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ABSTRACT

Many statistical agencies, survey organizations, and research centers collect data that suffer

from item nonresponse and erroneous or inconsistent values. These data may be required

to satisfy linear constraints, e.g., bounds on individual variables and inequalities for ratios

or sums of variables. Often these constraints are designed to identify faulty values, which

then are blanked and imputed. The data also may exhibit complex distributional fea-

tures, including nonlinear relationships and highly non-normal distributions. We present

a fully Bayesian, joint model for modeling or imputing data with missing/blanked values

under linear constraints that (i) automatically incorporates the constraints in inferences

and imputations, and (ii) uses a flexible Dirichlet process mixture of multivariate normal

distributions to reflect complex distributional features. Our strategy for estimation is to

augment the observed data with draws from a hypothetical population in which the con-

straints are not present, thereby taking advantage of computationally expedient methods

for fitting mixture models. Missing/blanked items are sampled from their posterior dis-

tribution using the Hit-and-Run sampler, which guarantees that all imputations satisfy

the constraints. We illustrate the approach using manufacturing data from Colombia,

examining the potential to preserve joint distributions and a regression from the plant

productivity literature. Supplementary materials are available online.

KEY WORDS: Edit; Hit-and-Run; Mixture; Survey; Truncation.



1. INTRODUCTION

Most economic datasets suffer from missing data. For example, among the plants surveyed

in the 2007 U. S. Census of Manufactures and across all 6-digit NAICS industries, 27%

of plants are missing total value of shipments, 32% of plants are missing book values of

assets, and 42% of plants are missing cost of materials. As is well-known (Little and

Rubin 2002), using only the complete cases (all variables are observed) or available cases

(all variables for the particular analysis are observed) can cause problems for statistical

inferences, even when variables are missing at random (Rubin 1976). By discarding cases

with partially observed data, both approaches sacrifice information that could be used to

increase precision. Further, using only available cases complicates model comparisons, since

different models could be estimated on different sets of cases; standard model comparison

strategies do not account for such disparities. For data collected with complex survey

designs, using only available cases complicates survey-weighted inference, since the original

weights generally are no longer meaningful for the available sample.

An alternative to complete/available cases is to fill in the missing items with multiple

imputations (Rubin 1987). The basic idea is to simulate values for the missing items by

sampling repeatedly from predictive distributions. This creates m > 1 completed datasets

that can be analyzed or, as relevant for many data producers, disseminated to the public.

When the imputation models meet certain conditions (Rubin 1987, Chapter 4), analysts

of the m completed datasets can make valid inferences using complete-data statistical

methods and software. Specifically, the analyst computes point and variance estimates of

interest with each dataset and combines these estimates using simple formulas developed

by Rubin (1987). These formulas serve to propagate the uncertainty introduced by missing

data and imputation through the analyst’s inferences. See Reiter and Raghunathan (2007)

for a review of multiple imputation.
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In many settings, imputations of numerical variables must respect linear constraints.

These constraints arise particularly in the context of editing faulty data, i.e., values that

are not plausible (e.g., a plant with one million employees, or a large plant with an average

salary per employee of $1 million) or that are inconsistent with other values on the data file

(e.g., an establishment reporting an entry year of 2012 that also reports non-zero employ-

ment in earlier years). For example, the U. S. Census Bureau requires numerical variables

to satisfy an extensive set of ratio constraints intended to catch errors in survey report-

ing or data capture in the Census of Manufactures, the Annual Survey of Manufactures,

and the Services Sectors Censuses (SSC) in the Economic Census (Winkler and Draper

1996; Draper and Winkler 1997; Thompson et al. 2001). Examples of non-U. S. economic

data products subject to editing include the Survey of Average Weekly Earnings of the

Australian Bureau of Statistics (Lawrence and McDavitt 1994), the Structural Business

Survey of Statistics Netherlands (Scholtus and Göksen 2012), and the Monthly Inquiry

into the Distribution and Services Sector of the U. K. Office for National Statistics (Hedlin

2003).

Despite the prevalence and prominence of such contexts, there has been little work on

imputation of numerical variables under constraints (De Waal et al. 2011). Most statisti-

cal agencies use hot deck imputation: for each record with missing values, find a record

with complete data that is similar on all observed values, and use that record’s values as

imputations. However, many hot deck approaches do not guarantee that all constraints

are satisfied and, as with hot deck imputation in general, can fail to describe multivari-

ate relationships and typically result in underestimation of uncertainty (Little and Rubin

2002). Tempelman (2007) proposes to impute via truncated multivariate normal distribu-

tions that assign zero support to multivariate regions not satisfying the constraints. This

approach presumes relationships in the data are well-described by a single multivariate

normal distribution, which for skewed economic variables is not likely in practice even af-
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ter transformations (which themselves can be tricky to implement because the constraints

may be difficult to express on the transformed scale). Raghunathan et al. (2001) and

Tempelman (2007) propose to use sequential regression imputation, also called multiple

imputation by chained equations (Van Buuren and Oudshoorn 1999), with truncated con-

ditional models. The basic idea is to impute each variable yj with missing data from its

regression on some function of all other variables {ys : s 6= j}, enforcing zero support for

the interval values of yj not satisfying the constraints. While more flexible than multi-

variate normal imputation, this technique faces several challenges in practice. Relations

among the variables may be interactive and nonlinear, and identifying these complexities

in each conditional model can be a laborious task with no guarantee of success. Further-

more, the set of specified conditional distributions may not correspond to a coherent joint

distribution and thus is subject to odd theoretical behaviors. For example, the order in

which variables are placed in the sequence could impact the imputations (Baccini et al.

