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Abstract

A question that commonly arises in longitudinal surveys is the issue of how to

combine differing cohorts of the survey. The different cohorts can represent disjoint

populations, a single population, or overlapping populations. In this paper we present,

under a superpopulation approach, a course of action for combining different cohorts

in a longitudinal survey with a repeated-panel/rotating-panel design; namely the Sur-

vey of Doctorate Recipients, conducted by the U.S. National Science Foundation. In

this case the cohorts represent non-overlapping populations. The procedure builds

upon the Weighted Generalized Estimation Equation method existing in the literature

for handling missing waves in longitudinal studies. Although our method is set up

under a joint-randomization framework, which takes into account the superpopulation

model, our simulations show that the method also performs well for estimating well-

defined finite population quantities, as well as superpopulation parameters. We also

propose a design-based, and a joint-randomization, variance estimation method.
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1 Introduction

The Survey of Doctorate Recipients (SDR) is a National Science Foundation longitudinal

survey whose design incorporates features of both, repeated panels and rotating panels.

The purpose of the survey is to study U.S. doctorate recipients in science, engineering, and

health fields. It is conducted approximately every two years. A detailed description of

the SDR can be found at http://nsf.gov/statistics/srvydoctoratework/. In this

paper we restrict our attention to the data collected from 1995 through 2008 (7 waves).

At any particular wave a new cohort is selected. The new cohort consists of a sample

of recent graduates (from the previous two years) selected from the Doctorate Records

File, which is a database constructed mainly from the Survey of Earned Doctorates (http:

//www.nsf.gov/statistics/srvydoctorates/). The selected individuals are kept in

the sample, i.e. interviewed every two years, until the age of 75, while living in the U.S. at

survey reference week, and are not institutionalized.

However, not all the sampled graduates satisfying these characteristics are retained for-

ever. Some individuals, rather than entire cohorts, are dropped from the sample in order to

a) include the new graduates in the new cohorts and b) maintain a relatively constant sample

size across waves.

Survey weights for cross-sectional analyses of the SDR are already available, but not

for longitudinal analyses. Rather than requiring a new longitudinal weight for all the data,

the method proposed in this paper is able to use the existing cross-sectional weights for

longitudinal analyses without ignoring any data. We focus on analysis of the SDR, but

our method is applicable to any fixed-panel, fixed-panel-plus-‘births’, repeated-panel,

rotating-panel, split-panel, or refreshment sample survey, as long as for each wave there

is a cross-sectional weight to represent the population of interest at that wave. See Smith,

Lynn, and Elliot (2009), Hirano, Imbens, Ridder, and Rubin (2001), and Nevo (2003) for

definitions of all these types of longitudinal sample designs.
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The SDR is neither a repeated-panel nor a rotating panel design, but has features of both.

It is not a repeated-panel design because of the removal of some subjects at each wave. And

it is not a rotating-panel design because entire panels (or cohorts) are not removed, only

individuals; additionally, the composition of the finite population of interest changes over

time, unlike in a rotating panel survey.

Our approach differs from the existing alternatives in the literature, which have some

limitations for analysis of such data, and in particular for application to the SDR.

For example, Berger (2004a) and Berger (2004b) go into detail about the estimation

of change using rotating samples but they assume that the composition of the finite popu-

lation does not change over time, which is not the case of the SDR, and does not hold in

many other large-scale surveys. Also, the methodology proposed by Berger is not easily

generalizable to more than two waves. Similarly, Qualité and Tillé (2008) also assume the

finite population is fixed over time. Hirano, Imbens, Ridder, and Rubin (2001) and Nevo

(2003) present different methods of estimation assuming a fixed-panel plus refreshment for

attrition design; but also assume the finite population composition is fixed over time.

A time series approach is utilized by McLaren and Steel (2000) and Steel and McLaren

(2007) to estimate change and trend with survey data. Although their approach allows for

the incorporation of within-subject association in the point estimates, they do not consider

covariates in their models (beyond the implicit time covariates). Also, they only discuss

the estimation of change for continuous variables and do not mention other variables of

interest, such as binary responses or counts.

Another alternative for analyzing longitudinal data is to fix the finite population of inter-

est, except perhaps for deaths, which could be allowed. Studies of this kind are those where

there are data available only for a single cohort. For example, Vieira and Skinner (2008),

Carrillo, Chen, and Wu (2010), and Carrillo, Chen, and Wu (2011) show some alternatives

for modeling with single-cohort survey data. However, to use these kinds of analyses with

rotating panel surveys, or in other words with multiple-cohort surveys, one needs to ignore
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some (many times a lot of) available data, for example those data from subjects who are not

common to all waves. An example of a weighting procedure of this type can be found in

Ardilly and Lavallée (2007).

Finally, the approach of Larsen, Qing, Zhou, and Foulkes (2011) is appealing because

it is the way survey practitioners generally proceed. An initial weight is adjusted, among

other things for calibration to known totals; in this case totals by survey wave. Nonetheless,

for rotating panels this method is still in its infancy; there are some things that are not

completely clear how to carry out. For example, it is not clear what the initial weight

should be.

The rest of the paper is organized as follows. In the next section we give a description

of the SDR design. After that, in Section 3, we propose a novel approach for longitudinal

analysis of multiple-cohort surveys. Section 4 shows the superior performance of the pro-

posed methodology, with respect to the usual estimation method, with a simple simulation

exercise. Then we present the application of the methodology to the SDR. And finally we

offer a few discussion points in Section 6.

2 The SDR Design

2.1 Finite Population

The SDR finite population of interest can be represented as in Figure 1. At wave 1, i.e.

the first time of interest, there is a finite set, U1(1) = U1, of N1(1) = N1 PhD holders, either

recent or not, who satisfy the requirements of the SDR (hold a doctoral degree in a science,

engineering or health field, are non-institutionalized, live in the U.S., and are under the age

of 76).

At wave 2, i.e. the second time of interest, only a subset of those in U1(1) still satisfy the

SDR requirements; we call this subset, of N2(1) subjects, U2(1). In addition, there is a set of

new, recent PhD recipients, who have obtained their degree since wave 1, and also satisfy
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j : 1 2 3 · · · J−1 J
U1(1) ⊇U2(1) ⊇U3(1) ⊇ ·· · ⊇ UJ−1(1) ⊇ UJ(1)
N1(1) ≥ N2(1) ≥ N3(1) ≥ ·· · ≥ NJ−1(1) ≥ NJ(1)

U2(2) ⊇U3(2) ⊇ ·· · ⊇ UJ−1(2) ⊇ UJ(2)
N2(2) ≥ N3(2) ≥ ·· · ≥ NJ−1(2) ≥ NJ(2)

U3(3) ⊇ ·· · ⊇ UJ−1(3) ⊇ UJ(3)
N3(3) ≥ ·· · ≥ NJ−1(3) ≥ NJ(3)

. . .
...

...
UJ−1(J−1) ⊇UJ(J−1)

NJ−1(J−1) ≥ NJ(J−1)

UJ(J)
NJ(J)

U1 U2 U3 · · · UJ−1 UJ
N1 N2 N3 · · · NJ−1 NJ

Figure 1: SDR Finite Population

the other requirements of the survey. This set of new graduates in scope is called U2(2) and

is of size N2(2). Therefore, at wave 2, there is a total of N2 = N2(1)+N2(2) subjects in the

population of interest U2 =U2(1)∪U2(2).

The next wave, wave 3, the same process occurs. Some people in U2(1) leave the pop-

ulation of interest, and there are only N3(1) left, in U3(1). The same thing happens with the

set U2(2); only a subset U3(2) of N3(2) among them still satisfy the requirements of the SDR.

Additionally, there are N3(3) recent graduates entering the population of interest; this set is

called U3(3). In total, the finite population of interest at wave 3 is U3 =U3(1)∪U3(2)∪U3(3),

with N3 = N3(1)+N3(2)+N3(3) subjects.

This procedure, of thinning of old cohorts and adding new cohorts, continues until

the last wave of interest, wave J. We notice that the finite population of interest changes

at every wave due to two main reasons. Firstly, some of the subjects in the old cohorts

are not in scope anymore at the current wave, and they do not make part of the current

target population. And secondly, some people, namely the recent graduates, are added to
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the target population in the current wave. We denote by j = 1,2, . . . ,J the wave (outside

the parenthesis) and by j′ = 1,2, . . . ,J the cohort to which a subject belongs (inside the

parenthesis).

2.2 Sampling

The sampling design of the SDR has a similar structure to the finite population and is

depicted in Figure 2. At wave 1, a (complex) sample s1(1) = s1 of n1(1) = n1 subjects is

selected from within the N1 elements in U1. Each element i in s1 is interviewed and its data

collected; also, there is a design weight wi1 = 1/πi1 associated with it; which is the inverse

of its inclusion probability at wave 1.

j : 1 2 3 · · · J−1 J
s1(1) ⊇ s2(1) ⊇ s3(1) ⊇ ·· · ⊇ sJ−1(1) ⊇ sJ(1)
n1(1) ≥ n2(1) ≥ n3(1) ≥ ·· · ≥ nJ−1(1) ≥ nJ(1)

s2(2) ⊇ s3(2) ⊇ ·· · ⊇ sJ−1(2) ⊇ sJ(2)
n2(2) ≥ n3(2) ≥ ·· · ≥ nJ−1(2) ≥ nJ(2)

s3(3) ⊇ ·· · ⊇ sJ−1(3) ⊇ sJ(3)
n3(3) ≥ ·· · ≥ nJ−1(3) ≥ nJ(3)

. . .
...

...
sJ−1(J−1) ⊇ sJ(J−1)

nJ−1(J−1) ≥ nJ(J−1)

sJ(J)
nJ(J)

s1 s2 s3 · · · sJ−1 sJ
n1 n2 n3 · · · nJ−1 nJ

Figure 2: SDR Sample

At the second wave, the elements in s1(1) who are not in scope anymore are simply

dropped from the frame (though their observations at wave 1 are kept), and a sub-sample

s2(1), of size n2(1), of those still in scope is selected. Not all the members in s1(1) who are

still in scope at wave 2 are retained in the sample; this is in order to be able to make up

room for the sample of the new PhD recipients and still maintain more or less the same
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sample size as in wave 1. A sample s2(2) of size n2(2) is selected from U2(2); people in s2(2)

form the second cohort. The total sample at wave 2 is s2 = s2(1) ∪ s2(2), which is of size

n2 = n2(1)+n2(2), which is approximately equal to n1. All the people in s2 are interviewed

at wave 2. The design weights at wave 2, wi2 = 1/πi2, are such that the sample s2 represents

the population of interest at wave 2, namely U2.

The same procedure is repeated at each wave, till the last one (J), where a sub-sample

of the remaining subjects from each of the previous J− 1 cohorts is selected, and a new

sample (the new cohort) sJ(J) of recent graduates is selected from UJ(J). At the last wave,

all people in sJ =
⋃J

j′=1 sJ( j′) are interviewed and a design weight wiJ = 1/πiJ is created for

each person interviewed, so that sJ represents the finite population UJ .

From the preceding description, it is clear that the design of the SDR is not a rotating

panel design. Beside the fact that the composition of the finite population of interest is

changing over time, a rotating panel design would select, at time j, a new cohort from U j,

and not from U j \U j−1 as the SDR does.

Another particularity of the SDR is that, at each wave j, a frame of the recent graduates

U j( j) exists, from which the new cohort s j( j) can be selected straightforwardly. However,

in other applications, the cost of building such a frame, i.e. a frame of new members, may

be exorbitant (particularly as it cumulates over waves); and the new cohort may need to be

selected from U j (as opposed to from U j( j)). The method proposed in this paper can also be

applied in such cases, as long as for the total sample at wave j, s j, a cross-sectional weight

can be created to represent U j. We further discuss this topic in section 3.2.

Just to reiterate, the notation we use is s j( j′) = swave(cohort). This is, the quantity outside

the parenthesis represents the wave to which the sample refers; and the quantity inside the

parenthesis is the sample’s cohort, i.e. the wave at which the sample was first selected. On

the other hand, the notation for the weights is wi j = wsubject wave; this is, the first subscript

identifies the subject, and the second refers to the wave of interest, regardless of when the

subject was first selected.
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3 Methodology

3.1 Motivation

Assume that (in a non-survey context) interest lies on the p× 1 vector parameter ββ in the

following generalized estimating equations (GEE) model:

ξ :



E[Yi j|Xi j] = µi j = g−1(X ′i jββ ), j = 1,2, . . . ,J, i = 1,2, . . .

