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Abstract: Methods for smoothed isotonic or convex regression are useful in many applications. Sometimes

the shape assumptions constitute a-priori knowledge about the regression function, but often the shape is

part of the research question. The authors propose tests for monotonicity and convexity using constrained

and unconstrained regression splines. The tests have good large-sample properties and the small-sample

behavior is illustrated through simulations. Extensions to the partial linear model and the generalized

regression model are presented.
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Résumé : Methods for smoothed isotonic or convex regression are useful in many applications. Sometimes

the shape assumptions constitute a-priori knowledge about the regression function, but often the shape is

part of the research question. The authors propose tests for monotonicity and convexity using constrained

and unconstrained regression splines. The tests have good large-sample properties and the small-sample

behavior is illustrated through simulations. Extensions to the partial linear model and the generalized

regression model are presented.

1. INTRODUCTION AND BACKGROUND

Nonparametric methods in function estimation are useful when a parametric form is not known.
Methods for estimating a smooth regression function include regression splines, kernel smoothing,
and smoothing splines. There are several comprehensive books on scatterplot smoothing and semi-
parametric regression, including Hastie & Tibshirani (1999) and Ruppert, Wand & Carroll (2003).
Shape restrictions may be incorporated if the regression function is known to be monotone or
convex. Monotone regression splines were proposed by Ramsay (1988), and extended to other
shape restrictions by Meyer (2008). Mammen (1991) considered a two-step estimator combining
kernel smoothing and isotonization. The monotone smoothing splines were considered by Mammen
and Thomas-Agnan (1999).

Sometimes the shape assumptions constitute a-priori knowledge, such as in the relationship of
tree height with its diameter, or the effect of the size of a dose of toxin on an organism. Sometimes
the shape assumptions constitute part of the research question: does the expected number of mates
of a bullfrog increase with his size? Does willingness to volunteer for psychology studies increase
with the degree of extroversion of the subject? Suppose that

yi = f(xi) + σεi, i = 1, . . . , n, (1)
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for xi ∈ [0, 1] and the εi are iid with mean zero and unit variance. There is no information about a
parametric form for f , but it can be assumed that it possesses some degree of smoothness, such as
continuous with continuous first derivative. Polynomial regression splines can be used for a simple
and flexible estimate of f . This estimator shares many of the nice properties of the ordinary least-
squares regression, and the optimal convergence rates were shown by Zhou, Shen & Wolfe (1998)
to be attained. Under Assumptions 1-3 of section 3, they derived the point-wise convergence rates

f̂(x)− f(x) = Op(n
−(p+1)/(2p+3))

for any x ∈ [0, 1], if the number of knots grows as O(n1/(2p+3)). Extensions to shape-restricted
versions use cone-projection ideas, and the constrained splines attain the same convergence rate
as the unconstrained splines (Meyer 2008).

The classical test for monotonicity was presented in Robertson, Wright & Dykstra (1988),
using the unsmoothed monotone regression. For the regression model (1), let H0 : f ≡ c, H1 : f is
increasing, and H2 : f is not non-decreasing over the range. They presented tests for H0 versus H1

and for H1 versus H2, using the unsmoothed monotone regression estimator for the H1 case. The
test H1 versus H2 can be constructed under the assumptions of smoothness, using the monotone
regression spline for the H1 fit and the corresponding unconstrained spline (with the same knots)
for the alternative fit. The null distribution of the test statistic B12 = (SSE1−SSE2)/SSE1 is that
of a mixture of beta random variables under H0, but the test is quite biased for general functions
in H1. In particular, when the function is increasing over most of the range and decreasing only
over a part, the B12 test can have smaller power than the test size.

Kernel smoothing is a useful tool in exploring curve monotonicity or convexity. Chaudhuri
& Marron (1999) introduced the “SiZer map” as a graphical tool for examining “zero crossings
of estimated derivatives,” in which the authors took a scale-space point of view of smoothing
and the choice of bandwidth was blurred. Global inference on SiZer was improved by Hannig &
Marron (2006) and simultaneous inference was used to improve the approximation of the SiZer
distribution. Bowman, Jones & Gijbels (1998) used a “critical bandwidth” for the local linear
estimate of the function, that is the smallest bandwidth for which the estimate is monotone. Using
bootstrap methods, they determine a p-value for the monotonicity hypothesis. Hall & Heckman
(2000) pointed out that the above test does not perform well when the true function has flat or
nearly-flat spots, and proposed a test that estimates local slopes and approximates the distribution
of the (weighted) minimum. Ghosal, Sen & van der Vaart (2000) proposed a test for monotonicity
involving a locally weighted version of Kendall’s tau statistic. Juditsky & Nemirovski (2002)
considered the general problem of determining if a signal generating a Gaussian random process is
contained in a convex cone.

In this paper we use the constrained and unconstrained regression spline estimators to test the
null hypothesis that f satisfies the shape restrictions (and is smooth) against the alternative that
f is smooth. The test uses an estimate of the distribution of the minimum slope of the spline
estimator under the null hypothesis, and is presented in the next section; theoretical properties
are given in section 3. The extension to the generalized regression model is in section 4 and to the
partial linear model in section 5, and examples of data analyses are given in section 6. The finite-
sample performance of our proposed test is demonstrated through a simulation study in section 7.
Detailed proofs for the results in section 3 are found in the appendix.

2. TEST FOR SHAPE ASSUMPTIONS

Suppose the xi’s in (1) are in the interval [0, 1], and choose knots 0 = t1 < . . . < tk = 1. The
number of knots k increases as the sample size increases, and the knot placement for each sample
size n originates from a deterministic rule, such as equally spaced or at equal x-quantiles. The
degree-p B-spline basis functions B1p(x), . . . , Bmp(x), for m = k+p−1, are piecewise polynomials
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that span the space of of degree-p piecewise polynomials with the given knots. For more details and
formulas, see de Boor (2001). Define the m× k matrix S of slopes at the knots by Sjl = B′jp(tl).
If the spline function

g(x) =
m∑
j=1

bjBjp(x) (2)

is non-decreasing, then Stb ≥ 0. Similarly, if T is the matrix of the second derivatives of the basis
functions at the knots, i.e., Tjl = B′′jp(tl), then for convex spline functions (2), we have T tb ≥ 0.

Note that for quadratic regression splines, Stb ≥ 0 if and only if the function (2) is non-decreasing,
and similarly for cubic (and lower order) regression splines, T tb ≥ 0 is a necessary and sufficient
condition for convexity. Throughout this paper, we will consider quadratic B-spline basis functions
for the test of monotonicity and cubic B-splines for the test of convexity, but the use of higher-order
splines is briefly described in section 3. In what follows, we present the monotonicity test, and the
convexity test is similarly derived.

