or a smaller order term. Consider the
difference estimator of Rao et al. (1990) defined as

F̂N,d(t; R̂N ) =
1

N

[∑
S

1

πi
I(yi≤t) +

{∑
U

I
(R̂Nxi≤t)

−
∑
S

1

πi
I
(R̂Nxi≤t)

}]
,

where R̂N is a parameter estimated from sample data, and I(·) is an indicator function,
I(c) = 1 if c is true and 0 otherwise. If we replace R̂N by an arbitrary constant λ to ob-
tain F̂N,d(t;λ) and take expectation with respect to design, this is an unbiased estimator of
FN,d(t) = N−1

∑
U I(yi≤t), which does not depend on parameter λ. Therefore, the derivative
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6 J.C. WANG AND J.D. OPSOMER

of the limiting function with respect to λ is zero and, by the results in Theorem 1, the extra vari-
ance due to estimating population parameter RN can be ignored in the asymptotic distribution.
This resembles the asymptotic normality result (1.5) of Randles (1982). Similarly, the extra vari-
ance is negligible in the ratio estimator and Rao–Kovar–Mantel estimator in Rao et al. (1990),
where it can be shown that ζ(λN ) is of smaller order.

Another estimator that follows our framework is an estimated fraction below or above an es-
timated level, which is regularly seen in social surveys. A specific example is to estimate the
fraction of households in poverty when the poverty line is draw at, say, 50% of the median
income (Shao & Rao, 1993). This sample fraction with estimated median plugged in is a non-
differentiable function of the estimated parameter, and we can apply the previous results to this
situation, with h(yi;λ) = I(yi≤λ) and λ̂N as sample-based estimator for the population median
λN for the variable yi. If we assume that the population observations yi are independent and iden-
tically distributed random variables with distribution function FY (·), the limit of TN (λ) equals
FY (λ) almost surely, using the results in Appendix A.1. Theorem 1 can then be applied as long
as we have a linearization or an asymptotic variance for the sample-based median estimator λ̂N ,
since the variance component due to estimation of the median remains significant in this case.
The estimation of quantiles with the median as a special case will be discussed in Section 4.

4. NONDIFFERENTIABLE ESTIMATING EQUATIONS

4·1. The Estimators
We consider a population parameter ξN defined as

ξN = inf{γ : SN (γ) ≥ 0}, (7)

where SN (γ) = N−1
∑N

i=1 ψ(yi − γ) and ψ(·) is a univariate real function. The population pa-
rameter ξN is estimated by ξ̂N ,

ξ̂N = inf{γ : ŜN (γ) ≥ 0} (8)

with ŜN (γ) = N−1
∑

i∈S π
−1
i ψ(yi − γ).

4·2. Assumptions
In addition to the design assumptions in Section 2, we require regularity conditions on the

sequence of finite populations. Assumption 8 assumes that the population quantity ξN lies in a
closed interval on R, and Assumption 9 specifies conditions on the monotonicity and smoothness
of SN (γ) and its limit.

ASSUMPTION 8. The population parameter ξN lies in a closed interval Cξ on R.

ASSUMPTION 9. The population estimating function SN (·) and the function ψ(·) satisfy:

1. the function ψ(·) is bounded;
2. the population estimating function SN (γ) converges to S(γ) uniformly on Cξ as N →∞,

and the equation S(γ) = 0 has a unique root in the interior of Cξ;
3. the limiting function S(γ) is strictly increasing and absolutely continuous with finite first

derivative in Cξ, and the derivative S′(γ) is bounded away from 0 for γ in Cξ;
4. the population quantities

sup
γ∈Cγ

Nα
∣∣SN (ξN +N−αγ)− SN (ξN )− S(ξN +N−αγ) + S(ξN )

∣∣→ 0, (9)
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Nondifferentiable survey estimators 7

and supγ∈Cγ N
−1∑N

i=1 |ψ(yi − ξN −N−αγ)− ψ(yi − ξN )| = O(N−α), where Cγ is a
large enough compact set in R and α ∈ (1/4, 1/2].

Assumption 9(4) is somewhat restrictive and difficult to interpret. In Appendix A.1, we show
that (9) holds with probability one under suitable assumptions on the probability mechanism
generating the yi and on the function ψ. Assumption 9(4) resembles Assumption 7 and their
reasonableness will be discussed in the Appendix.