Var[Yi j|Xi j] = φν(µi j), j = 1,2, . . . ,J, i = 1,2, . . .

Cov[Yi|Xi] = Σi, i = 1,2, . . .

Yk ⊥ Yl | Xk,Xl, k 6= l = 1,2, . . . ;

where Yi j is the response variable for subject i at wave j, Xi j is a p×1 vector of covariates

associated with it, Yi = (Yi1,Yi2, · · · ,YiJ)
′, Xi = (Xi1,Xi2, · · · ,XiJ) is a p× J matrix; g(·) is

a monotonic one-to-one differentiable “link function”; ν(·) is the “variance function” with

known form; and φ > 0 is the “dispersion parameter.” Since, in general, the J×J covariance

matrix Σi is hard to specify, we model it as Cov[Yi|Xi] = Vi = A1/2
i R(α)A1/2

i , a “working”

covariance matrix; where Ai = diag[φν(µi j)] and R(α) is a “working” correlation matrix,

both of dimension J× J; and α is a vector that fully characterizes R(α) (see Liang and

Zeger, 1986).

To estimate ββ we select a (single-cohort) sample of n elements from model ξ and we

(intend to) measure each of them at J occasions. If all the elements in the sample respond

at every single occasion j, the task can be completed with the usual GEE methodology of

Liang and Zeger (1986).

However, in any study it is rarely the case that all subjects do respond at all waves. It is

more common to have some elements in the sample drop out of the study. In other words, it

is common to have some subjects who respond at the beginning of the study and then do not

respond after a certain wave; so that the latter responses for some subjects are not observed.

Under this situation, and assuming that the missing responses can be regarded as miss-
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ing at random or MAR (see Rubin, 1976), in particular that the dropout at a given wave does

not depend on the current (unobserved) value, Robins, Rotnitzky, and Zhao (1995) pro-

posed to estimate ββ by solving the estimating equations: ∑
n
i=1 (∂ µµ′i/∂ββ )V−1

i ∆̂i(yi−µµi) =

0, where ∆̂i = diag[Ri1π̂
−1
i1 , Ri2π̂

−1
i2 , . . . ,RiJπ̂

−1
iJ ], Ri j is the response indicator for subject i

at wave j, and π̂i j is an estimate of the probability that subject i is observed through wave

j.

For survey applications, one would use the estimating equation ∑i∈s[wi(∂ µµ′i/∂ββ )V−1
i ∆̂i

(yi− µµi)] = 0, where wi is the survey weight for subject i. Another way of writing this

equation is ∑i∈s (∂ µµ′i/∂ββ )V−1
i ∆̂wi(yi−µµi) = 0, with ∆̂wi = diag[wiRi1π̂

−1
i1 , wiRi2π̂

−1
i2 , . . . ,

wiRiJπ̂
−1
iJ ].

We notice that the diagonal elements of ∆̂wi are simply wave-specific nonresponse-

adjusted survey weights whenever the subject is observed, and are equal to zero whenever

the subject is missing. This feature in and of itself suggests a solution to the multiple-cohort

problem. This is the subject of the next section.

3.2 A Novel Approach to Combining Cohorts in Longitudinal Surveys

Based on the discussion in the previous section, if we have a fixed-panel, fixed-panel-plus-

‘births’, repeated-panel, rotating-panel, split-panel, or refreshment sample survey, we pro-

pose to estimate the super-population parameter ββ , or the corresponding finite population

quantity ββN (see “Unbiasedness” below), by the solution to the estimating equations:

Ψs(ββ ) = ∑
i∈s

∂ µµ′i
∂ββ

V−1
i Wi(yi−µµi) = 0; (1)
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where the sum is over the sample s, i.e. over all the elements selected (for the first time) in

any of the samples s1(1), s2(2), . . . , sJ(J); and the diagonal matrix Wi is

Wi =



Ii(U1)wi1 O

Ii(U2)wi2

. . .

O Ii(UJ)wiJ


,

with wi j being the (nonresponse-adjusted) cross-sectional weight for subject i at wave j (as

long as subject i is part of sample s j) and Ii(U j) is the indicator of whether subject i belongs

to finite population U j or not. In the “Unbiasedness” section below we argue why this is a

reasonable estimation procedure; and in “A Note on Nonresponse” we discuss the missing

value issue.

The cross-sectional weights wi j, in Wi, used in equation (1), are such that the sample

s j represents U j, when used in conjunction with said weights. This means that, for each

observation i in sample s j, there has to be a survey weight wi j; which could be regarded

as the number of values that such observation represents in U j. However, remember that

the sample s j is composed of different sets of subjects, or different sub-samples (the differ-

ent cohorts), and the integration of these sub-samples into a single cross-sectional weight

variable wi j may not be a straightforward task.

For the SDR, the construction of the cross-sectional weight for wave j is not too compli-

cated as the different cohorts are selected independently, from different, non-overlapping,

populations. The base weight in that case is easy to compute; and all that remains, after that,

is the adjustment for things like attrition and calibration to known totals in the population

U j.

On the other hand, in other situations, for example, when a frame of new members

does not exist, the new cohort may need to be selected from the overall population at the

given wave, or from a frame containing new members plus some old members, or from
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multiple frames. In such cases, the building of the cross-sectional weights may not be as

straightforward, and the theory of multiple frames may need to be used. We refer the reader

to the works of Lohr (2007) and Rao and Wu (2010), and references therein, for cases like

that.

3.2.1 Unbiasedness

The unbiasedness property of the estimating function is important because, as Song (2007,

Sec. 5.4) argues, it is the most crucial assumption in order to obtain a consistent estimator.

If one is interested in a pure design-based analysis, with parameters of interest being

finite-population quantities, in the present situation one could define the parameter of inter-

est to be ββN , the solution to the following finite population estimating equation:

ΨU(ββN) = ∑
i∈U

∂ µµ′i
∂ββN

V−1
i Ii(U)(yi−µµi(ββN)) = 0; (2)

where the sum is over U , i.e. over all the elements who became members of the target

population in any of U1(1), U2(2), . . . , UJ(J); and Ii(U) = diag[Ii(U1), Ii(U2), . . . , Ii(UJ)].

In other words, the target parameter ββN satisfies equation (2). In order to show design-

unbiasedness of the estimating function Ψs(ββ ), we need to show that its design expectation

is ΨU(ββ ) for any ββ .

The sampling design characteristics of a longitudinal survey can be thought of as those

of a multiphase sample, as can be seen in Särndal, Swensson, and Wretman (1992, Sec. 9.9).

We therefore use the methodology of multiphase sampling for the following derivations.

Without loss of generality we assume that J = 3, i.e. there are only three waves; although

it may seem too restrictive for real applications, the derivations with just three waves show

the patterns for general J, in this section and with respect to the variance.

As we mentioned earlier, we assume that wi j is the cross-sectional weight for subject

i at wave j, as long as that subject belongs to s j. From the theory of multiphase sampling

we have that for i ∈ s1(1), wi1 = π
−1
i1 , wi2 = π

−1
i1 π

−1
i2|s1(1)

, and wi3 = π
−1
i1 π

−1
i2|s1(1)

π
−1
i3|s2(1)

; for
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i ∈ s2(2), wi2 = π
−1
i2 and wi3 = π

−1
i2 π

−1
i3|s2(2)

; and for i ∈ s3(3), wi3 = π
−1
i3 ; where πi j is the

inclusion probability of subject i in sample s j( j) and πi j|s j−1( j′)
is the conditional inclusion

probability of subject i in sample s j( j′) given s j−1( j′).

Using Ep(·) to denote the expectation with respect to the sampling design, we have:

Ep

[
∑
i∈s

∂ µµ′i
∂ββ

V−1
i︸ ︷︷ ︸

Ai

Wi(yi−µµi︸ ︷︷ ︸
ei

)
]
= Ep

[ 3

∑
j=1

∑
i∈s j( j)

AiWiei

]
. (3)

For example for ∑i∈s2(2)
AiWiei we obtain:

Ep

[
∑

i∈s2(2)

AiWiei

]
= E

{
E
[

∑
i∈U2(2)

AiDiei

∣∣∣s2(2)

]}

= E

{
∑

i∈U2(2)

Ai


0 O

Ii(U2)wi2Ii(s2(2))

O
Ii(U3)πi3|s2(2)

Ii(s2(2))

πi2πi3|s2(2)

ei

}

= ∑
i∈U2(2)

Ai


0 O

Ii(U2)πi2

πi2

O
Ii(U3)πi2

πi2

ei
def
= ∑

i∈U2(2)

AiIi(U)ei,

where Di = diag[0, Ii(U2)wi2Ii(s2(2)), Ii(U3)wi3Ii(s3(2))Ii(s2(2))]; similarly we can show

that Ep[∑i∈s1(1)
AiWiei] = ∑i∈U1(1)

AiIi(U)ei and Ep[∑i∈s3(3)
AiWiei] = ∑i∈U3(3)

AiIi(U)ei. From

these expressions and equation (3) we conclude that Ep[Ψs(ββ )] = ΨU(ββ ) for any ββ ; which

means that the estimating function Ψs(ββ ) is design-unbiased.

If, on the other hand, the target of inference is the super-population parameter, we need

to guarantee that the model for µi j is such that Eξ (Yi j− µi j) = 0 is satisfied. For if this is

the case, we have:

Eξ Ep[Ψs(ββ )] = Eξ [ΨU(ββ )] = Eξ

[
∑
i∈U

∂ µµ′i
∂ββ

V−1
i Ii(U)(yi−µµi)

]
= ∑

i∈U

∂ µµ′i
∂ββ

V−1
i Ii(U)Eξ (yi−µµi) = 0;

so that the estimating function Ψs(ββ ) is model-design unbiased.
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3.2.2 A Note on Nonresponse

In the SDR, as in any other (longitudinal) survey, there is nonresponse. Some sampled

individuals choose not to participate at all, whereas some others participate at some waves

but not in others. The SDR remedies this situation by making a nonresponse adjustment to

the cross-sectional survey weights.

Assume that the nonresponse adjustment at wave j is a multiplication by the inverse of

the estimated response probability π̂ri j. For example, the nonresponse-adjusted weight for

a person who did respond at wave 3 (and was first selected at wave 2), would be wri3 =

π
−1
i2 π

−1
i3|s2(2)

π̂
−1
ri3 .

We need to redefine the estimating equation, to include only the respondents, in the

following way:

Ψr(ββ ) = ∑
i∈r

∂ µµ′i
∂ββ

V−1
i Wri(yi−µµi) = 0;

where the sum is over the respondent set r, i.e. over all the elements who belonged for

the first time in any of the respondent sets r1(1), r2(2), . . . , rJ(J), and the matrix Wri is

Wri = diag[Ii(U1)wri1, Ii(U2)wri2, . . . , Ii(UJ)wriJ]. Also, denote by r j( j′) the set of cohort

j′ respondents at wave j.

If additionally, the response mechanism (R) can be assumed to be MAR, we then for

example have, for ∑i∈r2(2)
AiWriei:

ER

{
∑

i∈r2(2)

AiWriei

}
= ER

{
∑

i∈s2(2)

Ai


0 O

Ii(U2)wri2Ii(r2(2))

O Ii(U3)wri3Ii(r3(2))

ei

}

= ∑
i∈s2(2)

Ai


0 O

Ii(U2)πri2

πi2π̂ri2

O
Ii(U3)πri3

πi2πi3|s2(2)
π̂ri3

ei (4)
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= ∑
i∈s2(2)

Ai


0 O

Ii(U2)wi2

O Ii(U3)wi3

ei
def
= ∑

i∈s2(2)

AiWiei. (5)

Expressions (4) and (5) detail that the nonresponse model used for π̂ri j has to be such

that ER[Ii(r j( j′))] = πri j = π̂ri j. This means that in the model for π̂ri j we have to include as

much available information, thought to influence the nonresponse propensity, as possible,

in order for this assumption to be tenable. For example, if the nonresponse is thought to

be independent across waves, one should include, in the model for π̂ri j, as many variables

from the corresponding wave as possible. If, on the other hand, it is reasonable to assume

that the response propensity at a given wave depends on previous responses (and possibly

response history), then those responses should be included in the response model; and so

on.