The unconstrained estimate of f minimizes the least-squares criterion over b ∈ <m:

b̂ = arg min
b

n∑
i=1

yi − m∑
j=1

bjBjp(xi)

2

. (3)

Let ∆ denote the n×m design matrix for which the jth spline basis vector [Bjp(x1), · · · , Bjp(xn)]t

is the jth column. The minimization criterion in (3) may be written in vector form

ψ(b;y) = bt(∆t∆)b− 2yt∆b, (4)

and the least-squares estimate of the coefficients for the unconstrained spline is b̂ = (∆t∆)−1∆ty.

The b̂
∗

that minimizes ψ(b;y) under the monotonicity constraints Stb ≥ 0 (or the convexity
constraints T tb ≥ 0) is found using standard quadratic programming routines such as given in
Fraser and Massam (1989). Briefly, the constrained solution is a least-squares projection onto
a linear space of (possibly) smaller dimension than m. The projection routine searches for this
subspace in an efficient manner. The R code for performing constrained least-squares as well as
carrying out our proposed test can be downloaded from the author’s website at:

http://www.stat.colostate.edu/∼meyer/code.htm.

The testing procedure is outlined here; the theoretical properties are detailed in the next section.
Let θ be the vector of values of the true function at the observed xi; that is, θi = f(xi), and let

β = (∆t∆)−1∆tθ; then the expected value of b̂ is β and its covariance matrix is (∆t∆)−1σ2. The

vector of slopes of the unconstrained estimate at the knots, Stb̂, has mean Stβ and covariance
St(∆t∆)−1Sσ2. The proposed test of H1 : f ′(x) ≥ 0 on [0, 1] versus the unconstrained alternative
H2 is as follows:

1. Obtain the unconstrained minimizer b̂ of (4) and determine the minimum of the slopes at

the knots, i.e., calculate smin = min(Stb̂).

2. If smin is non-negative, then do not reject H1.

3. Otherwise, estimate the distribution of the minimum slope under the null hypothesis, using

b̂
∗

for β and estimating the model variance σ2 using the unconstrained spline:

σ̂2 =
1

n−m
‖ y −∆b̂ ‖2 . (5)
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4. If smin is smaller than the estimated α-level percentile, then we reject H1 in favor of H2.

Null distribution of smin: We propose two approaches for obtaining the null distribution. The
first approach is an analytic method which requires normality assumption or using normal approx-
imation and the second method is resampling-based.

To implement the first approach, let Pβ,σ2(r) = P (smin ≤ r) for a scalar r, and note that under
the assumption of normality,

Pβ,σ2(r) = 1−
∫
· · ·
∫
{z|z−r1≥0}

φ(z;Stβ,St(∆t∆)−1Sσ2)dz,

where φ(z;u,Σ) denotes the multivariate normal density with mean vector u and variance-covariance
matrix Σ. The inequality in the integral limits is component-wise. In constructing the test of
monotonicity, we define

Qα = inf
{
r | Pβ∗,σ2(r) ≥ α

}
,

where β∗ minimizes ψ(β;θ) over Stβ ≥ 0. Note that β∗ may differ from β if the underlying

function is not monotone. Both β∗ and σ2 are unknown in practice, so we estimate Qα by Q̂α
defined below

Q̂α = inf
{
r | Pb̂∗,σ̂2(r) ≥ α

}
,

where b̂
∗

denotes the coefficients of the constrained spline estimate for β, and σ̂2 denotes the
estimated model variance. The null hypothesis is rejected if smin = min(Stb̂) ≤ min(Q̂α, 0) .
Alternatives to estimating the model variance by (5) include the difference-based estimator initially
proposed by Rice (1984) and Gasser, Sroka & Jennen-Steinmetz (1986).

The second approach uses a bootstrap method to approximate the distribution of smin under
the null hypothesis. Resamples of size n can be drawn from the distribution of {xi}, denoted
as {x∗1, x∗2, · · · , x∗n}. The resample could be drawn from the empirical distribution of {xi}, or its
smoothed counterpart, or could simply be the original sample if the {xi}’s are considered fixed
design points. Then resamples of y are simulated using

y∗i =
m∑
j=1

b̂∗jBjp(x
∗
i ) + ε∗i ,

where ε∗i is a resample of the residuals from the constrained regression spline. We then fit the
unconstrained regression spline model (with same knot placement) to each resampled data set
{(x∗1, y∗1), (x∗2, y

∗
2), · · · , (x∗n, y∗n)}, and calculate the minimum slope estimate s∗min based on each

bootstrap resample. The α-level quantile of the distribution of s∗min can be used as the critical
value or we can compute a p-value based on this distribution.

3. THEORETICAL PROPERTIES

The following assumptions are used in the proofs.

Assumption 1. The true regression function f(x) is p + 1-times continuously differentiable on
x ∈ [0, 1] for testing monotonicity, i.e., f(x) ∈ Cp+1[0, 1]; and for convexity, f(x) ∈ Cp+2[0, 1]

Assumption 2. The number of knots k is O(n1/(2p+3)), and there exists constant M > 0, such
that

lim sup
n→∞

max1≤j≤k |tj+1 − tj |
min1≤j≤k |tj+1 − tj |

< M.
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Assumption 3. The distribution function of the xi is absolutely continuous on [0, 1], with prob-
ability density function mX(x) bounded away from 0.

The distribution of estimated coefficients b̂ and estimated slopes Stb̂ conditioning on the design
points is exactly normal under the assumption of normal errors εi, and is asymptotically normal
under certain regularity conditions (Lemma A.8 of Huang, Wu & Zhou 2004):

PROPOSITION 1. Assuming that the errors εi are iid normal random variables with mean 0
and variance σ2, the vector of unconstrained estimates of slopes Stb̂ follows a multivariate normal
distribution conditioning on the knot placement and covariate values, i.e.,

(Stb̂ | k; t1, t2, · · · , tk;x1, x2, · · · , xn) ∼ N(Stβ,St(∆t∆)−1Sσ2).

As a result of Huang et al (2004), under Assumptions 1-3, Stb̂ is asymptotically normally dis-
tributed with mean vector Stβ and covariance matrix St(∆t∆)−1Sσ2 conditioning on the knot
placement, thus

P (smin ≤ r | k; t1, t2, · · · , tk) � Pβ,σ2(r),

where the symbol � means asymptotic equivalence, i.e., an � bn means that limn→∞ an/bn = 1.
We show that for strictly increasing regression functions, the probability of rejecting the null

hypothesis goes to zero as the sample size grows, under some mild assumptions. For regression
functions that are decreasing over an interval, the power of the test goes to one. The performance
of the proposed test when the infimum of the derivative is exactly zero will be examined in the
simulation experiment. Results for the test of convexity are similar.