2010).

In this article, we propose a fully Bayesian, flexible joint modeling approach for mul-

tiple imputation of missing or faulty data subject to linear constraints. To do so, we use

a Dirichlet process mixture of multivariate normal distributions as the base imputation

engine, allowing the data to inform the appropriate number of mixture components. The

mixture model allows for flexible joint modeling, as it can reflect complex distributional and

dependence structures automatically (MacEachern and Müller 1998), and it is readily fit

with MCMC techniques (Ishwaran and James 2001). We restrict the support of the mixture

model only to regions that satisfy the constraints. To sample from this restricted mixture

model, we utilize the Hit-and-Run sampler (Boneh and Golan 1979; Smith 1980), thereby

guaranteeing that the imputations satisfy all constraints. We illustrate the constrained

imputation procedure with data from the Colombian Annual Manufacturing Survey, es-

timating descriptive statistics and coefficients from a regression used in the literature on
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plant productivity.

The remainder of the article is organized as follows. In Section 2, we review automatic

editing and imputation processes, which serves as a motivating setting for our work. In

Section 3, we present the constrained Dirichlet process mixture of multivariate normals

(CDPMMN) multiple imputation engine, including the MCMC algorithm for generating

imputations. In Section 4, we apply the CDPMMN to the Colombian manufacturing data.

In Section 5, we conclude with a brief discussion of future research directions.

2. BACKGROUND ON DATA EDITING

Although the CDPMMN model is of interest as a general estimation and imputation

model, it is especially relevant for national statistical agencies and survey organizations—

henceforth all called agencies—seeking to disseminate high-quality data to the public.

These agencies typically dedicate significant resources to imputing missing data and cor-

recting faulty data before dissemination. For example, Granquist and Kovar (1997) esti-

mated that national statistical agencies spend 40% of the total budget for business surveys

(20% for household surveys) on edit and imputation processes, and in an internal study of

62 products at Statistics Sweden, Norberg (2009) reports that the agency allocated 32.6%

of total costs in business surveys to editing processes. Improving these processes serves as

a primary motivation for the CDPMMN imputation engine, as we now describe.

Since the 1960s, national statistical agencies have leveraged the expertise of subject

matter analysts with automated methods for editing and imputing numerical data. The

subject matter experts create certain consistent rules, called edit rules or edits, that de-

scribe feasible regions of data values. The automated methods identify and replace values

that fail the edit rules.

For numerical data, typical edit rules include range restrictions, e.g., marginal lower

4



Table 1: Exemplary ratio edits in the SSC. SLS = sales/receipts, APR = annual payroll,
OPX = annual operating expenses, GOP = purchases, EMP = employment, QPR = first
quarter payroll, BIN = beginning inventory, and ENV = ending inventory.

Ratio
Lower Upper Industry No. of No. of Perc. of
bound bound avg. records fail fail

SLS / APR 1.0 152.8 21.8 4,785 223 4.7 %
SLS / OPX 1.0 57.5 9.4 3,963 224 5.7 %
SLS / GOP 0.5 2.2 1.1 4,097 335 8.2 %
SLS / BIN 0.1 358.0 16.4 3,685 188 5.1 %

APR / EMP 1.4 106.0 29.2 4,804 55 1.1 %
APR / QPR 2.6 7.6 4.3 4,565 87 1.9 %
OPX / APR 1.0 9.4 2.6 3,877 333 8.6 %
ENV / BIN 0.3 2.1 0.9 3,681 148 4.0 %

and upper bounds on a single variable, ratio edits, e.g., lower and upper bounds on a ratio

of two variables, and balance edits, e.g., two or more items adding to a total item. In this

article, we consider range restrictions and ratio edits, but not balance edits. Formally, let

xij be the value of the jth variable for the ith subject, where i = 1, . . . , n and j = 1, . . . , p.

For variables with range restrictions, we have Lj ≤ xij ≤ Uj, where Uj and Lj are agency-

fixed upper and lower limits, respectively. For any two variables (xij, xik) subject to ratio

edits, we have Ljk ≤ xij/xik ≤ Ujk, where again Ujk and Ljk are agency-fixed upper and

lower limits, respectively. An exemplary system of ratio edits is displayed in Table 1.

These rules, defined by the Census Bureau for data collected in the SSC, were used to test

editing routines in 1997 Economic Census (Thompson et al. 2001).

The set of edit rules defines a feasible region (convex polytope) comprising all potential

records passing the edits. A potential data record xi = (xi1, . . . , xip)
′ satisfies the edits if

and only if the constraints Axi ≤ b for some matrix A and vector b are satisfied. Any

record that fails the edits is replaced (imputed) by a record that passes the edits.