The design as well as the model-design unbiasedness follow immediately from (5) to-

gether with the previous section. Hereafter we therefore ignore the issue of nonresponse for

notation simplicity.

3.3 Variance and Variance Estimation

We now develop a (Taylor Series) linearization for the variance of the proposed estimator.

The basic technique is due to Binder (1983). For simplicity in the derivations and notation

we divide through by N, we redefine

Ψs(ββ ) =
1
N ∑

i∈s

∂ µµ′i
∂ββ

V−1
i Wi(yi−µµi) and ΨU(ββ ) =

1
N ∑

i∈U

∂ µµ′i
∂ββ

V−1
i Ii(U)(yi−µµi),

where N = ∑
J
j=1 N j; let β̂β be our estimator, which satisfies Ψs(β̂β ) = 0, and let ββN be the

“census estimator,” which satisfies ΨU(ββN) = 0. Assume ββN −ββ = Op(1/
√

Nm) and β̂β −

ββN = Op(1/
√

nm), with Nm = min{N1,N2, . . . ,NJ} and nm = min{n1,n2, . . . ,nJ}. We can

write the total error of β̂β , as estimator of ββ , as

β̂β −ββ = (β̂β −ββN)+(ββN−ββ ) = Sampling Error + Model Error.

14



After some straightforward calculations, the total variance, or more precisely the total MSE,

can be decomposed as:

VTot = Eξ p(β̂β −ββ )(β̂β −ββ )′

= Eξ p[(β̂β −ββN)(β̂β −ββN)
′+2⊗ (β̂β −ββ )(ββN−ββ )′]+o(1/nm) (6)

= EξVp +2⊗EpCξ +o(1/nm) = VSam +2⊗CSam-Mod +o(1/nm),

where 2⊗A = A+A′, Vp = Ep(β̂β −ββN)(β̂β −ββN)
′, Cξ = Eξ (β̂β −ββ )(ββN−ββ )′, VSam = EξVp

is the “sampling variance” component, CSam-Mod = EpCξ , and 2⊗CSam-Mod is the cross

“sampling-model variance” component. Furthermore, by Taylor series expansions we can

obtain the following approximations: β̂β −ββN = [H(ββN)]
−1Ψs(ββN)+op(1/

√
nm), β̂β −ββ =

[Ĥ(ββ )]−1Ψs(ββ ) + op(1/
√

nm), and ββN −ββ = [H(ββ )]−1ΨU(ββ ) + op(1/
√

Nm), where, we

define,

H(ββ ) =
1
N ∑

i∈U

∂ µµ′i
∂ββ

V−1
i Ii(U)

∂ µµi

∂ββ
and Ĥ(ββ ) =

1
N ∑

i∈s

∂ µµ′i
∂ββ

V−1
i Wi

∂ µµi

∂ββ
.

We then get, for Vp and Cξ in (6),

Vp = Ep(β̂β −ββN)(β̂β −ββN)
′ = Ep{[H(ββN)]

−1
Ψs(ββN)Ψ

′
s(ββN)[H(ββN)]

−1}+op(1/nm)

= [H(ββN)]
−1Ep[Ψs(ββN)Ψ

′
s(ββN)][H(ββN)]

−1 +op(1/nm)

= [H(ββN)]
−1Varp[Ψs(ββN)][H(ββN)]

−1 +op(1/nm), (7)

Cξ = Eξ (β̂β −ββ )(ββN−ββ )′ = Eξ{[Ĥ(ββ )]−1
Ψs(ββ )Ψ

′
U(ββ )[H(ββ )]−1}+op(1/nm)

= [Ĥ(ββ )]−1Eξ [Ψs(ββ )Ψ
′
U(ββ )][H(ββ )]−1 +op(1/nm)

=
1
N
[Ĥ(ββ )]−1ĤΣV (ββ )[H(ββ )]−1 +op(1/nm), (8)

with

ĤΣV (ββ ) =
1
N ∑

i∈s

∂ µµ′i
∂ββ

V−1
i WiΣiV−1

i
∂ µµi

∂ββ
;

the derivation of (8) can be found in Appendix A.
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In conclusion, so far we have found that:

VTot = EξVp +2⊗EpCξ +o(1/nm)

= Eξ

{
[H(ββN)]

−1Varp[Ψs(ββN)][H(ββN)]
−1}+2⊗Ep

{
[Ĥ(ββ )]−1ĤΣV (ββ )[H(ββ )]−1

}
N

+o(1/nm).

(9)

In (9) all the terms can be estimated by “plugging in” the estimate β̂β except for the term

Varp[Ψs(ββN)]; this is the subject of the next section.

If interest lies on the census estimator, ββN , only the first quantity in expression (9) is

necessary; i.e. the expression for VTot is simply EξVp (and lower order terms). Also, even if

we are interested in the superpopulation quantity ββ , but the sampling fraction is small, i.e.

n� N, the first term is a good enough approximation for the total variance. If, on the other

hand, the sampling fraction is large, and inference is about the superpopulation parameter,

both terms in (9) are required.

3.3.1 Design Variance of the Estimating Function

In order to derive an expression for Varp[Ψs(ββN)], we assume J = 3, as before. The

methodology is that of two-phase sampling (more precisely, multiphase sampling), as dis-

cussed in chapter 9 of Särndal, Swensson, and Wretman (1992). After some derivations

(see Appendix A), and defining Ai = (∂ µµ′i/∂ββ )|ββ=ββNV−1
i , ei = yi− µµi(ββN), ei(1···3) = ei,

ei(2···3) = (0,ei2,ei3)
′, and ei(3···3) = (0,0,ei3)

′, we obtain:

Varp[Ψs(ββN)] = D(1)+D(2)+D(3) (10)

= D(1)1 +D(1)2 +D(1)3 +D(2)2 +D(2)3 +D(3)3,

where D(1)
def
= N−2Varp( ∑

i∈s1(1)

AiWiei)=D(1)1+D(1)2+D(1)3, D(2)
def
= N−2Varp( ∑

i∈s2(2)

AiWiei)=

D(2)2 +D(2)3, D(3)
def
= N−2Varp( ∑

i∈s3(3)

AiWiei) = D(3)3,

N2D(1)1
def
= Var

[
∑

i∈s1(1)

wi1AiIi(U)ei(1···3)
]
,
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N2D(1)2
def
= E

{
Var
[

∑
i∈s2(1)

wi2AiIi(U)ei(2···3)

∣∣∣ s1(1)

]}
= Var

[
∑

i∈s2(1)

wi2AiIi(U)ei(2···3)

]
−Var

[
∑

i∈s1(1)

wi1AiIi(U)ei(2···3)

]
,

N2D(1)3
def
= E

{
E
[
Var
(

∑
i∈s3(1)

wi3AiIi(U)ei(3···3)
∣∣ s2(1),s1(1)

)∣∣∣s1(1)

]}
= Var

[
∑

i∈s3(1)

wi3AiIi(U)ei(3···3)

]
−Var

[
∑

i∈s2(1)

wi2AiIi(U)ei(3···3)

]
,

N2D(2)2
def
= Var

{
∑

i∈s2(2)

wi2AiIi(U)ei(2···3)

}
,

N2D(2)3
def
= E

{
Var
[

∑
i∈s3(2)

wi3AiIi(U)ei(3···3)
∣∣ s2(2)

]}
= Var

[
∑

i∈s3(2)

wi3AiIi(U)ei(3···3)

]
−Var

[
∑

i∈s2(2)

wi2AiIi(U)ei(3···3)

]
,

N2D(3) = N2D(3)3
def
= Var

{
∑

i∈s3(3)

wi3AiIi(U)ei(3···3)

}
.

In general, we have proved the following

Property 3.1. The (design) variance of Ψs(ββN) can be decomposed as:

Varp[Ψs(ββN)]

=
1

N2

J

∑
j′=1

J

∑
j= j′

{
Varp

[
∑

i∈s j( j′)

wi jAiIi(U)ei( j···J)
]
−Varp

[
∑

i∈s j−1( j′)

wi, j−1AiIi(U)ei( j···J)
]}

=
1

N2

J

∑
j=1

{
Varp

[
∑
i∈s j

wi jAiIi(U)ei( j···J)
]
−Varp

[
∑

i∈s j−1

wi, j−1AiIi(U)ei( j···J)
]}

,

(11)

where, we let wi, j−1 = 0 whenever j = j′, wi0 = 0, and to get the last line in (11) we have

changed variables and used the independence among cohorts.

In (10) and (11) we have assumed that the cohorts are design-independent. However, in

some cases this assumption may not be tenable; an example of such a case is the multiple

frame situation discussed in the first part of Section 3.2. Another instance in which it

may not be appropriate to assume cohort independence is when weight adjustments cross
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cohorts, which is the case of the SDR; we discuss this issue in Section 6. Nonetheless, some

calculations not assuming independence (not shown), for the case of few cohorts, show that,

even in that case, the approximation given by the last line of expression (11) is a very good

one for the variance terms (i.e. the terms in the diagonal), and still good for the covariance

terms (albeit not as good as for the variance terms).

3.3.2 Estimation

The estimation of VTot in (9) can be done as follows. H(ββN), Ĥ(ββ ), and H(ββ ) can be

estimated by Ĥ(β̂β ). ĤΣV (ββ ) can be estimated by ĤΣV (β̂β ), where Σi = Cov[Yi|Xi] can be

estimated by êiê′i.

We use (11) in Property 3.1 to estimate Varp[Ψs(ββN)]. As long as there is a method

to estimate the variance of (cross-sectional) Horvitz-Thompson (H-T) estimators, expres-

sion (11) can be used. If we define Zi j = AiIi(U)ei( j···J), we notice that each of the terms

involved in the computation of (11), terms like Varp
[

∑i∈s j wi jZi j
]
, is simply the variance

of a wave- j H-T estimator. Obviously, the variance estimation method needs to account

for the sampling design as well as for any non-response and calibration adjustments per-

formed; but this does not present any additional complications beyond what is found in

any cross-sectional problem as everything is done cross-sectionally. The SDR uses replica-

tion to estimate variances of cross-sectional estimators, but any of the available methods of

design variance estimation can be used (see for example Wolter, 2007).

We use the cross-sectional replication weights that SDR provides but we do not re-

estimate the parameter of interest at each replicate. First, note that we require replication

only for the estimation of the “meat” (Varp[Ψs(ββN)]) of the design variance (EξVp). And

secondly, although β̂β does appear in the expression for the H-T estimator whose variance

needs to be calculated (and re-calculated at each replicate), the work of Roberts, Binder,

Kovačević, Pantel, and Phillips (2003), who apply the “estimating function bootstrap” (Hu

and Kalbfleisch, 2000) to survey data, show that in a setting like ours, it is not necessary to
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re-compute the estimator at each replicate, but that the full-sample estimator suffices. This

simplification speeds up the computation of the replicate estimates.

As a way of illustration, say we currently are at wave j, i.e. we are estimating the j-th

term in (11). The r-th replicate of the first term is ∑i∈s j w(r)
i j Ai(β̂β )Ii(U)ei( j···J)(β̂β ), where w(r)

i j

is the r-th replicate weight for subject i at wave j; and the r-th replicate of the second term

is ∑i∈s j−1 w(r)
i, j−1Ai(β̂β )Ii(U)ei( j···J)(β̂β ), where w(r)

i, j−1 is the r-th replicate weight for subject i

at wave j−1.

4 A Simple Simulation Example

To demonstrate the performance of the proposed estimator, compared to a “usual” esti-

mating procedure, we carried out the following simulation. Assume that there is a finite

population at time j = 0 (the first wave) of N0 = N0(0) = 20,000 subjects. At time j = 1

(the second wave) none of the original 20,000 subjects leave the population, but there are

N1(1) = 6,000 new individuals entering the finite population; for a total of N1 = 26,000

subjects at the second wave. We generate the finite population form the model:

ξ :


Yi j = 3︸︷︷︸

β0

+ 0.5︸︷︷︸
β1

× j+ εi j, j = 0,1, i = 1,2, . . .