PROPOSITION 2. Under Assumptions 1-3,

1. If infx∈[0,1] f
′(x) ≥ εn > 0 with εn = O(n−2/7+ν) for some ν > 0, then P (smin ≤ min(Q̂α, 0)) =

o(1), meaning that when the underlying function f(x) is strictly increasing, the type I error
rate of the proposed test converges to 0.

2. If f ′(x) = c < 0, for some x ∈ (0, 1), then 1 − P (smin ≤ min(Q̂α, 0)) = o(1), meaning that
when the underlying function f(x) decreases at at least one interior point (actually over an
interval, by Assumption 1), the power of the proposed test converges to 1.

Note that Proposition 2.1 implies that the test may be biased, although it is asymptotically
unbiased. Specifically, for small samples with f strictly increasing over most of the range but
decreasing over a small interval, the power might be less than the target test size. However, the
simulations show that the small sample performance of the test is good over a reasonable range of
regression functions that are decreasing over only a portion of the range of x-values.

Higher-order splines: In cases where a quadratic spline fails to approximate the local curvature
of the true regression function, we consider increasing the degree of the basis functions. In general,
we consider a degree-p spline regression (p ≥ 3 for the monotone case), where f ′(x) ≥ 0 over [0, 1]
is not necessarily equivalent to Stβ ≥ 0, or in other words, simply checking the slopes at the knots
is not enough for testing the null hypothesis. Instead, we consider

smin = inf
x
| ĝ′(x)| ,

as our test statistic, where

ĝ′(x) =
m∑
j=1

b̂jB
′
jp(x) =

m∑
j=1

p(b̂j − b̂j−1)

tj+1 − tj
Bj,p−1(x)
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denotes unconstrained estimate of the derivative f ′(x) using a degree-p spline basis and b̂0 = 0.
The distribution of smin can be derived given the distribution of ĝ′(x). Under certain regularity
conditions, the distribution of ĝ′(x) converges to a nonstationary Gaussian process G(x) defined on
[0, 1] with continuous path. The mean function of G(x) is µG(x) = E[G(x)] � f ′(x) (higher-order
corrections to the mean function are also possible) and the covariance structure is

CG(u, v) = lim
n→∞

Cov(ĝ′(u), ĝ′(v)) = lim
n→∞

σ2[S(u)]t(∆t∆)−1S(v),

where S(u) = (B′1,p(u), · · · , B′m,p(u))t denotes the vector of derivatives of the basis functions
evaluated at u ∈ [0, 1].

The limiting Gaussian process is nonstationary, and an analytic expression of the distribution
of the extrema of this random process is very difficult to obtain. We could use a numerical method
to approximate the distribution of smin under the null hypothesis. We propose to approximate the
mean function µG(x) by the constrained estimate of f ′(x) using quadratic regression splines

µ̂∗G(x) =
m∑
j=1

b̂∗jB
′
j2(xi) (6)

and to estimate the covariance structure by Ĉ(u, v) = σ̂2[S(u)]t(∆t∆)−1S(v), where σ̂2 is defined
by (5). More specifically, we can estimate the random process G(x) defined on x ∈ [0, 1] through
simulations, i.e.,

Ĝ(x) = µ̂∗G(x) + σ̂[S(x)]tU−1Z,

where µ̂∗G(x) is defined by (6), U tU is the Cholesky decomposition of ∆t∆, and Z is an m-
dimensional vector of standard normal random variables.

4. EXTENSION TO GENERALIZED REGRESSION MODELS

For the generalized regression model, the response yi has a distribution from an exponential family

mY (y; θ, φ) = exp{(yθ − a(θ))/φ+ c(y, φ)}.

The expected value and variance of y are given by µ = E(y) = a′(θ) and Var(y) = a′′(θ)φ. For
example, the Bernoulli model uses a(θ) = log(1 + eθ), c(y, φ) = 0, and φ = 1; and for the Poisson
model, a(θ) = eθ, c(y, φ) = − log(y!) and φ = 1. The conditional mean µ is related to the predictor
variable x through a link function h(µ) = η, where η is a smooth function of x. The link function
for the Bernoulli model is h(µ) = log(µ/(1− µ)), and for the Poisson model, h(µ) = log(µ). Note
that if the link function is monotone, that η is increasing in x is a necessary and sufficient condition
for µ to be increasing in x. The log-likelihood function

`(θ, φ;y) =

n∑
i=1

[
yiθi − a(θi)

φ
+ c(yi, φ)

]
is to be maximized over a set of quadratic regression splines, and both constrained and uncon-
strained fits may be computed. The algorithm involves iteratively re-weighted projections, and
follows the same ideas for the generalized linear model as found in McCullagh & Nelder (1989).
Starting with η0 ∈ C, the estimate ηk+1 is obtained from ηk by constructing z

zi = ηki + (yi − µki )h′(µki ),

where µki = h−1(ηki ) and the derivative of the link function is evaluated at µki . For the unconstrained
splines, the weighted projection of z onto the space defined by ∆b for b ∈ <m is obtained with
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weight vector w, where 1/wki = h′(µki )2Vk, and Vk is the variance function evaluated at µki . For
constrained splines, z is projected onto the cone containing b such that Stb ≥ 0, using the weights
w. This scheme can be shown to converge to the value of η that maximizes the likelihood.

As before, let b̂ be the MLE for the unconstrained version, and use b̂
∗

for the constrained MLE.
If W is the diagonal matrix containing the final wi values, then b̂ is approximately normal with
mean β and covariance matrix

Cov(b̂) ≈ φ(∆tW∆)−1.

The testing schemes in Section 2 may be implemented, using the covariance matrix for the uncon-
strained fit, and the mean function from the constrained fit in the estimation of the null distribution
of b̂.

5. EXTENSION TO PARTIAL LINEAR MODELS

Accounting for covariates when investigating the relationship between a response variable and the
predictor variable of main interest is important when there may be confounding variables or when
the co-variates account for some of the variation in the response. Consider the following partial
linear model,

yi = f(xi) + ztiγ + σεi, i = 1, . . . , n, (7)

where f(·) is an unknown smooth function, zi are known q−dimensional vectors, and γ is an
unknown parameter vector. Various estimation approaches for the partial linear model can be
found in Wahba (1984), Engle, Ganger, Rice & Weiss (1986), Speckman (1988) and Heckman
(1986), among others. More recently, Xie & Huang (2009) considers SCAD-penalized estimation
of model (7) as the dimension of covariates approaches infinity at a certain rate. In our analysis
of the partial linear model, the number q of covariates is fixed, and the interest is in whether
the relationship between E(y) and x is monotone (or convex), after adjusting for the effect of the
covariates z.

