
NISS 
 

 

Statistical Disclosure Limitation in 
the Presence of Edit Rules 

 
Hang J. Kim, Alan F. Karr, Jerome P. Reiter 

 
 

Technical Report 184 
October 2013 

 
 

National Institute of Statistical Sciences 
19 T.W. Alexander Drive 

PO Box 14006 
Research Triangle Park, NC 27709 

www.niss.org 



Statistical Disclosure Limitation in the

Presence of Edit Rules

Hang J. Kim

Duke University and National Institute of Statistical Sciences, Durham, NC 27708 (hangkim@niss.org)

Alan F. Karr

National Institute of Statistical Sciences, Research Triangle Park, NC 27709 (karr@niss.org)

Jerome P. Reiter

Department of Statistical Science, Duke University, Durham, NC 27708 (jerry@stat.duke.edu)



ABSTRACT

We articulate and investigate issues associated with performing statistical disclosure limitation

(SDL) for data subject to edit rules. The central problem is that many SDL methods generate

data records that violate the constraints. We propose and study two approaches. In the first,

existing SDL methods are applied, and any constraint-violating values they produce are replaced

by means of a constraint-preserving imputation procedure. In the second, the SDL methods are

modified to prevent them from generating violations. We present a simulation study, based on

data from the Colombian Annual Manufacturing Survey, that evaluates several SDL methods

from the existing literature. The results suggest that (i) in practice, some SDL methods can-

not be implemented with the second approach, and (ii) differences in risk-utility profiles across

SDL approaches dwarf differences across the two approaches. Among the SDL strategies, mi-

croaggreggation followed by adding noise and partially synthetic data offer the most attractive

risk-utility profiles.

KEY WORDS: Confidentiality, Imputation, Survey, Synthetic data

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation grant SES–1131897 to Duke Uni-

versity and the National Institute of Statistical Sciences (NISS). Any opinions, findings, and

conclusions or recommendations expressed in this publication are those of the authors and do

not necessarily reflect the views of the National Science Foundation.



1. INTRODUCTION

Public use microdata offer many benefits, for example, enabling researchers and policy-makers

to perform in depth statistical analyses, students to learn skills of data analysis, and citizens to

understand their society. However, public use microdata also carry disclosure risks: intruders

who intend to misuse the information may be able to identify respondents or learn values of

sensitive attributes from the public data. Statistical agencies recognize this risk and typically

alter the microdata prior to release using one or more statistical disclosure limitation (SDL)

techniques. Ideally, the SDL reduces disclosure risk to an acceptable level with low impact on

data utility (Willenborg and De Waal 2001).

As collected, microdata often include implausible or impossible values, for example arising

from multiple forms of survey error (Groves 1989), such as reporting and measurement error.

Agencies prefer not to release such faulty values and so undertake a process usually referred

to as “edit and imputation” (De Waal et al. 2011). Typically agencies define faulty values

via pre-specified constraints, called edit rules or simply edits. Examples of the edit rules are

range restrictions (V1 ≤ a), ratio constraints (V1 ≤ bV2), balance constraints (V1 + V2 = V3), and

especially for categorical variables consistency constraints (V1 = a is not compatible with V2 = b).

Edit violations can be removed by recontacting respondents, manual editing procedures or, as

in Fellegi and Holt (1976) and Kim et al. (2013), by imputing constraint-satisfying replacements

for violated values in the same way that imputation is performed for missing values.

To date, disclosure review and limitation have been largely disconnected from edit and im-

putation. Typically editing is performed by one organizational unit, which then transfers the

data to another unit that performs SDL. Interaction between the editing and SDL processes is

minimal, and sometimes entirely absent. Indeed, those performing the SDL may not even be

aware of constraints that the edited data must respect. This paper begins to bridge the gap, by

considering what agencies should do when SDL creates altered data records that do not satisfy

edit rules.

Taking as given the premise that released data must satisfy the edit constraints, the issue
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of eliminating edit violations created by the SDL process itself is addressed. As we show, such

violations do occur for commonly applied SDL methods, so that the problem is not vacuous.