εεi ∼MVN
((0

0

)
, σ2

(1 α

α 1

))
, i = 1,2, . . . , σ2 = 25, α = 0.4.

At wave j = 0 we select a simple random sample of size n0 = n0(0) = 40 subjects

without replacement (SRS) from among the N0 = N0(0) = 20,000 original subjects, and

interview them (at j = 0). Of those, we keep (by SRS) n1(0) = 36 for interview at the second

wave ( j = 1), and drop the other four elements. Among the N1(1) = 6,000 new subjects in

the population, we select (by SRS) a sample of size n1(1) = 4 (the second cohort) to be

interviewed at j = 1, and who replace the four we dropped from the original cohort.

The target parameter is the net change between the two times, DN = Ȳ1− Ȳ0. A real-

world example of such a parameter is the difference in consumer price index (CPI) between
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two months one year apart. For example one may be interested in the change in CPI in the

New York City labor market between August 2010 and August 2011. Clearly the population

of interest (NYC residents) has changed between the two time points, and yet the difference

in CPIs is a quantity of high interest to analysts.

We can estimate DN by the “usual” estimator, which is the difference of the H-T esti-

mators; i.e. D̂N = ˆ̄Y1HT − ˆ̄Y0HT ; we refer to this estimator as the “independent” estimator,

or “Ind”, as this estimator does not take into account the auto-correlation.

Our proposal to estimate DN , on the other hand, is to use the β̂1 from the β̂β that solves

the estimating equations ∑i∈s XiVi
−1Wi(yi−X ′iββ ) = 0, with Wi = diag[wi1,wi2], the diagonal

matrix of cross-sectional survey weights for subject i, which come from the SRS charac-

teristics. We refer to this estimator as “R”, to signify that this estimator does take into

account the auto-correlation by means of the working correlation matrix R(α). It is impor-

tant to point out that for the estimation procedure we do not use the true correlation matrix(1 0.4
0.4 1

)
, as that would not be the case in real world applications; instead, we estimate it from

the residuals (see for example Carrillo, Chen, and Wu, 2010 and Carrillo-Garcı́a, 2008 for

details).

A clear way to check that the “Ind” estimator D̂N ignores the auto-correlation is that if

we solve ∑i∈s XiV−1
i Wi(yi−X ′iββ ) = 0 with R(α) = I2 (the size-2 identity), we recover D̂N as

second element of β̂β . Additionally, note that the target parameter DN also ignores the auto-

correlation, as it is the second element of the solution to ∑i∈U XiV−1
i Ii(U)(yi−X ′iββ ) = 0

when we use R(α) = I2.

We carry out simulations for samples of (cross-sectional) sizes 40, 80, 120, 160, 200,

240, 280, 320, 360, 400, 440, 480, 520, and 560; keeping the same proportions as for the

samples of size 40 explained before. For each sample size we select 1,000 samples and in

each sample we calculate the two estimators.

We evaluate the two alternatives as estimators of the either the superpopulation pa-

rameter β1 or the finite population quantity DN along two traits, the (Monte Carlo) rel-
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ative bias and the (Monte Carlo) mean square error (MSE). The relative bias of β̂1, as

estimator of DN , is defined as 1000−1
∑

1000
l=1 (β̂

(l)
1 −DN)/DN , where β̂

(l)
1 is the estimate of

β1 from the l-th simulation sample. The MSE of β̂1, as estimator of DN , is defined as

1000−1
∑

1000
l=1 (β̂

(l)
1 −DN)

2. The definitions for estimator D̂N and for target parameter β1 are

similar. Figures 3 and 4 show the simulation results.
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Figure 3: Relative Biases

We see that, with respect to the relative bias (Figure 3), neither estimator is consistently

superior than the other. The relative bias of the estimator β̂1 is sometimes lower and some

times higher than that of the estimator D̂N . The same conclusion holds true no matter what

the target is, either β1 or DN .
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Figure 4: MSEs

Note that D̂N is design-unbiased for DN and model-unbiased for β1; i.e., in theory, the

biases of the “Ind” estimator are zero. The fact that this is not reflected in Figure 3 is

purely due to Monte Carlo error. It is reassuring that the picture shows that the difference in

(estimated) biases between the two methods is, in general, lower than the distance from the

estimated bias of “Ind” from zero. We can then conclude that any bias of β̂1 can be safely

ignored (for either parameter).

Furthermore, we observe that, in general, there does seem to be a decrease of bias (of

either estimator) as the sample size increases. The fact that it is not a monotone decrease is

also because of the Monte Carlo error.
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As for the MSE (Figure 4), there is a different story. First of all, we do see a monotone

decrease of MSE as the sample size increases. But more importantly, our proposed esti-

mator performs consistently better than the “usual” estimator for all sample sizes. For any

given sample size, the MSE of β̂1 is lower than that of D̂N . And this is true for both, the

superpopulation parameter β1 and the finite population parameter DN .

It is not surprising that the estimator that takes into account the auto-correlation (β̂1) per-

forms better than the one that does not (D̂N) when estimating the superpopulation parameter

β1. After all, the model (ξ ) contains some auto-correlation between the observations from

the same subject, and D̂N completely ignores it, whereas β̂1 incorporates it.

On the other hand, somewhat surprisingly, our estimator β̂1, which takes into account

the auto-correlation, is also the superior alternative for estimating the finite population

quantity DN , which ignores the auto-correlation. This result seems counter-intuitive; D̂N

even has the same functional form as DN , whereas β̂1 does not!

We also did simulations with different values of the auto-correlation parameter α and

different overlapping percentages between the two waves. We found the same kind of

results in most cases. The only circumstance where D̂N has (slightly) lower MSE than β̂1 is

when α is zero or close to zero and the overlapping fraction in the sample is very low. In

that case there may not be enough information to do a good job in estimating α and it would

be better not to lose degrees of freedom and assume there is no auto-correlation. However,

with the sort of auto-correlations frequently encountered in practice, this seems hardly the

case. Auto-correlations of the magnitude of 0.4 are not uncommon in practice.

5 Application to the SDR

The dataset we use is the restricted SDR data, under a license agreement from NSF. The

SDR collects several kinds of information from the selected doctoral recipients; the differ-

ent cohorts are selected using as frame the SED. The information it collects every wave is
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about employment situation, the principal employer, the principal job, past employment,

recent education, demographics, and disability. In addition to that, there is a part of the

questionnaire that changes from wave to wave, concentrating on different topics; for ex-

ample in 2001 questions about professional associations were included, in 2006 detailed

information about postdoctoral appointments held was asked, and in 2008 the focus was on

papers, books, inventions, and patents. We use only information collected in all the waves,

1995, 1997, 1999, 2001, 2003, 2006, and 2008.

The SDR sample sizes at each of those waves are the following: n95 = 35,370, n97 =

35,667, n99 = 31,318, n01 = 31,366, n03 = 29,915, n06 = 30,817, and n08 = 29,974. Each

of those samples is composed of some people belonging to previous cohorts, who are being

re-interviewed, and some new selected individuals. At each wave some subjects are dropped

from the study because they have gone out of scope, some subjects are lost because of

attrition, and some people are removed to make up space for the new cohort.

To illustrate our methodology, we constructed a model for individuals’ salaries over

time. The response is the log of salary (in the principal job), with an identity link function,

and several covariates. Modeling log of salary (as opposed to salary) is a standard practice.

There are some time-independent covariates (like gender) and some time-dependent ones

(like sector). We have four big classes of covariates. The Degree variables: degree field,

years since degree, and age at graduation. The Job variables: job field or category, sector,

postdoc indicator, adjunct faculty indicator, hours worked per week in the principal job,

weeks per year in the principal job, how related is the job to the doctoral degree, part-time

for different reasons, number of months since started in the principal job, the starting month

in the principal job, whether the employer/type of job has changed since previous wave, and

whether changed employer/type of job since previous wave because was laid off or job ter-

minated. The Person’s demographics: gender, citizenship status, race/ethnicity, presence

of children in family, marital status, and spouse’s working status. And the “Environment”

variables: years since 1995, state (of employment), and the consumer price index (of the
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region of employment). The full list of variables and categories can be found in Table 1 in

the appendix.

Of the original 224,427 total observations and 64,975 subjects, we dropped several of

them for various reasons. First of all, we kept only the 198,454 observations with non-

missing salaries, corresponding to 60,637 individuals. Among these, there were 269 people

with inconsistent ages across waves; we removed those people and were left with 197,418

observations. We also removed two people whom we considered to have “non-sensible”

ages at doctorate graduation; this further got rid of three observations. After that, we re-

moved the observations with a missing value for the variable indicating whether the (post-

secondary education institution) employer was public or private; this leaves us with 59,855

individuals and 193,667 observations. Finally, we removed some “outlying” salaries; we

removed any salary below $5,000 in order to make the histograms of log-salary as sym-

metric as possible, leaving 59,479 subjects and 191,195 observations; the very last step

was to remove the few observations of salary at $999,996, which, from the exploratory

graphs, seem to clearly be separated from the rest of the observations. We are then left with

59,474 subjects and 191,079 observations, distributed as: n95 = 30,332, n97 = 30,734,

n99 = 26,792, n01 = 26,816, n03 = 24,997, n06 = 25,943, and n08 = 25,465. The average

(cross-sectional) survey weight for each of those waves are: w̄95 = 15.37, w̄97 = 16.29,

w̄99 = 19.96, w̄01 = 20.74, w̄03 = 22.71, w̄06 = 22.94, and w̄08 = 24.88.

The covariates, and interactions, we considered were selected because they were sug-

gested by either exploratory graphs, or exploratory classification trees, or by the subject

matter experts at the NSF. We included, in previous versions of the model, more interac-

tions than those found in the final model, in Table 2 (in Appendix B), but some interactions

were dropped (sequentially) because they turned out to be insignificant. Nonetheless, we

left in the model some variables or interactions that are not significant if we considered that

the fact that they are not significant is important from the subject matter point of view.
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Table 2, in the appendix, presents the estimated β coefficients in the following model:

yi j = log(SALARYi j) = X ′i jββ + εi j,

where Xi j includes an intercept along with the other variables and interactions in Table 2;

and the working covariance matrix is estimated to be V̂i = φ̂R(α̂), with

φ̂ = σ̂2 =
∑i∈s ∑

08
j=95 wi jê2

i j

(∑i∈s ∑
08
j=95 wi j)− p

= 0.196,

where êi j = yi j −X ′i jβ̂β and p = 208 is the number of covariates in Xi j, wi j is the cross-

sectional weight for subject i at wave j as long as i∈ s j and zero otherwise. And α̂ contains

the 21 = (7×6)/2 estimated auto-correlations α̂ j j′ = α̂ j′ j, with

α̂ j j′ = α̂ j′ j =
∑i∈s
√wi j

√wi j′ êi jêi j′

φ̂(∑i∈s
√wi j

√wi j′− p)
,

for j 6= j′ = 95,97,99,01,03,06,08; and α̂ j j = 1 for all j. These estimated values form the

auto-correlation matrix:

R(α̂) =


1 α̂95,97 α̂95,99 α̂95,01 α̂95,03 α̂95,06 α̂95,08

1 α̂97,99 α̂97,01 α̂97,03 α̂97,06 α̂97,08
1 α̂99,01 α̂99,03 α̂99,06 α̂99,08

1 α̂01,03 α̂01,06 α̂01,08
1 α̂03,06 α̂03,08

sym 1 α̂06,08
1

=


1 0.38 0.36 0.32 0.30 0.28 0.27

1 0.42 0.36 0.33 0.32 0.31
1 0.46 0.38 0.36 0.34

1 0.47 0.40 0.38
1 0.49 0.44

sym 1 0.55
1

 .

We now give some conclusions from the estimated coefficients in Table 2. First of all,

we notice that the exponential of the intercept (exp(9.4) = $12,144) is not in the sensible

mean of the observed salaries; for that we need to consider the hours worked per week

(whose average is 47) and years since degree (average of 15); we then have that a more

sensible estimate of the overall average is exp(9.4+47×0.04−472×0.0003+15×1.03−

152×0.999) = $51,952. Obviously, the other continuous covariates (years since 1995, age

at graduation, the region’s CPI, and the number of months since started principal job) also

intervene.