4·3. Design-based results
The main results for estimating equations are presented in this section, where Lemma 2 shows

that ŜN (γ) converges in design probability to its population counterpart, Theorem 2 states the
design consistency of sample estimator ξ̂N , and Theorem 3 states design-based asymptotic nor-
mality of the sample estimator. All proofs are given in Appendix A.2.

LEMMA 2. Under Assumptions 1, 2(2) and 9, for any large enough closed interval C ∈ R,

sup
γ∈C

∣∣∣ŜN (γ)− SN (γ)
∣∣∣ = op(1).

THEOREM 2. Under Assumptions 1, 2, 8 and 9, the estimator ξ̂N is design consistent for the
population quantity ξN .

THEOREM 3. Under Assumptions 1, 2-3, 8-9, for any sequence of estimators ξ̂N
that is n∗1/2-consistent for ξN , the estimator ξ̂N can be linearized as ξ̂N = ξN −
{ŜN (ξN )− SN (ξN )}/S′(ξN ) + op(n

∗−1/2), and is asymptotically normally distributed, i.e.
conditional on FN , {

AV(ξ̂N )
}−1/2

(ξ̂N − ξN )→N(0, 1),

in distribution, where AV(ξ̂N ) = var{ŜN (ξN ) | FN}/S′2(ξN ).

4·4. Applications
The first example is the sample quantile. For simplicity, consider the sample quantile esti-

mator obtained by inverting the Hájek estimator of the cumulative distribution function. In this
case, the estimating function for the αth quantile is ψ(yi − γ) = I(yi−γ≤0) − α, with population
estimating equation SN,α(γ) = N−1

∑N
i=1 I(yi−γ≤0) − α. The sample α-quantile is defined as

ξ̂N,α = inf{γ : ŜN,α(γ) ≥ 0} = inf

{
γ :

1

N̂

∑
i∈S

1

πi
I(yi≤γ) ≥ α

}
,

where N̂ =
∑

i∈S π
−1
i . The function ŜN,α(γ) is a Hájek estimator and it is asymptotically equiv-

alent to a function with the same form of ŜN (γ). The limiting function of SN,α(γ) is denoted
as Sα(γ) = F (γ)− α, where F (γ) can be taken to be the distribution function of yi if we as-
sume the yi’s are identically distributed and independent (or weakly dependent). Following the
approach described earlier in this section, we directly obtain the asymptotic variance of ξ̂N using
design variance var{ŜN,α(ξN ) | FN} and derivative F ′(ξN ).

A second example is the Winsorized mean introduced by Huber (1964), where the estimat-
ing function ψ(·) is defined as ψ(yi − γ) = (yi − γ)I(|yi−γ|≤k) − k I(yi−γ<−k) + k I(yi−γ>k)
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8 J.C. WANG AND J.D. OPSOMER

for some constant k. The population estimating function is

SN (γ) =
1

N

N∑
i=1

(yi − γ)I(|yi−γ|≤k) +
k

N

N∑
i=1

{
I(yi−γ>k) − I(yi−γ<−k)

}
,

and we assume SN (γ) converges to a limit function S(γ) which is differentiable in a neighbour-
hood of ξN , where ξN is the population Winsorized mean as defined by (7). This population
estimating function is nonincreasing, but we can use −SN (γ) and still define the parameter of
interest as (7). Then we can define the sample estimating equation and estimator, and show its
asymptotic properties as before.

Another possible application area for the theory presented in this section is quantile regression
for survey data. There is growing interest in this topic in econometrics, see e.g. Koenker &
Hallock (2001) and Koenker (2005). Currently there seem to be no references on how to use
design information in quantile regression modelling. One could, in principle, incorporate survey
weights in the equations that define the quantile model, and solve the estimating equations using
linear programming. But the estimating equation itself is nondifferentiable, and traditional theory
that requires differentiable estimating functions fails. Although we shall not do so here, our
theoretical framework for nondifferentiable estimating equations could certainly be extended to
this estimation setting.

5. VARIANCE ESTIMATION

5·1. Analytic variance estimation
To estimate the design variance of T̂N (λ̂N ) in Section 3 or ξ̂N in Section 4, we need to esti-

mate the derivatives ζ(λ) or S′(γ) of the limiting functions T (λ) or S(γ), respectively. Natural
sample-based estimators of the latter limiting functions are T̂N (λ) and ŜN (γ), but being non-
differentiable, cannot be used directly to obtain derivatives. We therefore work with a smoothed
version of these estimators. This section describes a direct plug-in variance estimator with a
kernel-based estimator, and the next section shows how to integrate the kernel-based derivative
estimator into a replication-based variance estimator. The intrinsic idea of replacing the nons-
mooth function with a convoluted smooth function in derivative estimation for design variance
dates back at least to Deville (1999), but the choice of convoluting kernel was not made clear in
Deville’s article and no theoretical justifications have been provided in literature.