The linear parameter vector γ can be estimated at the convergence rate for parametric esti-
mation, as indicated by Speckman (1988), Chen (1988), Xie & Huang (2009), among others. The
necessary conditions 1-4 from Chen (1988) can be translated into Assumption 3, and the following
assumptions. First, the regression function f(·) satisfies

|f ′′(u)− f ′′(v) |≤M1|u− v|1/2,

for some constant M1 > 0, and any 0 ≤ u, v ≤ 1. Second, there exist q×q positive definite matrices
Σ0 and Σ1 such that both Cov(zi | xi = x)−Σ0 and Σ1−Cov(zi | xi = x) are nonnegative definite
for all x ∈ [0, 1]. Third, there exists a positive constant M2 such that

|E(zi | xi = x)| ≤M2

for all x ∈ [0, 1]. These assumptions guarantee that γ̂ − γ = Op(n
−1/2), under Theorem 2 of

Chen (1988), where γ̂ is defined as the minimizer of the following profile objective function (Xie
& Huang 2009),

γ̂ = arg min
∥∥(I−∆(∆t∆)−1∆t)(u−Ztγ)

∥∥2 ,
where u is an n× 1 vector of ui, Z = (z1, z2, · · · , zn)t, and I is the m×m identity matrix.

The values of f at the xi will be estimated as ∆b̂, where the least-squares estimates b̂ and γ̂
are obtained simultaneously through a projection onto the linear space spanned by the columns of

∆ and the columns of Z. The constrained estimators b̂
∗

and γ̂∗ may be obtained through a single
cone projection. Let α = (βt,γt)t and let X = [∆,Z]. The constraints on the parameter vector
α may be written as Stα ≥ 0, where the last q rows of S contain zeros, and the first m rows are
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identical to the S matrix for the univariate case. Then the estimated slopes of f at the knots are
again Stα̂, and the testing methods of section 2 can be directly applied.

6. EXAMPLES

We present three examples. The first uses weighted least-squares regression with a categorical
covariate. The response variable for the second example is binary, and the third example uses
Poisson regression. For each, the first approach to approximating the null distribution is used.

Example 1: Uncounted votes in Georgia
In the US presidential election of 2000, there was controversy about the high proportion of

uncounted votes in Florida. The state of Georgia actually had a higher proportion of uncounted
votes, but there was less national attention because the race was not close. The rate of uncounted
votes were published on the secretary of state’s web site, along with other information about the
n = 159 Georgia counties. These data are currently posted on

http://www.stat.colostate.edu/∼meyer/absvote.htm.

Suppose interest is in determining if the rates of uncounted votes are, on average, larger for counties
with higher proportions of registered voters who are African Americans. The percents of uncounted
votes are shown in Figure 1(a), plotted against percent black voters, where each circle represents
a county. The radius of the circle is scaled to reflect the number of ballots cast in the county.

0.0 0.2 0.4 0.6

0
5

10
15

percent of voters who are black

pe
rc

en
t o

f u
nc

ou
nt

ed
 v

ot
es

(a)

-2 -1 0 1 2

-1
00

0
-5

00
0

50
0

10
00

normal quantiles

we
ig

ht
ed

 re
sid

ua
ls

(b)

Figure 1: (a) Scatterplot of percent uncounted votes in the 2000 US presidential election, against
percent of black voters for the 159 counties in the state of Georgia. The solid curve is the con-
strained fit, and the dashed curve is the unconstrained fit (both weighted by number of ballots).
(b) Probability plot of the (weighted) residuals for the constrained fit.

The regression must be weighted by the number of ballots, as this is the denominator of the y
values. A weighted version of the constrained estimator is easily obtained with a transformation.
Suppose cov(ε) = σ2Σ; then the model y = θ+ ε (where θ is to be modeled as ∆b with Stb ≥ 0)
is transformed using the Cholesky decomposition LLt of Σ. Multiplying the model through by
L−1 gives y∗ = θ∗+ε∗, where θ∗ is to be modeled as ∆∗b, ∆∗ = L−1∆, with the same constraint
matrix.

The solid curve of Figure 1(a) represents the weighted constrained fit with four knots, and
the dashed curve is the corresponding unconstrained fit. The hypothesis test is performed in the
transformed model, to give a p-value of about 0.2, indicating that there is no evidence that the
curve violates the monotonicity assumption. Now the constant versus increasing test of Meyer
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(2008) can be performed (using the transformed data); the p-value is less than 0.001, showing that
the percent of black voters is a strongly significant predictor of proportions of uncounted votes. Plot
(b) of Figure 1 shows the sorted, weighted residuals against the normal quantiles. The curvature
in the plot suggests that the errors are heavy-tailed, and perhaps the bootstrap approximation to
the test is required. However, heavy-tailed residuals may also be explained by a missing source of
variation in the model.
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Figure 2: (a) Fits to the Georgia voting data set using the economic indicator co-variate. The solid
curves are the constrained fit, and the dashed curves are the unconstrained fit. (b) Probability plot
of the (weighted) residuals for the constrained fit. (c) Fits without the assumption of additivity.

For observational data such as these, possible confounding effects should be accounted for in
the model. The economic status of the county is available as a categorical variable, and the rates
of uncounted votes varies as to whether the counties are affluent, middle status, or poor. Figure 2
shows the same data with the plot character indicating the economic status. Again, the constrained
and unconstrained (weighted) fits are the solid and dashed curves, respectively, with the curves
corresponding to the most affluent counties on the bottom and those for the poorest counties on the
top. For this model we again can not reject the null hypothesis that the true curves are monotone
(p ≈ 0.3), and for the subsequent test of constant versus increasing, we can not reject the constant
function. We conclude that the economic status of the county is a strong predictor of uncounted
votes, and the original significant increase in uncounted votes with percent black voters was due to
the higher prevalence of black voters in the poorer counties. The probability plot for the residuals
is now much closer to what one would expect for normal errors.

Alternatively, we can perform the test without assuming additive effects; that is, allowing for
interaction between economic status and percent black voters. Three sets of knots are chosen, one
for each economic level, spanning the appropriate ranges, and three sets of spline basis functions
are created. Defining three dummy variables for the levels, the model

yi = f1(xi)d1i + f2(xi)d2i + f3(xi)d3i + σεi

may be fit with and without monotonicity assumptions for the fj . If ∆1, ∆2, and ∆3 are the
matrices of basis vectors used for the three regression functions, define ∆ = (∆1,∆2,∆3), and
define a matrix S correspondingly, with slopes of the three sets of basis functions at the three sets
of knots. Then the test of H0 : Stb ≥ 0 can be performed, using the same ideas as outlined for a
single function. The non-parallel fits to these data are shown in Figure 2(c); the p-value for the
test is about .17, so we again conclude that the monotonicity assumption is not violated.