We can conclude that, all other things being constant, women’s salaries are about 93.4%

those of men; whereas race does not seem to have an effect on doctorate holders’ salaries.
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The fact that the gender×years since 1995 interaction is not significant implies that the

penalty for being a woman is not changing over time. We see that doctorate holders with

a management job have the highest salaries, followed by those in health occupations; on

the other hand, those with the lowest salaries are the ones employed in “other” occupations,

followed by those in political science.

With respect to the sector, the ones with highest salaries are the doctorates in for-profit

industry (around 20% higher than that for a tenured person in public 4-year college), fol-

lowed by the federal government. All the industry has higher salaries than colleges and uni-

versities; the lowest salaries are found in two-year colleges and people with non-applicable

tenure in four-year colleges. The fact that tenured doctorates in private 4-year colleges have

significantly lower salaries than the corresponding in public ones may be due to the fact that

there is a big variety of such private institutions, whereas the public ones tend to be large.

People with doctorate degrees in computing and information sciences have the highest

salaries (around 20% higher than in the biological sciences), followed by degree holders in

electrical and computer engineering and in economics (approximately 16% higher). Doc-

torate holders in agricultural and food sciences, environmental life sciences, earth, atmo-

spheric, and ocean sciences, and in “other” social sciences have the lowest salaries.

Married people have the highest salaries, followed by married-like, widowed, separated,

divorced, and the never married. The last ones have salaries only around 89% as high as

the married ones; one could argue that there probably is some association between never

married and age. There does not seem to be a difference between people in families with

no children and families with children <2. But the presence of children 2-5, 6-11, and 12+

is associated with higher salaries.

Doctorate holders with jobs somewhat related to the doctoral degree make around 93%

of what people with closely related jobs (the reference category) do. If the job is not related

to the doctoral degree for change in career or professional interests, they make around 82%

of what people with closely related jobs. But those with jobs not related for other reasons
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make only about 76% of what the reference category do.

There is an increase of around 3% for every additional year since doctorate graduation;

although there is a diminishing effect for higher number of years. There is a small penalty

for receiving the doctorate later in life; for every additional year of age at graduation, the

current salary reduces to 99%.

The highest negative effect on salaries is having a position as adjunct faculty; they have

salaries that are around 59% the salaries of other doctorate holders. Postdoctoral salaries

are only about 74% of the average salary of comparable people in other types of positions.

We have also found that the regional consumer price index (CPI) is significant. The

higher the CPI, the higher the salary. We could not use the CPI for the labor market of

employment as we do not yet have a way to identify geography beyond the state. We

decided to also included the state in the model (although we know that it cannot be a causal

factor for salary) as a proxy for cost of living; we could use the CPI for that if we had

the zip code of employment. Even so, the state effect is highly significant and some state

coefficients are among the highest overall. The highest salaries tend to be in California,

Washington D.C. and its suburbs, and New York City and its suburbs; we conclude this

as the highest coefficients are for Washington D.C., California, New Jersey, New York,

Delaware, Connecticut, Maryland, and Virginia. On the other hand, the lowest salaries

seem to be in Puerto Rico, Vermont, Montana, Maine, Idaho, South Dakota, North Dakota,

and the “others” (territories and abroad).

Having a part-time job due to being retired or semi-retired seems to be significant and in

several significant interactions. Because of this, we do not think that the available data are

presenting the full picture about retirement; for example, for people who are (semi-)retired

and yet have full-time jobs.

Finally we present some residual analysis. Figures 5, 6, and 7 show a Box and Whisker

plot of standardized residuals by year, a spaghetti plot of standardized residuals, and a fitted

vs. observed value plot, respectively.
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Figure 5: Box and Whisker Plot of Standardized Residuals by Year

Figure 6: Spaghetti Plot of Standardized Residuals
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Figure 7: Fitted Values by Observed Values (log-salary)

Figure 5 shows that the model fits reasonably well for all the reference years as most of

the standardized residuals are between the -2, 2 limits. Also, the distributions of residuals

do not seem to greatly differ from year to year.

From Figure 6 we conclude that the model also fits reasonably well for most people, as

most of the lines seem to fluctuate between the -2, 2 limits. Nonetheless, there are a few

people for which the model seems to greatly over-predict in 2003 and some few people for

whom that happens in 2006. We included several terms in the model to correct this issue

but clearly none seemed to do so completely; although some previously existing “blips”

like these did go away.

The last thing we tried was to produce exploratory classification trees for these residual

blips, and we found that, in the dataset available, the only thing related to them was the

survey mode. The blips in 2003 are disproportionately high for web respondents (in 2003);

and the blips in 2006 are disproportionately high for CATI respondents (in 2006). We
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conclude that either there is a mode effect in these two years or those respondents have

something different, in those years, that is not included in the available variables. The last

thing to notice is that there are not many cases in which the blip remains for more than one

wave; for most of them, it goes down and then comes back to “normal” the next wave.

Finally, the plot of fitted values versus observed (Figure 7) also show a similar story.

For most observations the model performs well; apart from those few cases in 2003 and

2006 for whom there is large over-estimation, which are in the top left corner of Figure 7.

6 Discussion and Conclusions

We have proposed a novel approach to combining different cohorts of a longitudinal sur-

vey. The major requirement of our method is that there is a cross-sectional survey weight

for each wave, or that one can be built from available information. This weight should rep-

resent the population of interest at the corresponding wave. In that case, our method should

perform better than usual estimation procedures (where the auto-correlation is not incor-

porated) in many practical situations; in particular when there is a high auto-correlation

among responses from the same subject.

In general survey practitioners avoid as much as possible the use of multiple survey

weights. However, in the case of rotating panels this is an appealing approach for at least

two reasons. On the one hand, it allows for the use of all the available data in a clear

and cohesive way in a single analysis procedure. On the other hand, we have shown how

readily available cross-sectional survey weights can be directly used for longitudinal anal-

ysis; without the need to develop, store, and distribute an additional longitudinal weight or

weights.

Although the design of the SDR is strictly speaking neither a rotating-panel nor a

repeated-panel design, our method is directly applicable to any kind of longitudinal sur-

vey as long as there are cross-sectional survey weights available (or these can be created) at
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each wave, and these weights represent the population of interest at the particular wave.

For the theory that we developed about the variance of the estimator proposed, we

utilized the (cross-sectional) design weights wi j; which are the inverse of the inclusion

probabilities. Yet for the application in our model for salary in the SDR we used the final

(cross-sectional) survey weights; which are not the original design weights, but adjusted (in

the usual way) weights. This mismatch requires further exploration.

Similarly, in our derivations of the variance, we assumed that the cohorts were indepen-

dent. However, the SDR does not totally satisfy this assumption for two reasons. Firstly,

at any particular wave, the selection of the sample from the old cohorts is not done in-

dependently across cohorts. In order to reduce the number of strata, since 1991 the NSF

has collapsed strata over year of degree receipt for the old cohorts. Additionally, the post-

stratification adjustments made to the design weights do not condition over cohort either;

and as a result, weights are shared across cohorts. This sampling selection scheme and

weighting adjustment procedure violate the independence across cohorts. Some additional

calculations have shown that the independence among cohort is not such a crucial require-

ment for our variance estimation method to produce good approximations. In future re-

search we plan to evaluate the impact of this issue.
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Appendix A - Proofs

To develop an expression for Cξ , we first simplify Ψs(ββ )Ψ
′
U(ββ ):

N2
Ψs(ββ )Ψ

′
U(ββ ) = ∑

i∈s

∂ µµ′i
∂ββ

V−1
i Wi(yi−µµi) ∑

i∈U
(yi−µµi)

′Ii(U)V−1
i

∂ µµi

∂ββ

=
[
∑
i∈s

∂ µµ′i
∂ββ

V−1
i Wi(yi−µµi)

][
∑
i∈s

(yi−µµi)
′Ii(U)V−1

i
∂ µµi

∂ββ
+∑

i/∈s
(yi−µµi)

′Ii(U)V−1
i

∂ µµi

∂ββ

]
=∑

i∈s

∂ µµ′i
∂ββ

V−1
i Wi(yi−µµi)∑

i∈s
(yi−µµi)

′Ii(U)V−1
i

∂ µµi

∂ββ

+∑
i∈s

∂ µµ′i
∂ββ

V−1
i Wi(yi−µµi)∑

i/∈s
(yi−µµi)

′Ii(U)V−1
i

∂ µµi

∂ββ︸ ︷︷ ︸
A = Two model-independent summations

=∑
i∈s

∂ µµ′i
∂ββ

V−1
i Wi(yi−µµi)(yi−µµi)

′V−1
i

∂ µµi

∂ββ

+ ∑
i∈s

∑
k∈s
k 6=i

∂ µµ′i
∂ββ

V−1
i Wi (yi−µµi)(yk−µµk)

′︸ ︷︷ ︸
B = Model-independent terms

Ik(U)V−1
k

∂ µµk

∂ββ
+ A

=∑
i∈s

∂ µµ′i
∂ββ

V−1
i Wi(yi−µµi)(yi−µµi)

′V−1
i

∂ µµi

∂ββ
+ B* + A,

where A and B* both have model-expectation zero; therefore,

Eξ [Ψs(ββ )Ψ
′
U(ββ )] = Eξ

[ 1
N2 ∑

i∈s

∂ µµ′i
∂ββ

V−1
i Wi(yi−µµi)(yi−µµi)

′V−1
i

∂ µµi

∂ββ

]
=

1
N2 ∑

i∈s

∂ µµ′i
∂ββ

V−1
i WiEξ [(yi−µµi)(yi−µµi)

′]V−1
i

∂ µµi

∂ββ
=

1
N2 ∑

i∈s

∂ µµ′i
∂ββ

V−1
i WiΣiV−1

i
∂ µµi

∂ββ

=
1
N

ĤΣV (ββ ),

equation (8) follows.

We now develop the expression for Varp[Ψs(ββN)], the design variance of the estimating

function:

Varp[Ψs(ββN)] = Varp

{ 1
N ∑

i∈s

∂ µµ′i
∂ββ

∣∣∣
ββ=ββN

V−1
i︸ ︷︷ ︸

Ai

Wi[yi−µµi(ββN)︸ ︷︷ ︸
ei

]
}
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=
1

N2 Varp
(

∑
i∈s1(1)

AiWiei + ∑
i∈s2(2)

AiWiei + ∑
i∈s3(3)

AiWiei
)

=
1

N2 Varp
(

∑
i∈s1(1)

AiWiei
)
+

1
N2 Varp

(
∑

i∈s2(2)

AiWiei
)
+

1
N2 Varp

(
∑

i∈s3(3)

AiWiei
)

(12)

= D(1)+D(2)+D(3),

where, for line (12), we assume that the (three) cohorts are design-independent. Now,

N2D(1) = Varp
(

∑
i∈s1(1)

AiWiei
)
= Varp

{
∑

i∈s1(1)

Ai

[
Ii(U1)wi1 O

Ii(U2)wi2
O Ii(U3)wi3

]
ei

}
= Varp

{
∑

i∈U1(1)

Ai

[
Ii(U1)wi1Ii(s1(1)) O

Ii(U2)wi2Ii(s2(1))Ii(s1(1))

O Ii(U3)wi3Ii(s3(1))Ii(s2(1))Ii(s1(1))

]
ei

}
= Varp

{
∑

i∈U1(1)

AiWiDiag{ei}

[
Ii(s1(1))

Ii(s2(1))Ii(s1(1))

Ii(s3(1))Ii(s2(1))Ii(s1(1))

]}
= Varp

[
∑

i∈U1(1)

AiWiDiag{ei}Ii(1)

]
,

where Diag{ei} is, for a column vector ei, a diagonal matrix with diagonal entries being the

elements of ei, and Ii(1) =
(
Ii(s1(1)), Ii(s2(1))Ii(s1(1)), Ii(s3(1))Ii(s2(1))Ii(s1(1))

)′. Similarly

we can get:

N2D(2) = Varp

[
∑

i∈U2(2)

AiWiDiag{ei}Ii(2)