Define Kq(·) as a kernel function in Rq, and convolute the nonsmooth function h(yi; ·) with
Kq(·) using bandwidth b to obtain hi ∗Kq(λ) =

∫
· · ·
∫
h(yi;x)Kq {(λ− x)/b} dx, so that we

can estimate T (λ) by

1

N

∑
S

1

πi

∫
· · ·
∫
h(yi;x)Kq

(
λ− x
b

)
dx. (10)

Taking a derivative of (10) with respect to λ, we obtain the estimator

ζ̂(λ) =
1

Nbq

∑
S

1

πi

∫
· · ·
∫
h(yi;x)K ′q

(
λ− x
b

)
dx, (11)

which estimates the population quantity

ζN (λ) =
1

Nbq

∑
U

∫
· · ·
∫
h(yi;x)K ′q

(
λ− x
b

)
dx, (12)
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Nondifferentiable survey estimators 9

for fixed λ.
We use ‖ · ‖ to denote the L2 norm in Rq in assessing divergence, and we state a set of as-

sumptions for obtaining the design consistency of ζ̂(λ̂N ) for ζ(λN ).

ASSUMPTION 10. The following conditions hold for kernel function Kq(·) and bandwidth b,

1. the kernel function Kq(·) is absolutely continuous with nonzero finite derivative K ′q(·) and∫
· · ·
∫
Kq(x)dx = 1;

2. the bandwidth b→ 0 and Nbq →∞, as N →∞;
3. there exists a constant c, such that

∥∥b−qK ′q(x1/b)− b−qK ′q(x2/b)∥∥ ≤ c ‖x1 − x2‖ for any
x1, x2, and b arbitrarily small.

ASSUMPTION 11. The deviation ‖ζN (λ)− ζ(λ)‖ → 0 uniformly for λ ∈ Cλ.

Assumption 10 states conditions on the smoothness and tail behaviour of the kernel functions.
Popular kernel functions including Epanechnikov, Gaussian, and triangle kernels all satisfy the
required conditions. As in the previous sections, we can justify Assumption 11 by showing that
under some stated model regularity conditions on the yi, it holds with probability one for suffi-
ciently large populations.

Given Assumptions 10, 11 and previously stated regularity conditions on the sampling design,
we show the consistency of the kernel-based estimator (11) and the resulting variance estimator
in Lemma 3 and Theorem 4, respectively. The proofs are provided in Appendix A.2.

LEMMA 3. Under Assumptions 2, 4-5(1), 10(1-3) and 11, the estimator ζ̂(λ̂N ) is design con-
sistent for ζ(λN ).

THEOREM 4. Let V̂HT(z̄π) be the Horvitz–Thompson variance estimator for z̄π defined in
Theorem 1. Under Assumptions 2-3, 4-5, 7(1), 10-11, the estimator

V̂ {T̂N (λ̂N )} =
{

1, ζ̂(λ̂N )T
}
V̂HT(z̄π)

{
1, ζ̂(λ̂N )T

}T
(13)

is design consistent for AV{T̂N (λ̂N )} as defined in Theorem 1.

The linearization term g(yi) that is part of z̄π may also depend on unknown population pa-
rameters. Theorem 4 is written for the case in which these parameters are set at their population
values, and in practice they would have to replaced by sample estimators. The above result will
continue to hold by further linearization if g(.) is differentiable. If that is not the case, then the
theory from Section 3 would again need to be applied in order to approximate V̂HT(z̄π). We do
not explore this further here. The applications described in Section 3.4 all correspond to the case
where g(.) is differentiable.

Similarly to Theorem 4, one can obtain the design consistency of estimator V̂ (ξ̂N ) =

V̂HT{Ŝ(ξ̂N )}/Ŝ′2N (ξ̂N ) for AV (ξ̂N ), where

Ŝ′N (γ) =
1

Nb

∑
S

1

πi

∫
ψ(yi − x)K ′

(
γ − x
b

)
dx (14)

is a kernel-based estimator of S′(γ).