Example 2: Volunteerism and extroversion
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Cowles & Davis (1987) published the results of a study examining the personality characteristics
of undergraduates who express willingness to volunteer for psychology experiments, compared with
those who do not. If some personalities are over-represented in the subjects for these experiments,
the results could be biased. The data were discussed in Fox (1997), and are depicted in Figure 3,
where the proportions of students who volunteer are plotted against a measure of extroversion. For
each integer score of 2-23, the proportions of males (triangles) and females (circles) who volunteer
are indicated, with the size of the plot character proportional to the denominator. In plot (a)
we also see the probability curves (that for females being the higher of the two), estimated using
standard logistic regression. The extroversion score is a significant predictor with p < .0001, and
gender is significant with p = .024. The linear log odds mandates that the estimated function is
monotone, but perhaps there is no clinical reason for fitting this particular probability function.
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Figure 3: Estimates of the probability curve for volunteerism in psychological experiments as a
function of extroversion and gender. (a) The standard logistic regression, and (b) the quadratic
spline fits, where the solid curves are constrained to be monotone and the dashed are unconstrained.

Suppose instead that the researchers believe only that the relationship must be smooth, and
the monotonicity is a research question. The constrained and unconstrained regression spline fits
are shown in plot (b), where the gender effect is approximately the same as for the linear model.
The unconstrained fit suggests that the subjects that scored very low on the extroversion scale
are more likely to volunteer, but the size of the plot characters in this region indicate that this
phenomenon is based on a smaller set of subjects. The p-value for the test of monotonicity is about
.025, providing evidence that the true relationship is not monotone. The model with interaction
between the predictors was also fit; it was quite similar so is not shown here.

Example 3: Male toad size and number mates
In this example we examine the relationship of the size of male toads and their number of

mates, using data from a study by Arnold & Wade (1984) as discussed in Ramsey & Schafer
(2002). Suppose a researcher conjectures that the number of mates is increasing with size, but
would rather not impose a parametric form for the mean function. The data are shown in Figure 4,
where there is some visual evidence of an increasing relationship. The dotted curve is the standard
Poisson regression estimate, but it seems unlikely that the expected number mates should be
increasing exponentially as assumed in this model. The dashed curve is the unconstrained spline
estimate, which is decreasing in two places in the range of body sizes. The solid curve is the
constrained estimate of the mean function. The p-value for the test of monotonicity is about .45,
indicating there is no evidence against the researcher’s conjecture of increasing relationship.

7. SIMULATIONS AND DISCUSSION
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Figure 4: The number of mates of a male toad modeled as a function of body size. The solid curve
is the monotone estimate of the mean function, the dashed curve is the unconstrained estimate,
and the dotted curve is the estimate using a linear link function. The knots are marked with “X.”

The performance of the proposed test is examined through extensive simulations. The proportion
of times the null hypothesis of monotonicity is rejected using α = 0.05 is computed under seven
different regression functions with independent normal errors and σ = 1, each with five different
sample sizes (n = 25, 50, 100, 200 and 400). We have implemented the proposed method with
the first approach to estimating the distribution of smin. We have performed some preliminary
simulations to compare variance estimation methods; these indicated that those of Rice (1984) and
Gasser, Sroka, and Jennen-Steinmetz (1986) performed similarly to (5), hence we use the latter,
simpler estimate. We used two pre-specified numbers of knots (k = 4 or k = 6), and in addition,
we use a data-driven choice of k. In practice, one might use a method such as generalized cross
validation (GCV) to choose k; see Ruppert et al (2003), chapter 5, for details. The range of k
values considered in the GCV-k simulations is 3 to 8 for n = 25 and n = 50; 4-9 for n = 100,
5-10 for n = 200, and 6-11 for n = 400. When the test is implemented using the GCV-k, the test
sizes are necessarily inflated. Additionally, we compare our results with two other methods: that
of Bowman et al approach (referred to as “BJG”) and of Ghosal et al approach (referred to as
“GSV”). The BJG test is implemented via the “sm.monotonicity” function in the R “sm” package.
The GSV test is coded in R with fixed bandwith of h = 0.5n−1/5.

The observed predictor variable values and the knots are equally spaced on [0, 1], and among
the true regression functions, the first three are monotone on [0, 1] whereas the rest have local dips.
The regression function fa is taken from Bowman et al (1998), where

fa(x) = 1 + x− a exp[−50(x− 1/2)2].

The “null” version has a = 0.15 and is strictly monotone over [0, 1]. The “mild” version uses
a = 0.25 and has a small dip, while the “strong” version with a = 0.45 has a pronounced dip. The
function µ4 is taken from Ghosal et al (2000), defined as

µ4 =

{
10(x− 0.5)3 − exp

(
−100(x− 0.25)2

)
, if x < 0.5,

0.1(x− 0.5)− exp
(
−100(x− 0.25)2

)
, otherwise.

Because the Bowman et al and Ghosal et al papers used σ = .1, we use 10fa and 10µ4. We
simulated 10, 000 datasets under each scenario; the results are summarized in Table 1.

For the constant function, the proportions of rejections decrease towards the target test size
using our method under either fixed or adaptively chosen number of knots; however, the actual
test size is unacceptably large for the GCV-k when the sample size is n = 25. The BJG approach
could not finish and is well known to break down for constant functions. For the GSV approach,
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the test size tends to become more conservative for larger n; an appropriately chosen bandwidth
might alleviate this problem.

The function f(x) = 15(x− 1/4)2+ is flat over [0, 1/4], and the approximation ∆β to the true
function values θ is actually decreasing on [0, 1/8] for k = 4 knots, as shown in plot (a) of Figure 5.
The thick grey curve is the true regression function, while the thin black curve is the piecewise
quadratic spline approximation with k = 4. This decrease leads to a test size that is too large, and
indeed increases with n if k stays fixed at four. However, when the number of knots k increases to
6, these proportions are close to nominal test size. The GCV method tends to choose smaller k,
hence the test size is unacceptably large. The approximation ∆β for k = 6 is shown in plot (b) of
Figure 5, and an example data set with n = 100 and k = 6 is known in plot (c). The constrained
fit is the solid curve, the unconstrained is the dashed curve, and the true function is shown as the
dotted curve. The null hypothesis is not rejected. The GSV method is again more conservative
as the test size increases. The BJG approach can be implemented but rejects too often even for
the largest sample size. The function f(x) = 15(x − 1/4)2 is similar to f(x) = 15(x − 1/4)2+ but
decreasing over [0, 1/4]. In plot (d) of Figure 5, an example data set using f(x) = 15(x− 1/4)2 is
shown; here the null hypothesis is (correctly) rejected, with p-value of 0.009. The largest rejection
rates are for methods with inflated test sizes for f(x) = 15(x − 1/4)2+, and for each method, the
rejection rate grows with n as expected.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

X X X X

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

yp

X X X X X X

(b)

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2
4

6
8

y1

(c)

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2
4

6
8

y2

(d)

Figure 5: For the function f(x) = 15(x− 1/4)2+, the approximation ∆β to θ for k = 4 and k = 6
are shown in plots (a) and (b); the knots are marked with “X.” Plots (c) and (d) show example data
sets with n = 100. The constrained fits as the solid curves, the dashed fits as the unconstrained
curves, and the true functions are shown as the dotted curves. The null hypothesis of monotonicity
is accepted for the data in (c), and rejected in (d).