]
and N2D(3) = Varp

[
∑

i∈U3(3)

AiWiDiag{ei}Ii(3)

]
,

where Ii(2) =
(
0, Ii(s2(2)), Ii(s3(2))Ii(s2(2))

)′, and Ii(3) =
(
0, 0, Ii(s3(3))

)′. Now, let us con-

centrate on D(1):

N2D(1) =Varp
[

∑
i∈U1(1)

AiWiDiag{ei}Ii(1)
]

=Var
{

E
[

∑
i∈U1(1)

AiWiDiag{ei}Ii(1)
∣∣ s1(1)

]}
+E

{
Var
[

∑
i∈U1(1)

AiWiDiag{ei}Ii(1)
∣∣ s1(1)

]}
=Var

{
E
[
E
(

∑
i∈U1(1)

AiWiDiag{ei}Ii(1)
∣∣ s2(1),s1(1)

) ∣∣∣ s1(1)

]}
+E

{
Var
[
E
(

∑
i∈U1(1)

AiWiDiag{ei}Ii(1)
∣∣ s2(1),s1(1)

) ∣∣∣ s1(1)

]
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+E
[
Var
(

∑
i∈U1(1)

AiWiDiag{ei}Ii(1)
∣∣ s2(1),s1(1)

) ∣∣∣ s1(1)

]}
=N2D(1)1 +N2D(1)2 +N2D(1)3 . (13)

Let us do each of the terms in (13) in turns, beginning with N2D1(1), we have:

E
(

∑
i∈U1(1)

AiWiDiag{ei}Ii(1)
∣∣ s2(1),s1(1)

)
= ∑

i∈U1(1)

AiWiDiag{ei}

[
Ii(s1(1))

Ii(s2(1))Ii(s1(1))

πi3|s2(1)
Ii(s2(1))Ii(s1(1))

]
,

then,

E
[
E
(

∑
i∈U1(1)

AiWiDiag{ei}Ii(1)
∣∣ s2(1),s1(1)

) ∣∣∣ s1(1)

]

= ∑
i∈U1(1)

AiWiDiag{ei}

[ Ii(s1(1))

πi2|s1(1)
Ii(s1(1))

πi3|s2(1)
πi2|s1(1)

Ii(s1(1))

]

= ∑
i∈U1(1)

Ai


Ii(U1)

πi1
O

Ii(U2)
πi1πi2|s1(1)

O Ii(U3)
πi1πi2|s1(1)

πi3|s2(1)


[Ii(s1(1)) O

πi2|s1(1)
Ii(s1(1))

O πi3|s2(1)
πi2|s1(1)

Ii(s1(1))

]
ei

= ∑
i∈U1(1)

AiIi(U)Diag{ei}

[
Ii(s1(1))/πi1

Ii(s1(1))/πi1

Ii(s1(1))/πi1

]
= ∑

i∈U1(1)

AiIi(U)Diag{ei}
[

1
1
1

] Ii(s1(1))

πi1

= ∑
i∈U1(1)

wi1(1)AiIi(U)eiIi(s1(1)),

which implies that:

N2D(1)1 = Var
{

E
[
E
(

∑
i∈U1(1)

AiWiDiag{ei}Ii(1)
∣∣ s2(1),s1(1)

) ∣∣∣ s1(1)

]}
= Var

[
∑

i∈U1(1)

wi1AiIi(U)eiIi(s1(1))
]
= Var

[
∑

i∈s1(1)

wi1AiIi(U)ei(1···3)
]
.

For N2D(1)2, we have:

E
(

∑
i∈U1(1)

AiWiDiag{ei}Ii(1)
∣∣ s2(1),s1(1)

)
= ∑

i∈U1(1)

AiWiDiag{ei}

[
Ii(s1(1))

Ii(s2(1))Ii(s1(1))

πi3|s2(1)
Ii(s2(1))Ii(s1(1))

]

= ∑
i∈U1(1)

Ai


Ii(U1)

πi1
O

Ii(U2)
πi1πi2|s1(1)

O Ii(U3)
πi1πi2|s1(1)

πi3|s2(1)


[

Ii(s1(1)) O
Ii(s2(1))Ii(s1(1))

O πi3|s2(1)
Ii(s2(1))Ii(s1(1))

]
ei
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= ∑
i∈U1(1)

AiIi(U)Diag{ei}

[ Ii(s1(1))/πi1

Ii(s2(1))Ii(s1(1))/πi1πi2|s1(1)

Ii(s2(1))Ii(s1(1))/πi1πi2|s1(1)

]
= ∑

i∈s1(1)

wi2AiIi(U)Diag{ei}

[
πi2|s1(1)

Ii(s2(1))

Ii(s2(1))

]
,

then,

Var
[
E
(

∑
i∈U1(1)

AiWiDiag{ei}Ii(1)
∣∣ s2(1),s1(1)

) ∣∣∣ s1(1)

]
= Var

[
∑

i∈s1(1)

wi2AiIi(U)Diag{ei}

[
πi2|s1(1)

Ii(s2(1))

Ii(s2(1))

]∣∣∣ s1(1)

]
= Var

[
∑

i∈s1(1)

wi2AiIi(U)Diag{ei}
[ 0

Ii(s2(1))

Ii(s2(1))

]∣∣∣ s1(1)

]
(14)

= Var
[

∑
i∈s1(1)

wi2AiIi(U)Diag{ei}Ii(s2(1))
[

0
1
1

]∣∣∣ s1(1)

]
= Var

[
∑

i∈s2(1)

wi2AiIi(U)ei(2···3)

∣∣∣ s1(1)

]
,

where line (14) is because, conditional on s1(1), πi2|s1(1)
is constant and therefore the variance

of that component is zero. This means that:

N2D(1)2 = E
{

Var
[
E
(

∑
i∈U1(1)

AiWiDiag{ei}Ii(1)
∣∣ s2(1),s1(1)

) ∣∣∣ s1(1)

]}
= E

{
Var
[

∑
i∈s2(1)

wi2AiIi(U)ei(2···3)

∣∣∣ s1(1)

]}
= Var

[
∑

i∈s2(1)

wi2AiIi(U)ei(2···3)

]
−Var

{
E
[

∑
i∈s2(1)

wi2AiIi(U)ei(2···3)

∣∣∣ s1(1)

]}
= Var

[
∑

i∈s2(1)

wi2AiIi(U)ei(2···3)

]
−Var

{
E
[

∑
i∈s2(1)

wi2|s1(1)
wi1AiIi(U)ei(2···3)

∣∣∣ s1(1)

]}
= Var

[
∑

i∈s2(1)

wi2AiIi(U)ei(2···3)

]
−Var

{
∑

i∈s1(1)

wi1AiIi(U)ei(2···3)

}
.

We can, similarly, show that:

N2D(1)3 =E
{

E
[
Var
(

∑
i∈U1(1)

AiWiDiag{ei}Ii(1)
∣∣ s2(1),s1(1)

) ∣∣∣ s1(1)

]}
=E
{

E
[
Var
(

∑
i∈s3(1)

wi3Ii(s2(1))Ii(s1(1))AiIi(U)ei(3···3)
∣∣ s2(1),s1(1)

) ∣∣∣ s1(1)

]}
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=E
{

Var
[

∑
i∈s3(1)

wi3Ii(s2(1))AiIi(U)ei(3···3)

∣∣∣ s1(1)

]
−Var

[
E
(

∑
i∈s3(1)

wi3Ii(s2(1))AiIi(U)ei(3···3)
∣∣ s2(1),s1(1)

) ∣∣∣ s1(1)

]}
=E
{

Var
[

∑
i∈s3(1)

wi3AiIi(U)ei(3···3)

∣∣∣ s1(1)

]
−Var

[
∑

i∈s2(1)

wi2AiIi(U)ei(3···3)

∣∣∣ s1(1)

]}
=Var

[
∑

i∈s3(1)

wi3AiIi(U)ei(3···3)

]
−Var

[
E
(

∑
i∈s3(1)

wi3AiIi(U)ei(3···3)
∣∣s1(1)

)]
−Var

[
∑

i∈s2(1)

wi2AiIi(U)ei(3···3)

]
+Var

[
E
(

∑
i∈s2(1)

wi2AiIi(U)ei(3···3)
∣∣s1(1)

)]
=Var

[
∑

i∈s3(1)

wi3AiIi(U)ei(3···3)

]
−Var

[
∑

i∈s1(1)

wi1AiIi(U)ei(3···3)

]
−Var

[
∑

i∈s2(1)

wi2AiIi(U)ei(3···3)

]
+Var

[
∑

i∈s1(1)

wi1AiIi(U)ei(3···3)
)]
.

Also, with similar calculations, we obtain:

N2D(2) = Varp

[
∑

i∈U2(2)

AiWiDiag{ei}Ii(2)

]
= Var

{
E
[

∑
i∈U2(2)

AiWiDiag{ei}Ii(2)
∣∣ s2(2)

]}
+E

{
Var
[

∑
i∈U2(2)

AiWiDiag{ei}Ii(2)
∣∣ s2(2)

]}
= N2D(2)2 +N2D(2)3 ,

with:

N2D(2)2 = Var
{

∑
i∈s2(2)

wi2AiIi(U)ei(2···3)

}
and

N2D(2)3 = E
{

Var
[

∑
i∈s3(2)

wi3AiIi(U)ei(3···3)
∣∣ s2(2)

]}
= Var

[
∑

i∈s3(2)

wi3AiIi(U)ei(3···3)

]
−Var

{
∑

i∈s2(2)

wi2AiIi(U)ei(3···3)

}
.

Finally,

N2D(3) = N2D(3)3 = Var
{

∑
i∈s3(3)

wi3AiIi(U)ei(3···3)

}
.
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Appendix B - Tables

Table 1: Variable/Category Labels

Label Definition
YrsSince95 Number of years since 1995
YrsSinceDe Number of years since doctoral degree
YrsSinceDe2 Square of number of years since doctoral degree
Male, Female Gender male, female
UScit U.S. citizen
NotUScit Non-U.S. citizen
AGEatGrad Age at doctoral graduation
NotPostDoc Principal job is not a postdoc
PostDoc Principal job is a postdoc
HRSWK Number of hours worked per week
HRSWK2 Square of number of hours worked per week
NotAdjFac Position is not as adjunct faculty
AdjFac Position is as adjunct faculty
JobCloselyRel Principal job closely related to doctoral degree
JobSomewhaRel Principal job somewhat related to doctoral degree
JobNotRelOthe Principal job not related to doctoral degree for other reasons
JobNotRelCarr Principal job not related to doctoral degree for change in career

or professional interests
White Non-Hispanic white
Asian Non-Hispanic Asian
NatAm Non-Hispanic American Indian/Alaska Native
Black Non-Hispanic black
Hispa Hispanic, any race
Other Non-Hispanic Native Hawaiian/Other Pacific Islander ONLY and

multiple race
C4TenPu Sector: Tenured in public 4-year college
C4NTePu Sector: Not tenured in public 4-year college
C4NATPu Sector: Tenure N/A in public 4-year college
C4TenPr Sector: Tenured in private 4-year college
C4NATPr Sector: Tenure N/A in private 4-year college
C4NTePr Sector: Not tenured in private 4-year college
Coll2yr Sector: Two-year college
IndProf Sector: Industry for profit
IndSelf Sector: Industry self-employed
IndNoPr Sector: Industry non-profit organization
Federal Sector: Federal government
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StLocGv Sector: State or local government
D-BioloSci Doctoral degree in biological sciences
D-AgriFood Doctoral degree in agricultural and food sciences
D-EnvirSci Doctoral degree in environmental life sciences
D-CompInfo Doctoral degree in computing and information sciences
D-MatheSci Doctoral degree in mathematics and statistics
D-PhyAstro Doctoral degree in physical and astronomical sciences
D-ChemNoBi Doctoral degree in chemistry (except biochemistry)
D-EarAtmOc Doctoral degree in earth, atmospheric, and ocean sciences
D-Psycholo Doctoral degree in psychology
D-Economic Doctoral degree in economics
D-PolitSci Doctoral degree in political sciences
D-OtherSoc Doctoral degree in other social sciences
D-AerosEng Doctoral degree in aerospace, aeronautical and astronautical en-

gineering
D-ChemiEng Doctoral degree in chemical engineering
D-CivilEng Doctoral degree in civil engineering
D-ElecComp Doctoral degree in electrical and computer engineering
D-OtherEng Doctoral degree in other engineering
D-MechaEng Doctoral degree in mechanical engineering
D-HealthSc Doctoral degree in health
J-Biological Job category: biological sciences
J-Computer Job category - computing and information sciences
J-Math Job category - mathematics and statistics
J-AgriFood Job category - agricultural and food sciences
J-EnvEarthAt Job category: environmental, earth, atmospheric, and ocean sci-

ences
J-Chemistry Job category - chemistry (except biochemistry)
J-Physical Job category - physical and astronomical sciences
J-Economics Job category: economics
J-Political Job category: political sciences
J-Psychology Job category: psychology
J-OtherSoc Job category: other social sciences
J-EngArcTec Job category: engineers, architects, engineering technicians
J-Health Job category: health occupations
J-Manager Job category: managers
J-NonSandE Job category: non-science and engineering
J-Other Job category: other
RegionCPI Average Consumer Price Index of the region of employment for

the half-year including the survey reference week
FT/PTotherReaNNW Principal job 35+ hours/week or <35 for other reasons than not

needing/wanting more hours
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PTNotNeedWant Principal job <35 hours/week b/c did not need or want to work
more hours