We consider two broad classes of approaches. The first is to apply existing SDL methods and

then remove the resulting edit violations, for example using the blank-and-impute methodology

in Kim et al. (2013). This assumes that edit violations engendered by SDL can be treated in the

same way as those resulting from measurement error. The second approach is to modify SDL

methods so that they do not produce edit violations.

To illustrate and evaluate the two approaches, we use a simulation study based on numerical

data from the 1991 Colombian Annual Manufacturing Survey. We introduce linear constraints

typical of those used to edit business survey data (Winkler and Draper 1996; Thompson et al.

2001; Hedlin 2003). The results of the simulation suggest that, when both are feasible, there is

little difference in the risk-utility profiles of SDL-then-edit (first approach) and edit-preserving

SDL (second approach) procedures. Indeed, the differences in the profiles across approaches

are swamped by differences across SDL methods. We also discuss the relative merits of the

SDL techniques, although we view the evidence from the simulations as more suggestive than

complete.

There are simpler approaches than the two we propose to investigate. For instance, one

could simply delete the post-SDL records with edit violations. This approach has significant

shortcomings. Deleting records leads to inefficiencies and even can introduce bias. It is especially

problematic when data have survey weights, because there is no clear path to adjusting the

weights of the remaining records. Thus, we do not consider this approach further here.

The remainder of the article is organized as follows. In Section 2, several SDL methods

and corresponding approaches to generate masked values satisfying edits are described. Section

3 presents results of the simulation study based on the Colombian Manufacturing data which

compares the suggested methods under a risk-utility framework. Section 4 concludes with a

discussion of future research questions.
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2. SDL METHODS IN THE PRESENCE OF EDIT RULES

As in Reiter (2005), let yil be the collected value of variable l for unit i, for l = 0, . . . , p and

i ∈ D, where D denotes the collected data for the n sampled units. Let yi0 be the unique unit

identifier, which, of course, must be excluded from the final released data. For each i ∈ D,

let yi = {yi1, . . . , yip} be partitioned as (yAi ,y
U
i ), where yAi is a vector of variables available to

intruders in external data files, and yUi is a vector of variables unavailable to intruders except in

the released data file, Drel. To prevent disclosure, the agency uses SDL to alter the values of yAi

before releasing Drel. Let ỹAi denote the masked values of yAi , so that Drel after SDL comprises

ỹi = (ỹAi ,y
U
i ) for all n records on the file. For simplicity, we assume that the intruder knows yAi

without any measurement error.

2.1 Summary of Selected SDL Methods

In this section, we look at a set of perturbative SDL methods for microdata, including adding

noise, rank swapping and microaggregation, and then introduce partially synthetic data. These

methods are described briefly, without considering editing.

Rank swapping (Moore 1996) is a special form of data swapping under which some attribute

values are switched between pairs of similar records. Rank swapping is implemented as follows.

For each variable l in yAi , we sort {y1l, . . . , ynl} by its magnitude; let {y(1)l, . . . , y(n)l} denote

the ordered values. Let 0 < ζ < 100 be a pre-specified parameter. Two cases y(i)l and y(j)l are

randomly selected, and then swapped only if |i − j| < nζ/100. As ζ increases, the intensity of

data protection increases but, in general, the data utility decreases.

Adding noise (Kim 1986; Sullivan and Fuller 1990; Tendick 1991) introduces random errors

to collected values deemed at high risk of disclosure; for example, set ỹAi = yAi + εi. A straight-

forward implementation is to draw random noise from a normal distribution, εi ∼ N(0, cΣA),

where ΣA is the sample covariance of {yA1 , . . . ,yAn}. The agency sets the parameter c to control

the intensity of perturbation.
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Microaggregation replaces original values with group averages. Using some clustering algo-

rithm (Fayyoumi and Oommen 2010), the original records yi are partitioned into groups Gj, each

with a fixed size. For each i ∈ Gj, we replace yAi with the group mean ỹAmic,j =
∑

k∈Gj y
A
k /|Gj|,

where |Gj| is the cardinality of Gj. Larger cluster sizes results in greater data perturbation.