Finding records that fail rules is straightforward, at least conceptually, with automated

routines and modern computing. However, identifying the faulty values within any record
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(the error localization procedure) and correcting those erroneous values (the imputation

procedure) are far more complicated tasks. Among national statistical agencies, the most

commonly used error localization procedure is that of Fellegi and Holt (1976), who develop

a set covering algorithm that identifies the minimum number of values to change in the data

to satisfy all edit rules. Fellegi and Holt (1976) error localization algorithms are the basis for

many automated edit systems, including the Census Bureau’s SPEER (Draper and Winkler

1997), Statistics Canada’s GEIS (Whitridge and Kovar 1990), Spanish National Statistical

Institute’s DIA (Garcia-Rubio and Villan 1990), Statistics Netherlands’ CherryPi (De Waal

2000), and Istituto Nazionaledi Statistica’s SCIA (Manzari 2004). We do not discuss error

localization steps further, as our concern is with the imputation procedure; that is, we

assume that the erroneous fields of survey data that violate edit rules have been detected

and blanked by the agency, and we focus on imputing the blanked values.

3. MODEL AND ESTIMATION

We now present the CDPMMN imputation engine. We begin in Section 3.1 by reviewing

Dirichlet mixtures of multivariate normal distributions without any truncation or missing

data. We adapt the model in Section 3.2 to handle truncation and present an MCMC al-

gorithm to estimate the model, again assuming no missing data. We modify this algorithm

in Section 3.3. to account for missing data, making use of a Hit-and-Run algorithm in the

MCMC steps. We discuss several implementation issues in Section 3.4.

3.1 Dirichlet Process Mixtures of Normals Without Truncation

Let Yn = {y1, . . . ,yn} comprise n complete observations not subject to edit constraints,

where each yi is a p-dimensional vector. To facilitate modeling, we assume that each

yi has mean zero and variance one, e.g., the analyst standardizes each variable before
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modeling. We suppose that each individual i belongs to exactly one of K < ∞ latent

mixture components. For i = 1, . . . , n, let zi ∈ {1, . . . , K} indicate the component of

individual i, and let πk = Pr(zi = k). We assume that π = (π1, . . . , πK) is the same

for all individuals. Within any component k, we suppose that the p variables follow a

component-specific multivariate normal distribution with mean µk and variance Σk. Let

Θ = (µ,Σ,π), where µ = (µ1, . . . ,µK) and Σ = (Σ1, . . . ,ΣK). Mathematically, the finite

mixture model can be expressed as

yi | zi, µ,Σ ∼ N(yi | µzi ,Σzi) (1)

zi | π ∼ Multinomial(π1, . . . , πK). (2)

Marginalizing over zi, this model is equivalent to

p(yi | Θ) =
K∑
k=1

πkN(yi | µk,Σk). (3)

To complete the Bayesian specification, we require prior distributions for Θ. As sug-

gested by Lavine and West (1992), for (µk,Σk) we use

µk | Σk ∼ N(µ0, h
−1Σk) (4)

Σk ∼ InverseWishart(f,Φ), (5)

where f is the degrees of freedom, Φ = diag(φ1, . . . , φp), and

φj ∼ Gamma(aφ, bφ) (6)

with mean aφ/bφ for j = 1, . . . , p. These conditionally conjugate prior distributions simplify

the MCMC computations. We defer discussion of these hyperparameter values until Section
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3.2, when we present the constrained model.

For the component weights, π, we use the stick-breaking representation of a truncated

Dirichlet process (Sethuraman 1994; Ishwaran and James 2001), shown in (7) – (8) below.

πk = vk
∏
g<k

(1− vg) for k = 1, . . . , K (7)

vk ∼ Beta(1, α) for k = 1, . . . , K − 1; vK = 1 (8)

α ∼ Gamma(aα, bα). (9)

Here, (aα, bα) are analyst-supplied constants. Following Dunson and Xing (2009), we

recommend setting (aα = .25, bα = .25), which represents a small prior sample size and

hence vague specification for Gamma distributions. This ensures that the information from

the data dominates the posterior distribution (Escobar and West 1995). The specification

of prior distributions in (7) – (9) encourages πk to decrease stochastically with k. When

α is very small, most of the probability in π is allocated to the first few components, thus

reducing the risks of over-fitting the data as well as increasing computational efficiency. We

note that Dirichlet process distributions are widely used for mixture models in economic

analyses (e.g., Hirano 2002; Gilbride and Lenk 2010).

With specified hyperparameters, the model can be estimated using a Gibbs sampler,

as each full conditional distribution is in closed form; see Ishwaran and James (2001).

3.2 Dirichlet Process Mixtures of Normals With Truncation

The model in Section 3.1 has unrestricted support and hence is inappropriate for imputa-

tion under linear constraints. Instead, when yi is restricted to lie in some feasible region
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A, we need to replace (3) with

p(yi | Θ,A) =
1

h(A,Θ)

K∑
k=1

πkN(yi | µk,Σk)I(yi ∈ A), i = 1, . . . , n, (10)

where I(·) = 1 when the condition inside the parentheses is true, and I(·) = 0 otherwise.

Here, h(A,Θ) is the normalizing constant such that

h(A,Θ) =

∫
{y:y∈A}

K∑
k=1

πkN(y | µk,Σk)dy. (11)

Equivalently, using the representation conditional on zi, we need to replace (1) with

p(yi | zi, µ,Σ,A) = h(A,µzi ,Σzi)N(yi | µzi ,Σzi)I(yi ∈ A) (12)

where

h(A,µk,Σk) =

∫
{y:y∈A}

N(y | µk,Σk)dy. (13)

We leave all other features of the model as described in (2) and (4) – (9).