5·2. Jackknife variance estimator
We assume there already exists a design consistent jackknife variance estimator for simple

linear estimators, then define jackknife replicates in our case and establish design consistency
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10 J.C. WANG AND J.D. OPSOMER

of the proposed variance estimator. This approach was also used by Fuller & Kim (2005) and
Da Silva & Opsomer (2006). We apply a number of regularity assumptions on the replication
method that were stated in the latter article, and do not repeat them here for the sake of brevity.

THEOREM 5. Let wi = N−1π−1i and let θ̂ be a linear estimator with θ̂ =
∑
S wizi, where

zi has bounded 4 + δ population moments. Assume there is a jackknife replication procedure
that generates L replicated estimates θ̂(l) =

∑
S w

(l)
i zi, with l = 1, 2, · · · , L. The replication

variance estimator is defined as

V̂JK(θ̂) =
L∑
l=1

cl(θ̂
(l) − θ̂)2, (15)

where c1, . . . , cL is a set of constants. Assumptions similar to (D1)-(D4) and (D6) in Da Silva &
Opsomer (2006) are made.

1. For explicit nondifferentiable survey estimators, we define the l-th jackknife replicate as

T̂
(l)
N (λ̂N ) =

∑
S
w

(l)
i h(yi; λ̂N ) + ζ̂(λ̂N )T(λ̂

(l)
N − λ̂N ), (16)

where the design variance of λ̂N can be consistently estimated by
∑L

l=1 cl(λ̂
(l)
N − λ̂N )2,

and ζ̂(λ̂N ) is a kernel estimator as defined in (11). Then the jackknife variance estimator
V̂JK{T̂N (λ̂N )} defined by (15) is design consistent for AV{T̂N (λ̂N )} in Theorem 1.

2. For estimators defined by nondifferentiable estimating equations, we use the following jack-
knife replicate,

ξ̂
(l)
N =

1

Ŝ′N (ξ̂N )

∑
i∈S

w
(l)
i ψ(yi − ξ̂N ), (17)

where Ŝ′N (ξ̂N ) is defined in (14). Then the jackknife variance estimator V̂JK(ξ̂N ) is design
consistent for AV(ξ̂N ) in Theorem 3.

The formal proof is omitted but follows by straightforward asymptotic bounding arguments
from the assumptions. To see this for explicitly defined estimators, the replication variance esti-
mator is readily interpreted by considering the composition of the replicate in (16). Ignoring the
second term in (16), the resulting jackknife variance estimator consistently estimates the asymp-
totic variance of T̂N (λN ), with population parameter λN substituted. The second term in (16)
uses the combination of the kernel estimator and the replication method to estimate the effect of
estimating the parameter. For implicitly defined estimators, the replicates

∑
i∈S w

(l)
i ψ(yi − ξ̂N )

allow us to consistently estimate var{ŜN (ξN ) | FN }, and thus the whole jackknife estimator is
consistent for the target asymptotic variance. Hence, in both situations, it is straightforward to
modify existing replication variance estimation procedures to obtain variance estimates for the
types of estimators proposed in Sections 3 and 4.

6. SIMULATION STUDY

For a fixed finite population of size N = 2000, we generate the variable y as independent
realizations of a Γ(2, 1) distribution. Then we repeatedly draw probability samples under a
complex design with 3 strata. We create a stratification variable zi = yi + yi

−1/2 + 5 + εi with
εi ∼ N(0, 4), and use 7 and 9.5 as cutoff points on z for determining stratum membership for
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each element in finite population. Stratum 1 contains the elements where zi ≤ 7, and we draw a
simple random sample without replacement with sample size n1 = n∗/4 where n∗ is desired to-
tal sample size. Stratum 2 contains the elements with 7 < zi < 9.5, where we partition the range
of zi into 150 intervals of equal length to form clusters, and select clusters using simple random
sampling with the number of clusters equal to n∗/(2Nc) with Nc denoting the average cluster
size. Finally, we draw a Poisson sample with expected sample size = n∗/4 from stratum 3, with
selection probability is proportional to zi. We consider n∗ = 200 and 400 and for each value of
n∗, 2000 samples were drawn from the population using this design.