FT/PTotherReaRet Principal job 35+ hours/week or <35 for other reasons than
(semi-)retired

PTRET0 Principal job <35 hours/week b/c (semi-)retired <1 year ago
PTRET1 Principal job <35 hours/week b/c (semi-)retired 1 year ago
PTRET2 Principal job <35 hours/week b/c (semi-)retired 2 years ago
PTRET3 Principal job <35 hours/week b/c (semi-)retired 3 years ago
PTRET4pl Principal job <35 hours/week b/c (semi-)retired 4+ years ago
FT/PTotherReaFTNA Principal job 35+ hours/week or <35 for other reasons than full-

time job not available
PTFullNA Principal job <35 hours/week b/c full-time job not available
NuMonSinSTRT Number of months since started principal job
STRTJan – STRTDec Month of start of principal job: January – December
SamEmpSamJob Same employer and same type of job during previous wave’s ref-

erence week
SamEmpDifJob Same employer but different type of job during previous wave’s

reference week
DifEmpSamJob Different employer but same type of job during previous wave’s

reference week
DifEmpDifJob Different employer and different type of job during previous

wave’s reference week
NOWorkPrevRW Not working for pay during previous wave’s reference week
SamEmJo/CHotherReaLay Same employer/type of job or changed employer/type of job for

reasons other than laid off/job terminated
CHLayTerm Change employer or job (from previous wave) b/c laid off or job

terminated
Married Married
MarrLik Living in a marriage-like relationship
Widowed Widowed
Separat Separated
Divorce Divorced
NevMarr Never married
NoChild No children living in family
ChUnd02 At least on child <2 in family
Ch02 05 At least on child 2-5 in family
Ch06 11 At least on child 6-11 in family
Ch12plu At least on child 12+ in family
NoSpou/SpouNotWk Widowed/Separated/Divorced/Never married or Spouse not

working
SpouFT Spouse working full-time
SpouPT Spouse working part-time
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Alabama – Wyoming State of employment: 50 states plus Washington D.C.
Puerto Rico State of employment: Puerto Rico
Terr/Abroad State of employment: Other

Table 2: Parameter Estimates

Parameter Estimate SE LL95 UL95 p.value
Intercept 9.40456 0.05489 9.2970 9.5121 0.0000 *
YrsSince95 0.02136 0.00137 0.0187 0.0240 0.0000 *
YrsSinceDe 0.03038 0.00065 0.0291 0.0317 0.0000 *
YrsSinceDe2 -0.00055 0.00002 -0.0006 -0.0005 0.0000 *
Male 0 0 0 0 .
Female -0.06800 0.01358 -0.0946 -0.0414 0.0000 *
UScit 0 0 0 0 .
NotUScit -0.01898 0.00523 -0.0292 -0.0087 0.0003 *
AGEatGrad -0.00569 0.00039 -0.0065 -0.0049 0.0000 *
NotPostDoc 0 0 0 0 .
PostDoc -0.29812 0.00599 -0.3099 -0.2864 0.0000 *
HRSWK 0.03848 0.00090 0.0367 0.0402 0.0000 *
HRSWK2 -0.00031 0.00001 -0.0003 -0.0003 0.0000 *
NotAdjFac 0 0 0 0 .
AdjFac -0.52241 0.03378 -0.5886 -0.4562 0.0000 *
JobCloselyRel 0 0 0 0 .
JobSomewhaRel -0.06921 0.01692 -0.1024 -0.0360 0.0000 *
JobNotRelOthe -0.28027 0.04413 -0.3668 -0.1938 0.0000 *
JobNotRelCarr -0.19284 0.03381 -0.2591 -0.1266 0.0000 *
White 0 0 0 0 .
Asian -0.00325 0.00628 -0.0156 0.0090 0.6042
NatAm -0.00107 0.02568 -0.0514 0.0492 0.9666
Black 0.00281 0.00921 -0.0152 0.0209 0.7606
Hispa 0.01659 0.00844 0.0000 0.0331 0.0493 .
Other -0.03544 0.02027 -0.0752 0.0043 0.0803
C4TenPu 0 0 0 0 .
C4NTePu -0.07451 0.00486 -0.0840 -0.0650 0.0000 *
C4NATPu -0.12011 0.00602 -0.1319 -0.1083 0.0000 *
C4TenPr -0.02019 0.00740 -0.0347 -0.0057 0.0064 *
C4NATPr -0.11777 0.00817 -0.1338 -0.1018 0.0000 *
C4NTePr -0.09621 0.00669 -0.1093 -0.0831 0.0000 *
Coll2yr -0.13495 0.01084 -0.1562 -0.1137 0.0000 *
IndProf 0.20468 0.00580 0.1933 0.2160 0.0000 *
IndSelf 0.07374 0.01264 0.0490 0.0985 0.0000 *
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IndNoPr 0.05115 0.00850 0.0345 0.0678 0.0000 *
Federal 0.13489 0.00723 0.1207 0.1491 0.0000 *
StLocGv -0.00783 0.00960 -0.0266 0.0110 0.4148
D-BioloSci 0 0 0 0 .
D-AgriFood -0.07480 0.01330 -0.1009 -0.0487 0.0000 *
D-EnvirSci -0.03586 0.01653 -0.0683 -0.0035 0.0301 .
D-CompInfo 0.19753 0.01543 0.1673 0.2278 0.0000 *
D-MatheSci 0.02077 0.01197 -0.0027 0.0442 0.0825
D-PhyAstro 0.03981 0.01131 0.0176 0.0620 0.0004 *
D-ChemNoBi 0.00877 0.00911 -0.0091 0.0266 0.3354
D-EarAtmOc -0.03736 0.01603 -0.0688 -0.0059 0.0197 .
D-Psycholo 0.00615 0.01145 -0.0163 0.0286 0.5911
D-Economic 0.15835 0.01864 0.1218 0.1949 0.0000 *
D-PolitSci 0.07451 0.01703 0.0411 0.1079 0.0000 *
D-OtherSoc -0.04433 0.01076 -0.0654 -0.0232 0.0000 *
D-AerosEng 0.10661 0.02297 0.0616 0.1516 0.0000 *
D-ChemiEng 0.09342 0.01328 0.0674 0.1195 0.0000 *
D-CivilEng 0.05277 0.01579 0.0218 0.0837 0.0008 *
D-ElecComp 0.16121 0.01098 0.1397 0.1827 0.0000 *
D-OtherEng 0.08402 0.01132 0.0618 0.1062 0.0000 *
D-MechaEng 0.07870 0.01540 0.0485 0.1089 0.0000 *
D-HealthSc 0.08850 0.01035 0.0682 0.1088 0.0000 *
J-Biological 0 0 0 0 .
J-Computer 0.02962 0.00908 0.0118 0.0474 0.0011 *
J-Math 0.01153 0.01141 -0.0108 0.0339 0.3121
J-AgriFood 0.00556 0.01047 -0.0150 0.0261 0.5958
J-EnvEarthAt 0.02963 0.01152 0.0071 0.0522 0.0101 .
J-Chemistry -0.02075 0.00858 -0.0376 -0.0039 0.0156 .
J-Physical 0.00145 0.00967 -0.0175 0.0204 0.8805
J-Economics 0.01261 0.01685 -0.0204 0.0456 0.4544
J-Political -0.09633 0.01945 -0.1344 -0.0582 0.0000 *
J-Psychology -0.00517 0.01001 -0.0248 0.0144 0.6053
J-OtherSoc -0.01645 0.00970 -0.0355 0.0026 0.0898
J-EngArcTec 0.03292 0.00814 0.0170 0.0489 0.0001 *
J-Health 0.10233 0.00788 0.0869 0.1178 0.0000 *
J-Manager 0.18488 0.00652 0.1721 0.1977 0.0000 *
J-NonSandE -0.03081 0.00846 -0.0474 -0.0142 0.0003 *
J-Other -0.23034 0.01704 -0.2637 -0.1969 0.0000 *
RegionCPI 0.00240 0.00028 0.0019 0.0029 0.0000 *
FT/PTotherReaNNW 0 0 0 0 .
PTNotNeedWant -0.05529 0.01518 -0.0850 -0.0255 0.0003 *
FT/PTotherReaRet 0 0 0 0 .
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PTRET0 -0.10097 0.04615 -0.1914 -0.0105 0.0287 .
PTRET1 -0.16652 0.03616 -0.2374 -0.0956 0.0000 *
PTRET2 -0.21385 0.03988 -0.2920 -0.1357 0.0000 *
PTRET3 -0.29363 0.04860 -0.3889 -0.1984 0.0000 *
PTRET4pl -0.31368 0.02787 -0.3683 -0.2591 0.0000 *
FT/PTotherReaFTNA 0 0 0 0 .
PTFullNA -0.19218 0.02189 -0.2351 -0.1493 0.0000 *
NoMonSinSTRT 0.00023 0.00002 0.0002 0.0003 0.0000 *
STRTJan 0.01768 0.00497 0.0079 0.0274 0.0004 *
STRTFeb 0.03100 0.00744 0.0164 0.0456 0.0000 *
STRTMar 0.03782 0.00690 0.0243 0.0513 0.0000 *
STRTApr 0.03794 0.00717 0.0239 0.0520 0.0000 *
STRTMay 0.04195 0.00655 0.0291 0.0548 0.0000 *
STRTJun 0.02299 0.00567 0.0119 0.0341 0.0001 *
STRTJul 0.05065 0.00521 0.0404 0.0609 0.0000 *
STRTAug 0 0 0 0 .
STRTSep 0.00301 0.00424 -0.0053 0.0113 0.4781
STRTOct 0.03655 0.00647 0.0239 0.0492 0.0000 *
STRTNov 0.04083 0.00728 0.0266 0.0551 0.0000 *
STRTDec 0.03931 0.00663 0.0263 0.0523 0.0000 *
SamEmpSamJob 0 0 0 0 .
SamEmpDifJob 0.03309 0.00451 0.0242 0.0419 0.0000 *
DifEmpSamJob 0.04057 0.00493 0.0309 0.0502 0.0000 *
DifEmpDifJob -0.00994 0.00453 -0.0188 -0.0010 0.0284 .
NOWorkPrevRW -0.10712 0.00714 -0.1211 -0.0931 0.0000 *
SamEmJo/CHotherReaLay 0 0 0 0 .
CHLayTerm -0.04758 0.00532 -0.0580 -0.0372 0.0000 *
Married 0 0 0 0 .
MarrLik -0.06368 0.01890 -0.1007 -0.0266 0.0008 *
Widowed -0.06456 0.01216 -0.0884 -0.0407 0.0000 *
Separat -0.06628 0.01024 -0.0863 -0.0462 0.0000 *
Divorce -0.09140 0.00750 -0.1061 -0.0767 0.0000 *
NevMarr -0.11255 0.00971 -0.1316 -0.0935 0.0000 *
NoChild 0 0 0 0 .
ChUnd02 -0.00246 0.00430 -0.0109 0.0060 0.5680
Ch02 05 0.01049 0.00366 0.0033 0.0177 0.0041 *
Ch06 11 0.02092 0.00362 0.0138 0.0280 0.0000 *
Ch12plu 0.01751 0.00375 0.0102 0.0249 0.0000 *
NoSpou/SpouNotWk 0 0 0 0 .
SpouFT -0.05595 0.00463 -0.0650 -0.0469 0.0000 *
SpouPT -0.03224 0.00502 -0.0421 -0.0224 0.0000 *
Alabama -0.10595 0.01616 -0.1376 -0.0743 0.0000 *
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Alaska -0.11938 0.03388 -0.1858 -0.0530 0.0004 *
Arizona -0.12386 0.01657 -0.1563 -0.0914 0.0000 *
Arkansas -0.15199 0.02340 -0.1979 -0.1061 0.0000 *
California 0 0 0 0 .
Colorado -0.16204 0.01409 -0.1897 -0.1344 0.0000 *
Connecticut -0.03439 0.01439 -0.0626 -0.0062 0.0169 .
Delaware -0.02527 0.01765 -0.0599 0.0093 0.1522
Washington D.C. 0.01504 0.01288 -0.0102 0.0403 0.2430
Florida -0.13093 0.01241 -0.1553 -0.1066 0.0000 *
Georgia -0.09078 0.01284 -0.1160 -0.0656 0.0000 *
Hawaii -0.08002 0.02831 -0.1355 -0.0245 0.0047 *
Idaho -0.19638 0.02956 -0.2543 -0.1384 0.0000 *
Illinois -0.06628 0.00924 -0.0844 -0.0482 0.0000 *
Indiana -0.11406 0.01346 -0.1404 -0.0877 0.0000 *
Iowa -0.15171 0.01829 -0.1876 -0.1158 0.0000 *
Kansas -0.17994 0.02280 -0.2246 -0.1353 0.0000 *
Kentucky -0.17654 0.01936 -0.2145 -0.1386 0.0000 *
Louisiana -0.12316 0.01470 -0.1520 -0.0944 0.0000 *
Maine -0.24040 0.03333 -0.3057 -0.1751 0.0000 *
Maryland -0.03444 0.00917 -0.0524 -0.0165 0.0002 *
Massachusetts -0.05635 0.00930 -0.0746 -0.0381 0.0000 *
Michigan -0.07467 0.00939 -0.0931 -0.0563 0.0000 *
Minnesota -0.10286 0.01492 -0.1321 -0.0736 0.0000 *
Mississippi -0.10886 0.02459 -0.1571 -0.0607 0.0000 *
Missouri -0.12262 0.01357 -0.1492 -0.0960 0.0000 *
Montana -0.25572 0.03636 -0.3270 -0.1844 0.0000 *
Nebraska -0.16338 0.02185 -0.2062 -0.1205 0.0000 *
Nevada -0.05641 0.03107 -0.1173 0.0045 0.0694
New Hampshire -0.17370 0.02234 -0.2175 -0.1299 0.0000 *
New Jersey -0.01083 0.01081 -0.0320 0.0104 0.3165
New Mexico -0.10454 0.01763 -0.1391 -0.0700 0.0000 *
New York -0.02956 0.00872 -0.0467 -0.0125 0.0007 *
North Carolina -0.08689 0.01029 -0.1071 -0.0667 0.0000 *
North Dakota -0.18912 0.03479 -0.2573 -0.1209 0.0000 *
Ohio -0.13808 0.00915 -0.1560 -0.1201 0.0000 *
Oklahoma -0.16905 0.02032 -0.2089 -0.1292 0.0000 *
Oregon -0.16912 0.01340 -0.1954 -0.1428 0.0000 *
Pennsylvania -0.11581 0.00940 -0.1342 -0.0974 0.0000 *
Rhode Island -0.11207 0.02565 -0.1624 -0.0618 0.0000 *
South Carolina -0.12120 0.01733 -0.1552 -0.0872 0.0000 *
South Dakota -0.19963 0.03694 -0.2720 -0.1272 0.0000 *
Tennessee -0.13393 0.01296 -0.1593 -0.1085 0.0000 *
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Texas -0.06889 0.00732 -0.0832 -0.0545 0.0000 *
Utah -0.14044 0.02164 -0.1829 -0.0980 0.0000 *
Vermont -0.24691 0.02608 -0.2980 -0.1958 0.0000 *
Virginia -0.03924 0.00774 -0.0544 -0.0241 0.0000 *
Washington -0.11082 0.01196 -0.1343 -0.0874 0.0000 *
West Virginia -0.15164 0.02746 -0.2055 -0.0978 0.0000 *
Wisconsin -0.15275 0.01285 -0.1779 -0.1276 0.0000 *
Wyoming -0.15591 0.04627 -0.2466 -0.0652 0.0008 *
Puerto Rico -0.26112 0.02378 -0.3077 -0.2145 0.0000 *
Terr/Abroad -0.21240 0.05858 -0.3272 -0.0976 0.0003 *
Male-/ 0YrsSince95 0 0 0 0 .
Fem*YrsSince95 0.00068 0.00065 -0.0006 0.0019 0.2913
Male-/ 0YrsSinceDe 0 0 0 0 .
Fem*YrsSinceDe -0.00316 0.00051 -0.0042 -0.0022 0.0000 *
NotAdjFac-/ 0HRSWK 0 0 0 0 .
AdjFac*HRSWK 0.00852 0.00073 0.0071 0.0100 0.0000 *
JobCloselyRel-/ 0HRSWK 0 0 0 0 .
JobSomewhaRel*HRSWK 0.00128 0.00034 0.0006 0.0020 0.0002 *
JobNotRelOthe*HRSWK 0.00379 0.00098 0.0019 0.0057 0.0001 *
JobNotRelCarr*HRSWK 0.00301 0.00068 0.0017 0.0043 0.0000 *
Male-/ Married 0 0 0 0 .
Fem*MarrLik 0.08722 0.03345 0.0217 0.1528 0.0091 *
Fem*Widowed 0.04184 0.02291 -0.0031 0.0867 0.0678
Fem*Separat 0.05907 0.01737 0.0250 0.0931 0.0007 *
Fem*Divorce 0.07054 0.01475 0.0416 0.0994 0.0000 *
Fem*NevMarr 0.07495 0.01745 0.0407 0.1092 0.0000 *
Male-/ NoChild 0 0 0 0 .
Fem*ChUnd02 0.00761 0.00853 -0.0091 0.0243 0.3723
Fem*Ch02 05 -0.00674 0.00719 -0.0208 0.0073 0.3484
Fem*Ch06 11 -0.02766 0.00707 -0.0415 -0.0138 0.0001 *
Fem*Ch12plu -0.00779 0.00806 -0.0236 0.0080 0.3339
Male-/ NoSpou/SpouNotWk 0 0 0 0 .
Fem*SpouFT 0.03216 0.01096 0.0107 0.0536 0.0033 *
Fem*SpouPT 0.01514 0.01319 -0.0107 0.0410 0.2511
NoMarrLik-/
NoSpou/SpouNotWk