Unfortunately, due to the truncation, full conditional distributions depending on the

likelihood do not have conjugate forms, thus complicating the MCMC. To avoid compu-

tation with h(A,Θ), we use a data augmentation technique developed by O’Malley and

Zaslavsky (2008) in which we (i) conceive of the observed values as a sample from a larger,

hypothetical sample not subject to the constraints, (ii) construct the hypothetical sample

by augmenting the observed data with values from outside of A, and (iii) use the aug-

mented data to estimate parameters using the usual, unconstrained Gibbs sampler. With

appropriate prior distributions, the resulting parameter estimates correspond to those from

the CDPMMN model.

Specifically, we assume that there exists a hypothetical sample of unknown size N > n
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records, YN = {Yn, YN−n}, where Yn = {y1, . . . ,yn} includes the n observed values and

YN−n = {yn+1, . . . ,yN} includes N − n augmented values, such that

p(YN | Θ) =
N∏
i=1

K∑
k=1

πkN(yi | µk,Σk). (14)

We consider the observed data Yn = {y1, . . . ,yn} to be a sample from YN with probability

h(A,Θ). Thus, for known N , the number of cases in A has distribution

n | N,Θ,A ∼ Binomial(N, h(A,Θ)). (15)

We use the prior distribution suggested by Meng and Zaslavsky (2002) and O’Malley and

Zaslavsky (2008), p(N) ∝ 1/N for N > n, so that

N − n | n,Θ,A ∼ NegativeBinomial (n, 1− h(A,Θ)) . (16)

With this construction, we can estimate Θ without computing h(A,Θ) using an MCMC

algorithm. Let ZN = {Zn, ZN−n} be the set of membership indicators corresponding to

YN , where Zn = {z1, . . . , zn} and ZN−n = {zn+1, . . . , zN}. For each group k = 1, . . . , K,

let Nk =
∑N

i=1 I(zi = k) be the number of cases in the augmented sample in group k; let

ȳk =
∑
{i:zi=k} yi/Nk; and, let Sk =

∑
{i:zi=k}(yi − ȳk)(yi − ȳk)

′. After initialization, the

MCMC algorithm proceeds with the following Gibbs steps.

S1. For k = 1, . . . , K, sample values of (µk,Σk) from the full conditionals,

µk | Σk, YN , ZN ∼ N

(
µ∗k,

1

h
Σk

)
, Σk | YN , ZN ∼ InverseWishart(fk,Φk)

where µ∗k = (Nkȳk + hµ0)/(Nk + h), fk = f + Nk, Φk = Φ + Sk + (µ∗k − µ0)(µ
∗
k −

µ0)
′/(1/Nk + 1/h).
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S2. For k = 1, . . . , K − 1, sample values of vk from the full conditional,

vk | ZN , α ∼ Beta

(
1 +Nk, α +

∑
g>k

Ng

)
.

Set vK = 1. For k = 1, . . . , K, let πk = vk
∏

g<k(1− vg) as in (7).

S3. For j = 1, . . . , p, sample each φl from the full conditional,

φl | Σ ∼ Gamma

(
aφ +

K(p+ 1)

2
, bφ +

1

2

K∑
k=1

Σ−1k(r,r)

)

where Σ−1k(r,r) is the rth diagonal element of Σ−1k .

S4. Given π, sample α from the full conditional,

α | π ∼ Gamma (aα +K − 1, bα − log πK) .

S5. For i = 1, . . . , n, sample each zi from the full conditional,

zi | yi,Θ ∼ Multinomial(π∗i1, . . . , π
∗
iK),

where π∗ik = πkN(yi | µk,Σk)/
{∑K

g=1 πgN(yi | µg,Σg)
}

.

S6. Sample (N,ZN−n, YN−n) jointly from their full conditional distribution following the

approach suggested by O’Malley and Zaslavsky (2008). Specifically, based on the

result in (16), we draw each (zi,yi) ∈ (ZN−n, YN−n) from a negative binomial data-

generating process. To begin, set cin = cout = 0. Then, perform the following steps.

S6.1. Draw z∗ ∼ Multinomial(π1, . . . , πK).

S6.2. Draw y∗ | z∗ ∼ N(µz∗ ,Σz∗).
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S6.3. If y∗ ∈ A, set cin = cin + 1.

If y∗ ∈ Ac, set cout = cout + 1 , yn+cout = y∗, and zn+cout = z∗.

S6.4. Repeat S6.1 through S6.3 until cin = n.

S6.5. Let N = n+ cout.

For the prior distributions in (4) – (6), we recommend using a prior mean of µ0 = 0

since each variable is mean-centered, using f = p+1 degrees of freedom to ensure a proper

distribution without overly constraining Σ, and setting h = 1 mostly for convenience. We

recommend setting (aφ, bφ) to be modest but not too small, so as allow substantial prior

mass at modest-sized variances. Following Dellaportas and Papageorgiou (2006), we use

aφ = bφ = .25. In the Colombia data illustration, results were insensitive to other sensible

choices of hyperparameter values; details of the sensitivity analysis are in Appendix A,

available as on-line Supplementary Material.