We examine estimators of the following target population quantities: population α-quantiles
ξα with α = 0.1, 0.25, 0.5, 0.75, 0.9, and proportions of points below c× ξ0.5, with c = 0.25, 0.4
and 0.6. Let Sh denote the sample drawn in stratum h. The sample quantiles are estimated by
inverting the separate ratio estimator of the population cumulative distribution function, defined
as

F̂N (γ) =
3∑

h=1

Nh

N

∑
Sh πi

−1I(yi≤γ)∑
Sh πi

−1 ,

and the sample estimator of the proportion below c× ξ0.5 is defined as

T̂N,c =

3∑
h=1

Nh

N

∑
Sh πi

−1I(yi≤cξ̂N,0.5)∑
Sh πi

−1 . (18)

We compute the analytic variance estimator from Theorem 4 , the jackknife estimator from The-
orem 5 and a naive jackknife variance estimator that calculates a sample quantile for each repli-
cate. We incorporate finite population corrections into all three variance estimators. The esti-
mators are compared in terms of relative bias, (EV̂ − V )/V , where V̂ denotes the variance
estimator and V denotes the true design variance simulated by Monte Carlo. The estimator (18)
contains two nested non-differentiable functions, so the estimation ofAV (T̂N,c) requires estima-
tion of the density of y at both ξ̂N,0.5 and cξ̂N,0.5. These are obtained by kernel regression using
a Gaussian kernel with bandwidth values h = 0.1, 0.2, 0.4.

Table 1. Relative bias (%) of three variance estimators for sample quantiles under three different
bandwidths h and two sample sizes n∗. Estimators are: V̂AN, analytic variance estimator; V̂JK,
proposed jackknife variance estimator; V̂NVJK, naive jackknife estimator.

Variance n∗ = 200 n∗ = 400

estimator
h

ξ̂N,.1 ξ̂N,.25 ξ̂N,.5 ξ̂N,.75 ξ̂N,.9 ξ̂N,.1 ξ̂N,.25 ξ̂N,.5 ξ̂N,.75 ξ̂N,.9
V̂AN 0.1

–7.7 3.9 1.3 –1.9 –5.7 –3.3 15.7 1.5 0.7 –1.6

V̂JK –6.6 5.1 2.8 0.5 –1.4 –2.8 16.1 2.0 1.5 0.1
V̂AN 0.2

0.4 8.6 2.6 –7.2 –0.5 4.5 20.6 2.7 –5.5 0.3

V̂JK 1.6 9.9 4.2 –4.8 3.8 5.0 21.2 3.3 –4.3 2.9
V̂AN 0.4

26.3 27.8 2.8 –11.2 3.6 32.0 41.2 3.1 –9.3 7.6

V̂JK 27.9 29.4 4.4 –8.8 7.7 32.6 41.8 3.6 –8.4 9.3
V̂NVJK 186.4 204.3 156.1 221.3 252.9 206.2 228.9 181.5 208.0 231.9
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Table 2. Relative bias (%) of three variance estimators for fraction below an estimated quantity
under three different bandwidths and two sample sizes n∗.

Variance n∗ = 200 n∗ = 400

estimator
h

T̂N,.25 T̂N,.4 T̂N,.6 T̂N,.25 T̂N,.4 T̂N,.6
V̂AN –1.3 0.9 3.7 –1.2 –2.2 2.7

V̂JK
0.1

–0.1 2.0 5.0 –0.7 –1.8 3.3
V̂AN –3.1 0.1 0.4 –2.7 –2.6 0.2

V̂JK
0.2

–1.9 1.0 0.8 –2.2 –2.2 0.7
V̂AN –4.3 –2.4 –5.3 –3.7 –4.6 –3.5

V̂JK
0.4

–3.0 –1.4 –4.2 –3.2 –4.2 –3.1
V̂NVJK 136.9 157.3 304.4 181.3 172.6 357.4

The results in Table 1 show that, as expected, the naive jackknife variance estimator is severely
biased, indicating that the special structure of the estimator needs to be taken into account in vari-
ance estimation (Shao & Wu, 1989). The proposed analytic and jackknife variance estimators
provide satisfactory results except in a number of cases under bandwidth h = 0.4. This band-
width value appears to result in substantial oversmoothing of the data, at least for the smaller
quantiles. At the suggestion of a referee, we also evaluated the proposed variance estimators
with the Woodruff variance estimator, which is defined as the length of the Woodruff confidence
interval divided by 2z1−α/2. The bias of proposed analytic and jackknife variance estimators with
h = 0.1 or 0.2 are comparable to those of the Woodruff procedure. However, we found that the
proposed variance estimators appear to be more efficient for the majority of the cases, although
this depended on the choice of bandwidth. Further numerical and theoretical comparisons would
be necessary to make more conclusive statements. Table 2 shows the same results for the sample
estimator defined in (18). The proposed variance estimators have relative bias less than 5% for
all bandwidths, while the naive variance estimator is again severely biased.