For the “null” version of fa, our test sizes are smaller than the target for fixed k, reflecting
Proposition 2(2). The test size is too large for n = 25 when the number of knots are adaptively
chosen, but otherwise less than the target. The BJG and GSV methods also have test sizes that
seem to go to zero as n increases. For the “mild” and “strong” versions of fa, our methods perform
roughly similarly to the BJG method. The GSV method does not seem to find the “mild” dip for
f.25, even for the largest sample size, but performs well for f.45.

For the seventh function µ4, the proposed approach successfully rejects the null hypothesis with
high probability for all three variations except when n = 25 and 50 where the number of knots
is fixed at 6. However, the fits to the data with small k are “incorrect” as shown in Figure 6.
For k = 4 knots, the closest function in the estimation space, i.e., ∆β, is shown as the dashed
curve. The fit to a data set with n = 200 is shown as the solid curve, and the true function is the
dotted curve. Neither k = 4 nor k = 6 provides enough flexibility for fit the steep dip, although
for k = 4, the decrease at the left end of the approximated curve is steep enough so that the null
hypothesis is rejected for all 10,000 data sets of this size. For k = 6, the approximated curve is
actually increasing over the steep dip, with a decline in the flat part of the true curve. Eight or
ten knots will provide the appropriate flexibility; for these choices, the rejection rate is high even
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Table 1: Simulations to compute test size and power for the test of monotone versus non-monotone
regression function. Entries are the proportions of data sets for which the null hypothesis is rejected,
for seven choices of underlying regression functions and five sample sizes. The model variance is
unity and the target test size is α = 0.05.

percent rejection
µ n k = 4 k = 6 GCV-k BJG GSV

const 25 .072 .078 .162 * .104
50 .062 .063 .065 * .057
100 .060 .062 .063 * .039
200 .061 .060 .056 * .034
400 .057 .057 .057 * .031

15(x− 1/4)2+ 25 .087 .062 .221 .316 .026
50 .092 .051 .236 .231 .013
100 .103 .043 .125 .297 .007
200 .132 .047 .082 .379 .004
400 .170 .045 .073 .153 .006

10fa (null) 25 .018 .027 .090 .036 1e-4
50 .011 .018 .044 .018 0
100 .004 .015 .038 .016 0
200 7e-4 .018 .038 .024 0
400 1e-4 .032 .047 .003 0

10fa (mild) 25 .068 .047 .158 .067 6e-4
50 .096 .081 .151 .080 2e-4
100 .165 .229 .252 .166 .001
200 .332 .574 .474 .397 .005
400 .635 .905 .723 .748 .032

10fa (strong) 25 .336 .196 .404 .171 .090
50 .749 .538 .591 .298 .858
100 .991 .933 .838 .698 .856
200 1 1 .931 .981 .998
400 1 1 .949 1 1

15(x− 1/4)2 25 .198 .111 .381 .584 .071
50 .313 .147 .543 .744 .071
100 .502 .200 .453 .900 .115
200 .751 .308 .427 .979 .207
400 .952 .469 .435 .998 .422

10µ4 25 .600 .052 .902 .297 .027
50 .952 .015 .908 .317 .011
100 1 .103 .970 .288 .019
200 1 .851 1 .239 .937
400 1 1 1 .166 1
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at n = 25. The GCV-k method correctly chooses a large number of knots for a high proportion of
the data sets. The BJG test has small power, and the power seems to decrease as n increases. The
GSV method performs comparably to our proposed method only under the larger sample sizes.
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Figure 6: Fits to a data set generated using 10µ4 and n = 200, for (a) k = 4, (b) k = 6, (c)
k = 8, and (d) k = 10. The fit is the solid curve, 10µ4 is the dotted curve, and the dashed curve
represents ∆β, the closest function in the estimation space to the true function.

This table of simulation results illustrates the double difficulties of a hypothesis testing with
a smoothing method, and with a null hypothesis that is not represented by a point but instead
covers an entire orthant of Rm. When the true function lies away from the boundary, the test sizes
may be too small, opening the door for biasedness. We have illustrated these difficulties with the
problematic regression functions (x− 1/4)2+ and µ4. The performance of the test also depends on
the user-defined parameters. For the quadratic regression function, the proposed method performs
best with the smallest number of knots, because the approximated function is equal to the true
function. However, when the true function is very “wiggly” a larger number of knots must be
chosen to get a good approximation. If the data are allowed to choose, the test size becomes
inflated. Ideally, the user has an a priori idea of how variable the regression function might be,
and chooses k accordingly. If the GCV-k method is implemented, the user be aware of the inflated
test size, and we do not recommend the GCV-k for the smaller sample sizes. We have shown that
our methods have good large-sample properties, and the behavior in small samples is comparatively
good overall.

Further, the largest sample size n = 400 with k = 6 took less than 1.5 minutes of real time for
all 10,000 simulations, using a Mac Powerbook processor, whereas its two competitors (BJG and
GSV) are much slower (both take more than a day to complete). The shorter computation time
and the simplicity of the test add to the advantage of our proposed testing procedures.

APPENDIX

In the appendix, we present details for proving Proposition 2. The technical details mainly address
the test of monotonicity (p = 2). The underlying theory for testing convexity (p = 3) is similar
and will not be duplicated.

In the following, the Bj basis functions depend on the set of knots, which gets larger with n.
Similarly, m = mn, b = bn, and t = tn, but for simplicity of presentation the subscripts are not
used. In the proofs to come, we will use an important result from Lemma 5.4 of Zhou & Wolfe
(2000), which says that there exist positive constant KL and KU that,

KL ≤ n4/7aii ≤ KU (8)

where aii is the (i, i)-th element of St(∆t∆)−1S.
Lemma 1. Under Assumptions 1-3, as the sample size n→∞,
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1.
|b̂− b|∞ = Op(n

−3/7+δ),

where b is the best approximation to the underlying regression function in the least-squares
sense, i.e.,

b = arg min
b∈<m

∫ f(x)−
m∑
j=1

bjBj2(x)

2

dx.