3.3 Accounting for Missing Data: Hit-and-Run Algorithm

Having developed an MCMC algorithm for fitting the CDPMMN model without any miss-

ing values, we now extend to include imputation of missing data or, equivalently, impu-

tation of blanked values due to edit rules. Without loss of generality, suppose that the

first s ≤ n records in Yn have some missing values. Let Ys = {y1, . . . ,ys} be these first s

records, and Yn−s = {ys+1, . . . ,yn} be the set of fully observed records. For each yi ∈ Ys,

let yi = (yi,0,yi,1), where yi,0 comprises the missing values and yi,1 comprises the observed

values. Finally, let Ys,0 = {y1,0, . . . ,ys,0}, and let Ys,1 = {y1,1, . . . ,ys,1}.

Formally, we seek to estimate the posterior distribution, f(Ys,0, YN−n, ZN ,Θ,Φ, α,N |

Ys,1, Yn−s,A). We do so in two steps, namely (i) given a draw of Ys,0 satisfying A, draw

values of (YN−n, ZN ,Θ,Φ, α,N) using S1 – S6 from Section 3.2, and (ii) given a draw of

(YN−n, ZN ,Θ,Φ, α,N), draw imputations for Ys,0 satisfying A using a Metropolis version
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of the Hit-and-Run (H&R) sampler (Chen and Schmeiser 1993). Thus, we only need to

add an imputation step to the MCMC algorithm from Section 3.2, as we now describe.

We begin by finding the region of feasible imputations for each yi,0, which we write

as Ai = {yi,0;yi = (yi,0,yi,1) ∈ A}. For systems of linear constraints like those in Table

1 and typically employed in edit-imputation contexts, Ai can be defined using matrix

algebra operations; see Appendix C, Supplementary Material, for an illustrative example.

For more complex linear constraints, feasible regions can be found by linear programming

and related optimization techniques.

The H&R sampler proceeds as follows. At any iteration t of the MCMC sampler, we

presume the current values of each yi,0, say y
(t)
i,0, where i = 1, . . . , s, satisfy the constraints;

see Section 3.4 for a suggestion to initialize the chain at feasible values. The basic idea of

the H&R sampler is to pick a random direction in Rpi , where pi is the number of variables

in yi,0; follow that direction starting from y
(t)
i,0 until hitting the boundary of Ai, say at

some point b
(t)
i,0; and, sample a new point along the line segment with end points (y

(t)
i,0, b

(t)
i,0).

For convex Ai, the selected point is guaranteed to be inside the feasible region. Formally,

we implement this process via the Metropolis step in S7 below.

S7. For i = 1, . . . , s, update each current value y
(t)
i,0 with a Metropolis accept/reject step

as follows.

S7.1. Propose a direction d∗ ∼ r(·) where r(·) is a uniform distribution on the surface

of the unit sphere in Rp.

S7.2. Find the set of candidate distances between the current value and Ai using d∗,

which we write as Ω(d∗,y
(t)
i,0) = {λ ∈ R : y

(t)
i,0 + λd∗ ∈ Ai}.

S7.3. Propose a signed distance λ∗ ∼ η(d∗,y
(t)
i,0) where

η(d∗,y
(t)
i,0) =

1

M
{

Ω(d∗,y
(t)
i,0)
} for λ∗ ∈ Ω(d∗,y

(t)
i,0)
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and M is a Lebesgue measure.

S7.4. Accept or reject the proposal yqi,0 = y
(t)
i,0 +λ∗d∗ with the acceptance probability

ρi, where

ρi = min

{
1,
p(yqi,0 | zi, µ,Σ,Ai)
p(y

(t)
i,0 | zi, µ,Σ,Ai)

}
.

Note that the acceptance probability can be calculated by using the fact that

the conditional distribution of yi,0 is proportional to that of yi, i.e., p(yi,0 |

zi, µ,Σ,Ai) ∝ p(yi | zi, µ,Σ,A) as in (12). After canceling common terms, the

acceptance probability simplifies to ρi = min
{

1,N(yqi | µzi ,Σzi)/N(y
(t)
i | µzi ,Σzi)

}
where yqi = (yqi,0,yi,1).

Because the H&R sampler randomly moves in any direction, it can cover multivari-

ate spaces more efficiently than typical Gibbs samplers that move one direction in each

conditional step. The efficiency gain can be substantial when the sample space is a con-

vex polytope and when variables are highly correlated or sharply constrained (Chen and

Schmeiser 1993; Berger 1993). Lovász and Vempala (2006) prove that the H&R sam-

pler mixes fast, and that mixing time does not depend on the choice of starting points.

Hence, for imputing multivariate data subject to the constraints, the H&R sampler offers

a potentially significant computational advantage over typical Gibbs steps.

To obtain m completed datasets for use in multiple imputation, one selects m of the

sampled Ys,0 after MCMC convergence. These datasets should be spaced sufficiently to be

approximately independent (given the observed data). This involves thinning the MCMC

samples so that the autocorrelations among parameters are close to zero.