0 0 0 0 .

MarrLik*SpouFT 0.04734 0.02060 0.0070 0.0877 0.0215 .
MarrLik*SpouPT 0.02542 0.03715 -0.0474 0.0982 0.4939
FT/PTotherReaNNW-/ 0Mon-
SinSTRT

0 0 0 0 .

PTNotNeedWant*NoMonSinSTRT 0.00034 0.00007 0.0002 0.0005 0.0000 *
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FT/PTotherReaNNW-/ PTother-
ReaRet

0 0 0 0 .

PTNotNeedWant*PTRET0 -0.10434 0.06991 -0.2414 0.0327 0.1356
PTNotNeedWant*PTRET1 0.05585 0.05171 -0.0455 0.1572 0.2801
PTNotNeedWant*PTRET2 0.03425 0.04640 -0.0567 0.1252 0.4605
PTNotNeedWant*PTRET3 0.12503 0.05914 0.0091 0.2409 0.0345 .
PTNotNeedWant*PTRET4pl 0.00877 0.03432 -0.0585 0.0760 0.7984
FT/PTotherReaRet-/
SamEmJo/CHotherReaLay

0 0 0 0 .

PTRET0*CHLayTerm 0.20425 0.19539 -0.1787 0.5872 0.2959
PTRET1*CHLayTerm 0.06206 0.15226 -0.2364 0.3605 0.6836
PTRET2*CHLayTerm 0.09143 0.10861 -0.1215 0.3043 0.3999
PTRET3*CHLayTerm 0.30352 0.14646 0.0165 0.5906 0.0382 .
PTRET4pl*CHLayTerm 0.26258 0.12391 0.0197 0.5054 0.0341 .
FT/PTotherReaFTNA-/ 0Mon-
SinSTRT

0 0 0 0 .

PTFullNA*NoMonSinSTRT 0.00058 0.00014 0.0003 0.0009 0.0001 *
SamEmpSamJob-/
FT/PTotherReaRet

0 0 0 0 .

SamEmpDifJob*PTRET0 -0.20041 0.07602 -0.3494 -0.0514 0.0084 *
SamEmpDifJob*PTRET1 -0.23828 0.07638 -0.3880 -0.0886 0.0018 *
SamEmpDifJob*PTRET2 -0.16398 0.08670 -0.3339 0.0059 0.0586
SamEmpDifJob*PTRET3 -0.08353 0.10852 -0.2962 0.1292 0.4415
SamEmpDifJob*PTRET4pl -0.12142 0.10231 -0.3219 0.0791 0.2353
DifEmpSamJob*PTRET0 -0.15913 0.14136 -0.4362 0.1179 0.2603
DifEmpSamJob*PTRET1 -0.05197 0.07589 -0.2007 0.0968 0.4935
DifEmpSamJob*PTRET2 -0.07256 0.12517 -0.3179 0.1728 0.5621
DifEmpSamJob*PTRET3 -0.32880 0.17586 -0.6735 0.0159 0.0615
DifEmpSamJob*PTRET4pl -0.05116 0.11117 -0.2690 0.1667 0.6454
DifEmpDifJob*PTRET0 -0.22100 0.09540 -0.4080 -0.0340 0.0205 .
DifEmpDifJob*PTRET1 -0.14962 0.07145 -0.2897 -0.0096 0.0362 .
DifEmpDifJob*PTRET2 -0.17286 0.07168 -0.3134 -0.0324 0.0159 .
DifEmpDifJob*PTRET3 -0.28605 0.14911 -0.5783 0.0062 0.0551
DifEmpDifJob*PTRET4pl -0.18792 0.10055 -0.3850 0.0092 0.0616
NOWorkPrevRW*PTRET0 0.04092 0.17089 -0.2940 0.3759 0.8107
NOWorkPrevRW*PTRET1 -0.10666 0.13375 -0.3688 0.1555 0.4251
NOWorkPrevRW*PTRET2 -0.30248 0.08783 -0.4746 -0.1303 0.0006 *
NOWorkPrevRW*PTRET3 -0.20368 0.07911 -0.3587 -0.0486 0.0100 .
NOWorkPrevRW*PTRET4pl -0.14042 0.04983 -0.2381 -0.0428 0.0048 *
SamEmpSamJob-/ 0MonSin-
STRT

0 0 0 0 .
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SamEmpDifJob*NoMonSinSTRT -0.00016 0.00005 -0.0003 -0.0001 0.0011 *
DifEmpSamJob*NoMonSinSTRT -0.00021 0.00011 -0.0004 0.0000 0.0646
DifEmpDifJob*NoMonSinSTRT 0.00004 0.00014 -0.0002 0.0003 0.7947
NOWorkPrevRW*NoMonSinSTRT 0.00020 0.00008 0.0000 0.0004 0.0105 .
NoMarrLik-/ Male-/
NoSpou/SpouNotWk

0 0 0 0 .

MarrLik*Fem*SpouFT -0.06740 0.03630 -0.1385 0.0037 0.0633
MarrLik*Fem*SpouPT -0.02805 0.05674 -0.1393 0.0832 0.6210
Signif. codes: ‘*’ 0.01, ‘.’ 0.05
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