2. For any δ > 0,
n2/7−δ sup

x
|ĝ′(x)− f ′(x)| = Op(1),

where ĝ(x) =
m∑
j=1

b̂jBj2(x) and ĝ′(x) =
m∑
j=1

b̂jB
′
j2(x).

Proof: Huang et al (2004) has shown that |Eb̂− b|∞ = Op(n
−3/7), under the stated assumptions

in Lemma A.11. Now let us demonstrate that |b̂− Eb̂|∞ = Op(n
−3/7+δ), for some δ > 0. Starting

with

P

(
n3/7−δ max

j

∣∣∣b̂j − Eb̂j

∣∣∣ > ε

)
≤

5∑
j=1

P

(
n3/7−δ max

l=0,...,bm/5−1c

∣∣∣b̂5l+j − Eb̂5l+j

∣∣∣ > ε

)
,

it then suffices to show that P
(
n3/7−δ maxl=1,...,bm/5c

∣∣∣b̂5l − Eb̂5l

∣∣∣ > ε
)
→ 0. Here we exploit the

fact that the quadratic B-spline basis functions are orthogonal if the subscripts are more than four
removed, so that b̂5l and b̂5(l+1) are independent random variables. Let σ2

5l denote V ar(b̂5l). Since

the number of knots k is O(n1/7), the number of observations that contribute to the estimation of
each coefficient bi is in the order of n6/7. Thus σ2

5l = O(n−6/7) (see also Lemma A.9 of Huang et
al 2004), and hence

P (n3/7−δ max
l

∣∣∣b̂5l − Eb̂5l

∣∣∣ > ε) = 1− P (n3/7−δ max
l

∣∣∣b̂5l − Eb̂5l

∣∣∣ ≤ ε)
= 1−

bm/5c∏
l=1

P (n3/7−δ
∣∣∣b̂5l − Eb̂5l

∣∣∣ ≤ ε)
� 1−

bm/5c∏
l=1

[
2Φ

(
ε nδ−3/7

σ5l

)
− 1

]
� 1−

[
2Φ(c1ε n

δ)− 1
]n1/7

= 1−
[
1− 2

∫ ∞
c1ε nδ

1√
2π
e−t

2/2dt

]n1/7

� 1− exp

(
−2n1/7

∫ ∞
c1ε nδ

1√
2π
e−t

2/2dt

)
,

where c1 is a constant, and the last asymptotic equivalence follows from limn→∞
(
1 + x

n

)n
= ex.

The last expression converges to 0 as

n1/7
∫ ∞
c1ε nδ

1√
2π
e−t

2/2dt ≤ n1/7
√

2

π

e−ε
2n2δ

c1εnδ
→ 0. (9)
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Thus we have shown that |b̂ − Eb̂|∞ = Op(n
−3/7+δ), and the result easily follows from triangle

inequality.
For part 2, the theory of spline approximation in Zhou & Wolfe (2000) gives that

n2/7 sup
x
|g′(x)− f ′(x)| = O(1),

where g′(x) =
m∑
j=1

βjB
′
j2(x). Then we need to show that n2/7−δ supx |ĝ′(x)− g′(x)| = Op(1) to

complete the proof. It follows from de Boor (2001) that

ĝ′(x)− g′(x) =
m∑
j=2

b̂j − bj − (b̂j−1 − bj−1)

tj+1 − tj
2Bj1(x), (10)

in which only two terms in the summation are nonzero for degree-1 B-splines. Assumption 2

guarantees that there exists k1 > 0 such that supj=2,··· ,k

∣∣∣ 1
tj+1−tj

∣∣∣ < k1n
1/7, so by (10),

sup
x
|ĝ′(x)− g′(x)| ≤ 8k2n

1/7 sup
x,j
|Bj1(x)| · |b̂− b|∞ = Op(n

−2/7+δ),

and the proof is complete.

Proof of Proposition 2. We will prove the two statements separately. In both proofs, we use the
inequality that, |minx∈T ĝ

′(x) − minx∈T f
′(x)| ≤ supx∈T |ĝ′(x) − f ′(x)|. To rationalize, we take

ĝ′(x1) = minx∈T ĝ
′(x) and f ′(x2) = minx∈T f

′(x), then

ĝ′(x1)− f ′(x1) ≤ min
x∈T

ĝ′(x)−min
x∈T

f ′(x) ≤ ĝ′(x2)− f ′(x2),

where both limits have absolute value no greater than supx∈T |ĝ′(x)− f ′(x)|.

1. Let T = {t0, t1, · · · , tk+1}, then

P (smin ≤ min(Q̂α, 0)) ≤ P (smin ≤ 0)

= P

(
min
x∈T

ĝ′(x)−min
x∈T

f ′(x) ≤ −min
x∈T

f ′(x)

)
≤ P (|min

x∈T
ĝ′(x)−min

x∈T
f ′(x)| ≥ εn)

≤ P (sup
x∈T
|ĝ′(x)− f ′(x)| ≥ εn)

≤ P (n2/7−δ sup
x∈T
|ĝ′(x)− f ′(x)| ≥ n2/7−δεn)

= o(1),

for δ < ν with ν defined in Proposition 2(1). The last equation follows from Lemma 1 (2).
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2. When infx f
′(x) < 0, we can argue that Q̂α < 0 with probability tending to one, thus

P
(
smin ≤ min(Q̂α, 0)

)
= P

(
min
x∈T

ĝ′(x)−min
x∈T

f ′(x) ≤ min(Q̂α, 0)−min
x∈T

f ′(x))

)
≥ P

(
|min
x∈T

ĝ′(x)−min
x∈T

f ′(x)| ≤ min(Q̂α, 0)−min
x∈T

f ′(x))

)
≥ P

(
sup
x∈T
|ĝ′(x)− f ′(x)| ≤ |c|+ min(Q̂α, 0)

)
� P

(
sup
x∈T
|ĝ′(x)− f ′(x)| ≤ |c|+ inf

{
r

∣∣∣∣∣1−
∫
· · ·
∫
{z|z−r1≥0}

φ(z;Stb̂
∗
,St(∆t∆)−1Sσ2)dz ≥ α

})