3.4 Implementation Issues

In this section, we discuss several features of implementing the CDPMMN imputation

engine, beginning with the choice of K. Setting K too small can result in insufficient
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flexibility to capture complex features of the distributions, but setting K too large is

computationally inefficient. We recommend initially setting K to a reasonably large value,

say K = 50. Analysts can examine the posterior distribution of the number of unique

values of zi across MCMC iterates to diagnose if K is large enough. Significant posterior

mass at a number of classes equal to K suggests that the truncation limit should be

increased. We note that one has to assume a finite K because of the truncation; otherwise,

the model can generate arbitrary components with nearly all mass outside A.

One also has to select hyperparameter values, as we discussed in Section 3.2. Of note

here is the value of h in (4), which determines the spread of mean vectors. For example,

small values of h generally imply that, a priori, µk can be far from µ0. Empirically,

our experience is that small values of h can generate large values of N , the number of

augmented values, which can slow the MCMC algorithm. We recommend avoiding very

small h, say by setting h > .1, to reduce this computational burden. As noted in Section

3.2 and the sensitivity analysis in Appendix A, our application results are robust to changes

of h and other hyperparameters.

To initialize the MCMC chains when using the H&R sampler, we need to choose a set

of points all within the polytope defined by A. To do so, we find the extreme points of the

polytope along each dimension by solving linear programs (Tervonen et al. 2013), and set

the starting point of the H&R chain as the arithmetic mean of the extreme points. We run

this procedure for finding starting values using the R-package “hitandrun” (available at

http://cran.r-project.org/web/packages/hitandrun/index.html). In our empirical applica-

tion, other options of finding starting points within the feasible region, including randomly

weighted extreme points or vertex representation, do not change the final results.

With MCMC algorithms it is essential to examine convergence diagnostics. Due to

the complexity of the models and many parameters, as well as the truncation and missing

values, monitoring convergence of chains is not straightforward. We suggest that MCMC
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diagnostics focus on the draws of N , α, the ordered samples of π, and, when feasible, values

of the π-weighted averages of µk and Σk, e.g.,
∑

k πkµk, rather than specific component

parameters, {µk,Σk}. Specific component parameters are subject to label switching among

the mixture components, which complicates interpretation of the components and MCMC

diagnostics; we note that label switching does not affect the multiple imputations.

4. EMPIRICAL EXAMPLE: COLOMBIAN MANUFACTURING

DATA

We illustrate the CDPMMN with multiple imputation and analysis of plant-level data

from the Colombian Annual Manufacturing Survey from 1977 to 1991 (except for 1981, for

which we have no data). Similar data have been used in analyses of plant-level productivity

(e.g., Fernandes 2007; Petrin and White 2011). Following Petrin and White (2011), we

use the seven variables in Table 2. We remove a small number of plants with missing item

data or nonpositive values, so as to make a clean file on which to evaluate the imputations.

The resulting annual sample sizes range from 5,770 to 6,873.

To illustrate the performance of the CDPMMN imputation engine, we introduce range

restrictions on each variable (see Table 2) and ratio edits on each pair of variables (see

Table 3) like those used by government agencies in economic data. Limits are wide enough

that all existing records satisfy the constraints, thus offering a set of true values to use as

a gold standard. However, the limits are close enough to several observed values that the

constraints matter, in the sense that estimation and imputation under models that ignore

the truncation would have nonnegligible support in the infeasible region. Figure 1 displays

a typical example of the linear constraints for two variables, log(USW) and log(CAP).

We then randomly introduce missing values in the observed data, and use the CDP-

MMN imputation engine to implement multiple imputation of missing values subject to
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Table 2: Variables in the Colombian Annual Manufacturing Survey, with range restrictions
that we introduce for illustration.

Variable Definition Range
RVA real valued-added 0.2 ≤ RVA ≤ 6, 600, 000
CAP capital in real terms 0.07 ≤ CAP ≤ 9, 000, 000
SL skilled labor 0.99 ≤ SL ≤ 2, 800
USL unskilled labor 0.99 ≤ USL ≤ 6, 700
RMU real material used in products 0.03 ≤ RMU ≤ 9, 500, 000
SW wages paid to skill labor 3.3 ≤ SW ≤ 11, 000, 000
USW wages paid to unskilled labor 3.5 ≤ USW ≤ 16, 000, 000

Table 3: Introduced ratio edits in Colombian Manufacturing Survey.

Ratio Minimum Maximum Ratio Minimum Maximum
RVA/CAP 7.0e-05 6,100 SL/USL 3.0e-03 270
RVA/SL 7.2e-02 500,000 SL/RMU 8.0e-06 1,350
RVA/USL 4.2e-02 1,000,000 SL/SW 4.0e-05 1.2
RVA/RMU 6.0e-05 1,300,000 SL/USW 4.0e-06 5.0
RVA/SW 5.9e-05 1,000 USL/RMU 1.0e-06 13,000
RVA/USW 5.3e-05 3,333 USL/SW 1.0e-06 2.5
CAP/SL 2.4e-02 100,000 USL/USW 1.0e-06 1.5
CAP/USL 1.5e-02 333,333 RMU/SW 2.2e-07 1,250
CAP/RMU 4.0e-05 1,111,111 RMU/USW 7.1e-08 2,500
CAP/SW 1.5e-05 1,250 SW/USW 4.0e-03 850
CAP/USW 1.7e-05 250

linear constraints. We do so in two empirical studies: a set of analyses designed to com-

pare one-off inferences from the imputed and original data (before introduction of missing

values), and a repeated sampling experiment designed to illustrate efficiency gains in using

the CDPMMN over complete-case methods.