Overall, the simulation results suggest that the two proposed variance estimators work rea-
sonably well under appropriate bandwidth, although the performance of the variance estimators
depends on bandwidth h to some extent. Bandwidth selection for these estimators is a current
topic of research.
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APPENDIX

A.1. Model-based justifications for population assumptions
In Sections 3·2, 4·2 and 5·1, we assumed some regularity conditions on the sequence of fixed finite

populations to obtain design-based results. Here, we provide sufficient conditions under a superpopula-
tion model to assess the reasonableness of these population-level regularity conditions. In the model-based
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context, we assume that the finite population is an independent and identicallly distributed sample from a
superpopulation model with cumulative distribution function F (y), and we show that the stated assump-
tions on the sequence of finite populations hold with probability one. Proofs are in Appendix A.2.

Under a model version of Assumption 6 and additional regularity conditions on h(·; ·), we show that
the statements in Assumption 7 hold with probability one under the superpopulation model.

ASSUMPTION 12. Let Y be a random vector with absolutely continuous cumulative distribution func-
tion F (y), and denote T (λ) ≡ E{h(Y ;λ)}. Further, T (λ) is a continuous function of λ, with finite first
and second derivatives.

ASSUMPTION 13. There exists a finite integer m1, such that h(y;λ) =
m1∑
j=1

hj(y;λ), where hj(y;λ) is

monotone in y for every λ.

ASSUMPTION 14. Let Y be a random vector with cumulative distribution function F (y). The follow-
ing moment conditions are satisfied,

E
∣∣h(Y ;λ+N−αs)− h(Y ;λ)

∣∣ = O(N−α) and var
{
h(Y ;λ+N−αs)− h(Y ;λ)

}
= O(N−α),

for λ ∈ Cλ, s ∈ Cs and 0 < α ≤ 1/2.

LEMMA 4. Under Assumptions 6(1), 12-14, the population quantities

Nα
∣∣TN (λ+N−αs)− TN (λ)− T (λ+N−αs) + T (λ)

∣∣→ 0

almost surely, and

N−1
N∑
i=1

∣∣h(yi;λN +N−αs)− h(yi;λN )
∣∣ = O(N−α) (A1)

almost surely, uniformly for s ∈ Cs, a compact set in Rq , and for λ ∈ Cλ, where Cλ is defined in Assump-
tion 4 and α ∈ (1/4, 1/2].

Next, we justify Assumption 9(4) under a probabilistic model. For the sake of brevity, we only explicitly
state the result for the first statement. We assume the population characteristics yi are independent and
identically distributed realizations of a random variable Y , and place additional restrictions on ψ to obtain
almost sure convergence.

ASSUMPTION 15. Let Y be a random variable with absolutely continuous cumulative distribution
function, and denote S(γ) ≡ E{ψ(Y − γ)}. The estimating function S(γ) is strictly increasing with finite
first derivative.

ASSUMPTION 16. The function ψ(·) is bounded and has a finite number of monotonicity changes.

LEMMA 5. Under Assumptions 15 and 16, the population quantity

n∗1/2
{
SN (ξN + n∗−1/2s)− S(ξN + n∗−1/2s) + S(ξN )

}
→ 0

almost surely, uniformly for s ∈ Cs, a closed interval in R.

Finally, we address Assumption 11. In addition to the previous assumption 12, we require additional
regularity conditions on the function h and the kernel Kq .

ASSUMPTION 17. There exists a finite integer m2, such that K ′q(λ) =
m2∑
j=1

K ′q,j(λ), where K ′q,j(λ)

has no change of sign for any j, i.e., K ′q,j(λ) is either nonnegative or nonpositive for any λ.