≥ P

(
sup
x∈T
|ĝ′(x)− f ′(x)| ≤ |c|+ inf

{
r | P0,σ2(r) ≥ α

})
≥ P

(
sup
x∈T
|ĝ′(x)− f ′(x)| ≤ |c|+ inf{r |

k∑
i=1

Φ(r; 0, aiiσ
2) ≥ α}

)
,

where aii denotes the (i, i)th entry of St(∆t∆)−1S . It suffices to show that

inf
{
r |
∑k
i=1 Φ(r; 0, aiiσ

2) ≥ α
}

p→ 0, as n2/7−δ supx∈T |ĝ′(x)− f ′(x)| = Op(1). Here,

0 ≥ inf

{
r

∣∣∣∣∣
k∑
i=1

Φ(r; 0, aiiσ
2) ≥ α

}
≥ inf

{
r

∣∣∣∣C3Φ(r; 0, sup
i
aiiσ

2) ≥ α

k

}
= sup

i
aiiσ

2Φ−1
(

α

C3k

)
p→ 0

as supi |aii| = O(n−4/7), and Φ−1
(

α
C3k

)
grows at log rate, where C3 is a positive con-

stant. The second inequality holds since we can find a positive constant C3 such that∑k
i=1 Φ(r; 0, aiiσ

2) ≤ C3kΦ(r; 0, supi aiiσ
2), and both terms are monotone functions of r.

ACKNOWLEDGEMENTS

The work of Mary Meyer was partially supported by the National Science Foundation DMS grant.
The main work of the paper was conducted when Jianqiang Wang was visiting Colorado State
University, and current work of Jianqiang Wang is supported by the collaborative program between
the National Institute of Statistical Sciences (NISS) and the National Agricultural Statistics Service
(NASS). The authors would like to thank Subhashis Ghosal for sharing his code for the GSV test.
The detailed and insightful comments from the Associate Editor and three referees are gratefully
acknowledged.

REFERENCES

S. Arnold, & M. Wade (1984). On the measurement of natural and sexual selection. Evolution 38 (4),

720–734.

17



A. W. Bowman, M. C. Jones, & I. Gijbels (1998). Testing monotonicity of regression. Journal of

Computational and Graphical Statistics 7, 489–500.

P. Chaudhuri, & J. S. Marron (1999). Sizer for exploration of structures in curves. Journal of the

American Statistical Association 94, 807–823.

P. Chen (1988). An integrated formulation for selecting the most probable multinomial cell. Annals of

the Institute of Statistical Mathematics 40, 615–625.

M. Cowles, & C. Davis (1987). The subject matter of psychology: Volunteers. British Journal of Social

Psychology 26, 97–102.

C. de Boor (2001). A Practical Guide to Splines. Springer-Verlag.

R. F.Engle, C. W. J. Granger, J. Rice, & A. Weiss (1986). Semiparametric estimates of the relation

between weather and electricity sales. Journal of the American Statistical Association 81, 310–320.

J. Fox (1997). Applied Regression Analysis, Linear Models, and Related Methods. Sage Publications Inc.

D. A. S.Fraser, & H. Massam (1989). A mixed primal-dual bases algorithm for regression under inequality

constraints. application to convex regression. Scandinavian Journal of Statistics 26, 65–74.

T. Gasser, L. Sroka, & C. Jennen-Steinmetz (1986). Residual variance and residual pattern in nonlinear

regression. Biometrika 73, 625–633.

S. Ghosal, A. Sen, & A. W. van der Vaart (2000). Testing monotonicity of regression. The Annals of

Statistics 28 (4), 1054–1082.

P. Hall, & N. E. Heckman (2000). Testing for monotonicity of a regression mean by calibrating for linear

functions. The Annals of Statistics 28 (1), 20–39.

J. Hannig, & J. S. Marron (2006). Advanced distribution theory for sizer. Journal of the American

Statistical Association 101, 484–499.

T. Hastie, & R. Tibshirani (1999). Generalized Additive Models. Chapman & Hall Ltd.

N. E. Heckman (1986). Spline smoothing in a partly linear model. Journal of the Royal Statistical Society,

Series B: Methodological 48, 244–248.

J. Z. Huang, C. O. Wu, & L. Zhou (2004). Polynomial spline estimation and inference for varying

coefficient models with longitudinal data. Statistica Sinica 14, 763–788.

A. Juditsky, & A. Nemirovski (2002). On nonparametric tests of positivity/monotonicity/convexity. The

Annals of Statistics 30 (2), 498–527.

M. R. Leadbetter, H. Rootzen & G. Lindgren (1983). Extremes and Related Properties of Random

Sequences and Processes. Springer-Verlag Inc.

E. Mammen(1991). Estimating a smooth monotone regression function. The Annals of Statistics 19,

724–740.

E. Mammen, & C. Thomas-Agnan (1999). Smoothing splines and shape restrictions. Scandinavian

Journal of Statistics 26, 239–252.

M. C. Meyer(2008). Inference using shape-restricted regression splines. The Annals of Applied Statis-

tics 2 (3), 1013–1033.

18



J. O. Ramsay(1988). Monotone regression splines in action (C/R: P442-461). Statistical Science 3,

425–441.

F. L. Ramsey, & D. W. Schafer (2002). The Statistical Sleuth: a Course in Methods of Data Analysis.

Duxbury Press.

J. Rice(1984). Bandwidth choice for nonparametric regression. The Annals of Statistics 12, 1215–1230.

T. Robertson, F. T. Wright, and R. Dykstra (1988). Order Restricted Statistical Inference. John Wiley

& Sons.

D. Ruppert, M. P. Wand, and R. J. Carroll (2003). Semiparametric Regression. Cambridge Series in

Statistical and Probabilistic Mathematics.

P. Speckman (1988). Kernel smoothing in partial linear models. Journal of the Royal Statistical Society,

Series B: Methodological 50, 413–436.

G. Wahba (1984). Partial spline models for the semiparametric estimation of functions of several variables.

In Statistical Analyses for Time Series, Jan-US Joint Seminar, pp. 319–329. Institute of Statistical

Mathematics, Tokyo.

H. Xie, & J. Huang (2009). SCAD-penalized regression in high-dimensional partially linear models. The

Annals of Statistics 37, 673–696.

S. Zhou, X. Shen, & D. A. Wolfe (1998). Local asymptotics for regression splines and confidence regions.

The Annals of Statistics 26 (5), 1760–1782.

S. Zhou, & D. A. Wolfe (2000). On derivative estimation in spline regression. Statistica Sinica 10 (1),

93–108.

Received ??? Jianqiang WANG: qqwjq9916@gmail.com
Accepted ??? Hewlett-Packard Labs

Palo Alto, CA
U.S.A.,94304

Mary MEYER: meyer@stat.colostate.edu
Department of Statistics, Colorado State University

Fort Collins, CO
U.S.A.,80523

19