In both studies, we make inferences for unknown parameters according to the multiple

imputation inferences of Rubin (1987), which we review briefly here. Suppose that the

analyst seeks to estimate some quantity Q, such as a regression coefficient or population

mean. Let {D(1), . . . , D(m)} be m completed datasets drawn from the CDPMMN impu-

tation engine. Given completed data, the analyst estimates Q with some point estimator
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Figure 1: The linear constraints for two variables, log(USW) and log(CAP), for 1982 data

q and estimates its variance with u. For l = 1, . . . ,m, let q(l) and u(l) be, respectively,

the value of q and u computed with D(l). The analyst uses q̄m = 1
m

∑m
l=1 q

(l) to esti-

mate Q and Tm = ūm + (1 + 1/m)bm to estimate its variance, where ūm =
∑m

l=1 u
(l)/m

and bm =
∑m

l=1(q
(l) − q̄m)2/(m − 1). For large samples, inferences for Q are obtained

from the t-distribution, (q̄m − Q) ∼ tνm(0, Tm), where the degrees of freedom is νm =

(m− 1) [1 + ūm/ {(1 + 1/m)bm}]2. Tests of significance for multicomponent null hypothe-

ses are derived by Li et al. (1991), Meng and Rubin (1992) and Reiter (2007).

4.1 Comparisons of CDPMMN-Imputed and Original Data

For each year t = 1977, . . . , 1991 other than 1981, let Dorig,t be the original data before

introduction of missing values. For each year, we generate a set of missing values Ys,t by

randomly blanking data from Dorig,t as follows: 1,500 records have one randomly selected
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missing item, 1,000 records have two randomly selected missing items, and 500 records

have three randomly selected missing items. One can interpret these as missing data

or as blanked fields after an error localization procedure. Missingness rates per variable

range from 10.2% to 11.5% per variable. This represents a missing completely at random

mechanism (Rubin 1976), so that complete-case analyses based only on records with no

missing data, i.e., Yn−s,t, would be unbiased but inefficient, sacrificing roughly half of the

observations in any one year. We note that these rates of missing data are larger than

typical fractions of records that fail edit rules, so as to offer a strong but still realistic

challenge to the CDPMMN imputation engine.

We implement the CDPMMN imputation engine using the model and prior distri-

butions described in Section 3 to create m = 10 completed datasets, each satisfying all

constraints. To facilitate model estimation, we work with the standardized natural loga-

rithms of all variables (take logs first, then standardize). After imputing on the transformed

scale, we transform back to the original scale before making inferences. Of course, we also

transform the limits of the linear inequalities to be consistent with the use of standardized

logarithms; see Appendix B, available as on-line Supplementary Material. We run the

MCMC algorithm of Section 3 for 10,000 iterations after a burn-in period, and store every

1,000th iterate to obtain the m = 10 completed datasets. We use K = 40 components,

which we judged to be sufficient based on the posterior distributions of the numbers of

unique zi among the n cases.

We begin by focusing on results from the 1991 survey; results from other survey years

are similar. Figure 2 summarizes the marginal distributions of log(CAP) in the original and

completed datasets. For the full distribution based on all 6,607 cases, the distributions

are nearly indistinguishable, implying that the CDPMMN completed data approximate

the marginal distributions of the original data well. The distribution of the 714 values of

log(CAP) in Dorig before blanking is also similar to those in the three completed datasets.
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Figure 2: Left panel: Distributions of log(CAP) from original data and three completed
datasets for all 6,607 records in the 1991 data. Right panel: Distributions of log(CAP) for
714 blanked values in the original data and the imputed values in three completed datasets.
Boxes include 25th, 50th, and 75th percentiles. Dotted lines stretch from minimum value
to 5th percentile, and from 95th percentile to maximum value. The marginal distributions
in the imputed datasets are similar to those in the original data.

Figure 3 displays a scatter plot of log(USW) versus log(CAP)—at least one of these

variables is missing for 20.3% of cases—for Dorig and one of the completed datasets; results

for other D(l) are similar. The overall bivariate patterns are very similar, suggesting

once again the high quality of the imputations. We note that the shape of the joint

density implies that a model based on a single multivariate normal distribution, even

absent truncation, would not be appropriate for these data.

Figure 4 displays scatter plots of pairwise correlations across all variables in the original

and three completed datasets. For the full distribution based on all 6,607 cases, the

correlations are very similar. Correlations based on only the 3,000 cases with at least one

20



Figure 3: Plots of log(USW) versus log(CAP) for 1991 data. The left plot displays the
original data and the right plot displays one completed dataset. The gray blobs represent
records whose values are the same in both plots. The crosses represent the records subject
to blanking. The dotted lines show the range restrictions and ratio edits. The distributions
are similar.

missing item also are reasonably close to those based on the original data.