LEMMA 6. Under Assumptions 10(1,2), 12, 13 and 17, the deviation supλ∈Cλ ‖ζN (λ)− ζ(λ)‖ → 0,
almost surely.
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A.2. Technical details
Proof of Lemma 1. Define Qn(s) = n∗1/2{T̂N (λN + n∗−1/2s)− T̂N (λN )− T (λN + n∗−1/2s) +

T (λN )}. We need to show that sups∈C |Qn(s)| → 0 weakly, where C is a compact region in Rq . We
have

|Qn(s)| ≤ n∗1/2
∣∣∣T̂N (λN + n∗−1/2s)− T̂N (λN )− TN (λN + n∗−1/2s) + TN (λN )

∣∣∣
+ n∗1/2

∣∣∣TN (λN + n∗−1/2s)− TN (λN )− T (λN + n∗−1/2s) + T (λN )
∣∣∣ , (A2)

where the supremum of the second term converges to zero by Assumption 7. Now we need to show the
supremum of the first term converges to zero in probability. For any 1− β < ξ < β/(2p), where β is
defined in Assumption 1, partition the compact region C into C = C1 ∪ C2 ∪ · · · ∪ CNξp , Cj ∩ Cj′ = ∅,
for any j 6= j′, where Diam(Cj) = O(N−ξ), for any j = 1, 2, . . . , N ξp. For any set of sj ∈ Cj , j =
1, 2, . . . , N ξp, define

X1j =

∣∣∣∣∣n∗1/2N

N∑
i=1

{
I(i∈s)

πi
− 1

}{
h(yi;λN + n∗−1/2sj)− h(yi;λN )

}∣∣∣∣∣
and

X2j = sup
s∈Cj

∣∣∣∣∣n∗1/2N

N∑
i=1

{
I(i∈S)

πi
− 1

}{
h(yi;λN + n∗−1/2s)− h(yi;λN + n∗−1/2sj)

}∣∣∣∣∣ .
Since sups∈C |Qn(s)| ≤ maxj |X1j |+ maxj |X2j |, it suffices to show that both maxj |X1j | and
maxj |X2j | converge to zero in probability. We have maxj |X1j | → 0 weakly, since

pr(max
j
|X1j | > ε) ≤

∑
j

pr(|X1j | > ε)

≤ 4c1ch
ε2

Nξp max
j

1

N

N∑
i=1

∣∣∣h(yi;λN + n∗−1/2sj)− h(yi;λN )
∣∣∣

= O(Nξp−β/2),

where c1 is a positive constant, ch is defined in Assumption 6(1) and the last term goes to zero as ξ <
β/(2p). The proof of maxj |X2j | → 0 weakly follows from Assumptions 2(1) and 7. �

Proof of Theorem 1. We have the following identity{
T̂N (λ̂N )− TN (λN )

}
=
{
T̂N (λN )− TN (λN )

}
+
{
T (λ̂N )− T (λN )

}
+
{
T̂N (λ̂N )− T̂N (λN )− T (λ̂N ) + T (λN )

}
where the last term is stochastically small by Lemma 1. The second term can now be linearized since
the limiting function is differentiable. Design consistency of the estimator follows immediately from As-
sumptions 5(1) and 6 and design assumptions 2.1–2.2. Using Assumption 3 and the fact that h(yi;λN )
and g(yi) have finite fourth population moments, we also obtain the normality of the sample estimator.�

Proof of Lemma 2. Partition C into Nν equal sub-intervals C = ∪Nνk=1Ck, with 1/2 < ν < β and se-
lect an arbitrary point γk ∈ Ck, k = 1, 2, . . . , Nν . Then,

sup
γ∈C

∣∣∣ŜN (γ)− SN (γ)
∣∣∣ ≤ max

k

∣∣∣ŜN (γk)− SN (γk)
∣∣∣+ max

k
sup
γ∈Ck

∣∣∣{ŜN (γ)− SN (γ)
}
−
{
ŜN (γk)− SN (γk)

}∣∣∣ ,
and it suffices to show the two terms on the RHS are both stochastically small. By Assumption 2 for some
constant c2, var{ŜN (γ) | FN} is bounded by c2/n∗, and hence pr{maxk |ŜN (γk)− SN (γk)| ≥ ε} → 0.
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The result then follows from

max
k

sup
γ∈Ck

∣∣∣{Ŝ(γ)− SN (γ)
}
−
{
Ŝ(γk)− SN (γk)

}∣∣∣
≤ c4

N

n∗
max
k

sup
γ∈Ck

1

N

N∑
i=1

|ψ(yi − γ)− ψ(yi − γk)| = O(N1/2−β),

where c4 is a positive constant and the last equation follows from Assumption 9(4). �

Proof of Lemma 3. The triangle inequality implies that

‖ζ̂(λ̂N )− ζ(λN )‖ ≤ ‖ζ̂(λ̂N )− ζ̂(λN )‖+ ‖ζ̂(λN )− ζN (λN )‖+ ‖ζN (λN )− ζ(λN )‖,

where the first term converges to zero weakly by the uniform continuity of ζ̂(·) is a neighbourhood around
λN , the second term converges to zero in probability because its asymptotic variance goes to zero by
Assumption 2(2) and the third term goes to zero by Assumption 11. �

Proof of Theorem 2. The proof follows from standard arguments on existence and consistency of M-
estimators (Serfling, 1980). �

Proof of Theorem 3. Under Assumptions 1, 2, 8, 9 and assuming that the sample estimator ξ̂N is n∗1/2-
consistent for ξN , we obtain the asymptotic expansion

ŜN (ξ̂N )− SN (ξN ) =
{
ŜN (ξN )− SN (ξN )

}
+ S′(ξN )(ξ̂N − ξN ) + op(n

∗−1/2). (A3)

The smoothness condition of S(γ) implies that SN (ξN ) = O
(
N−1

)
and ŜN (ξ̂N ) = Op

(
n∗−1

)
, so that

{ŜN (ξ̂N )− SN (ξN )} = op(n
∗−1/2). Dividing by S′(ξN ) on both sides of (A3), we obtain lineariza-

tion ξ̂N = ξN − {ŜN (ξN )− SN (ξN )}/S′(ξN ) + op(n
∗−1/2). Asymptotic normality of ξ̂N follows di-

rectly. �

Proof of Lemma 4. Letting Xi = h(yi;λ+N−αs)− h(yi;λ)− T (λ+N−αs) + T (λ), we need
to show that Nα

∣∣∣N−1∑N
i=1Xi

∣∣∣→ 0 almost surely, uniformly for λ ∈ Cλ and s ∈ Cs. Here,

E(Xi) = 0 and E {h(yi;λ+N−αs)− h(yi;λ)} = O(N−α). Without loss of generality, assume
|h(yi;λ+N−αs)− h(yi;λ)| ≤ 1, and E {h(yi;λ+N−αs)− h(yi;λ)}2 ≤ N−α. Define the graph of
gλ,s(y) ≡ h(yi;λ+N−αs)− h(yi;λ) as

gr(gλ,s) = {(y, t) | 0 ≤ t ≤ gλ,s(y)} ∪ {(y, t) | gλ,s(y) ≤ t ≤ 0} .

Assumption 13 implies that the set of functions {(λ, s) ∈ Rq × Cs : h(y;λ+N−αs)− h(y;λ)} can be
written as the summation of a finite number of monotone function classes. Lemmas 9.9 and 9.11 of
Kosorok (2008) imply that {(λ, s) ∈ Cλ × Cs : h(y;λ+N−αs)− h(y;λ)} is a VC class and thus has
polynomial discrimination. Everything is set up for Theorem II.37 of Pollard (1984). Letting αN = 1
and δ2N = N−α, we obtain sup(λ,s)∈Cλ×Cs N

α |TN (λ+N−αs)− TN (λ)− T (λ+N−αs) + T (λ)| →
0 almost surely. The almost sure convergence of (A1) is established similarly but omitted here for
brevity. �

Proof of Lemma 5. Similar to the proof of Lemma 4. �

Proof of Lemma 6. Since ‖ζN (λ)− ζ(λ)‖ ≤ ‖ζN (λ)− EζN (λ)‖+ ‖EζN (λ)− ζ(λ)‖ and
supλ∈Cλ ‖EζN (λ)− ζ(λ)‖ → 0, we only need to show that supλ∈Cλ ‖ζN (λ)− EζN (λ)‖ → 0
almost surely. Letting gλ(y) =

∫
· · ·
∫
h(y;x)K ′q {(λ− x)/b} dx, it is equivalent to show that

supλ∈Cλ ‖N
−1∑N

i=1 gλ(yi)− Egλ(yi)‖ → 0 almost surely. Assumption 17 implies that

gλ(y) =
∑
j1

∑
j2

∫
· · ·
∫
hj1(y;x)K ′q,j2

(
λ− x
b

)
dx.
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By Assumptions 13 and 17, the integral of each hj1(y;x)K ′q,j2 {(λ− x)/b} is monotone for any λ. It is
then possible to show that the graphs of gλ(y) have polynomial discrimination by Lemma II.15 of Pollard
(1984). The remainder of the proof is as for Lemma 4. �

Proof of Theorem 4. The result follows from Assumption 3, Lemma 3 and consistency of V̂HT(z̄π). �
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