We next examine inferences for coefficients in the regression used by Petrin and White

(2011) to analyze plant productivity, namely

log(RVAi) = β0 + βC log(CAPi) + βL log(LABi) + εi, εi ∼ N(0, σ2), (17)

where LABi = SLi + USLi. We estimate regressions independently in each year. Figure

5 displays OLS 95% confidence intervals from Dorig,t and from the CDPMMN multiply-

imputed datasets in each year. For comparison, it also displays intervals based on only

the complete cases. The intervals for β based on the CDPMMN completed datasets are

similar to those based on Dorig, with somewhat wider lengths due to the missing values.
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Figure 4: Plots of correlations among all seven variables for 1991 data. The horizontal
coordinates are the correlations in the original data, and the vertical coordinates are the
correlations in three completed datasets. Circles represent values for D(1), crosses represent
values for D(2), and triangles represent values for D(3). The left plot uses all 6,607 cases
and the right plot uses only the 3,000 cases with at least one missing item.

For comparison, the complete-case results typically have even wider standard errors.

4.2 Repeated Simulation

The results in Figure 5 suggest that the CDPMMN multiple imputation offers more efficient

inferences than the complete cases analysis. To verify this further, we perform a repeated

sampling study. We assume that the 6,607 plants in the 1991 data comprise a population.

We then randomly sample 500 independent realizations of Dorig from this population,

each comprising 1,000 records. For each sampled Dorig, we introduce missing values by

blanking one value for 200 randomly selected records, two values for 200 randomly sampled

records, and three values for 100 randomly sampled records. We create m = 10 multiple

imputations using the CDPMMN imputation engine using the same approach as in Section
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Figure 5: 95% confidence intervals for βC and βL from original data (first displayed
interval), CDPMMN multiply-imputed data (second displayed interval), and the complete
cases (third displayed interval). Using CDPMMN results in similar intervals as the original
data, and shorter intervals than the complete cases.

4.1, and estimate the regression coefficients in (17) using the multiple imputation point

estimator. We also compute the point estimates based on Dorig and only the complete

cases.

To evaluate the point estimators, for each method we compute three quantities for

each coefficient in β = (β0, βC , βL) = (β0, β1, β2). The first quantity is the simulated bias,

Biasj =
∑500

r=1 β̂r,j/500 − βpop,j, j = 0, 1, 2, where β̂r,j is a method-specific point estimate

of βj in replication r and βpop,j is the value of βj based on all 6,607 cases. The second
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Table 4: Properties of point estimators across the 500 simulations for the original data,
the CDPMMN multiple imputation, and the complete cases analysis.

β0 βC βL
Bias TSE TSD Bias TSE TSD Bias TSE TSD

Original data -.007 4.03 − .0012 .21 − -.0008 .60 −
CDPMMN -.002 5.19 1.31 -.0007 .27 .07 .0014 .78 .19
Complete cases -.006 8.55 4.71 -.0002 .48 .26 .0020 1.38 .75

quantity is the total squared error, TSEj =
∑500

r=1(β̂r,j − βpop,j)
2. The third quantity is

the total squared distance between the point estimates based on the missing (or complete)

cases and the original data, TSDj =
∑500

r=1(β̂r,j − β̂r,j(orig))2.

Table 4 displays the results of the simulation study. All methods are approximately

unbiased, with the complete cases analysis being far less efficient than the CDPMMN

multiple imputation analysis. The CDPMMN multiple imputation closely follows the

analysis based on the original data.

5. CONCLUDING REMARKS

The empirical analyses of the Colombia manufacturing data suggest that the CDPMMN

offers a flexible engine for generating coherent imputations guaranteed to respect linear

inequalities. We expect the CDPMMN to be computationally feasible with efficient parallel

computing when the number of variables is modest, say on the order of 40 to 50. For larger

numbers of variables, analysts may need to use techniques other than the CDPMMN, for

example models based on conditional independence assumptions such as Bayesian factor

models (Aguilar and West 2000). We note that the general strategy of data augmentation

combined with a Hit-and-Run sampler can be applied to any Bayesian multivariate model.

In contrast, we do not view the number of records as a practically limiting factor, because

the computations can be easily parallelized or implemented with GPU computing (Suchard
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et al. 2010). If computationally necessary, and potentially for improved accuracy, analysts

can split the data into subsets of rows, e.g., by industry classifications, and estimate the

model independently across subsets.

In addition to extending these ideas to other models, there are several key areas in

imputation under constraints that need future research. In addition to linear inequalities,

some variables may need to satisfy linear equalities, for example logical sums. We did not

account for these types of constraints here, although we anticipate that the hit-and-run

sampler can be modified to do so. In edit-imputation settings, it is not clear that the

Fellegi and Holt (1976) paradigm for error localization is optimal or advantageous in all

settings. Error localization methods based on measurement error models derived from

empirical evidence, combined with a fully coherent joint model for the imputation step,

could result in higher quality edited/imputed data and subsequent analyses.
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SUPPLEMENTARY MATERIALS

Further explanations of results: File describing (i) results of simulations that illus-

trate the insensitivity of multiple imputation inferences to specifications of the prior

distributions for the CDPMMN imputation engine, (ii) the expression for the limits

of range restrictions and ratio edits when using standardized logarithms in the im-

putation models, and (iii) an illustration of how to find boundaries of feasible region

when constraints are represented by range restrictions and ratio edits. (PDF file)
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