Microaggregation with adding noise (Oganian and Karr 2006) blends the clustering and per-

turbative effects of the two previous techniques. We set ỹAi = ỹAmic,i + δi, where δi ∼ N(0,Σ∗).

Oganian and Karr (2006) suggest using Σ∗ = ΣA − Σ̃A
mic (if this matrix is positive definite, and

otherwise a positive definite approximation to it), where Σ̃A
mic denotes the sample covariance of

the data masked by microaggregation, {ỹAmic,1, . . . , ỹAmic,n}.

Partially synthetic data (Rubin 1993; Little 1993; Reiter 2003) comprise the original n records

with sensitive values replaced by multiple imputations. The imputations are generated from

models estimated from the original data. The multiple copies enable data analyses to reflect

imputation uncertainty appropriately.

2.2 Approaches to SDL in the Presence of Edit Rules

As noted in Section 2, we consider two approaches: allow the SDL process to generate edit vio-

lations, but repair them subsequently; and prevent the SDL process from generating violations.

2.2.1 Approach I: Editing After SDL

In this approach, an agency first applies an SDL method to the collected data. Any post-SDL

records that violate the constraints are deleted or “repaired” ex post facto. The agency treats any

SDL-generated edit violations as if they were faulty values. This involves an error localization

step, e.g., via the methods of Fellegi and Holt (1976), followed by replacing the localized errors

with imputations from some methods that respect constraints. For example, one could use

sequential regression imputation (Van Buuren and Oudshoorn 1999; Raghunathan et al. 2001),

imputation from joint distributions (Geweke 1991; Tempelman 2007; Coutinho et al. 2011; Kim

et al. 2013), or in some settings hot-deck imputation (Bankier et al. 1994; Coutinho and De Waal

2012).
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We use the multivariate imputation method proposed by Kim et al. (2013), which is based on

mixtures of multivariate normal distributions. This method guarantees that corrected records

always lie in the feasible region, i.e., the restricted support of yi that satisfies all edit rules, while

being flexible enough to describe complex distributional features. Let Y represent the feasible

region. Using K > 1 mixture components—see Kim et al. (2013) for discussion of setting K—we

assume that

f(yi|Θ1, . . . ,ΘK) ∝
K∑
k=1

wkN(yi;µk,Ωk)I(yi ∈ Y). (1)

Here, for each of the k = 1, . . . , K mixture components, wk is the probability (or weight)

of the component, (µk,Ωk) is the component mean vector and covariance matrix, and Θk =

(wk,µk,Ωk). After performing SDL, we identify each record with ỹi /∈ Y , blank its ỹAi , and

replace ỹAi with values generated from the posterior predictive distribution, f(yAi |D). We refer

readers to the Appendix for the specifications of the prior distributions and details of Markov

chain Monte Carlo (MCMC) steps.

2.2.2 Approach II: Edit Preserving SDL

One way to preserve constraints during SDL that involves randomization is to draw candidate

masked values repeatedly until they satisfy all edit rules. This rejection sampling approach can be

readily applied for SDL methods based on randomization, particularly when edit rules are based

on sets of linear inequalities. For example, an agency that adds noise (or uses microaggregation

with noise) to variables can generate εi (or δi) repeatedly until the drawn ỹAi satisfies the edit

rules. An agency that uses partially synthetic data can generate replacements so that all draws

are guaranteed to satisfy the constraints, for example using the imputation engine of Kim et al.

(2013) as a synthesizer.

For SDL methods not entailing randomization, rejection sampling is difficult to implement.

Rejection sampling is not possible for typical implementations of microaggregation, since no

randomization is involved in microaggregation, except possibly in clustering heuristics.
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Table 1: Description of variables in the 1991 Colombian Annual Manufacturing Survey with
data-derived range restrictions.

Variable Label Range restriction
Skilled labor SL 0.9–400
Unskilled labor UL 0.9–1,000
Wages paid to skill labor SW 300–3,000,000
Wages paid to unskilled labor UW 600–4,000,000
Real value added VA 50–1,000,000
Real material used in products MU 10–1,000,000
Capital CP 5–1,000,000

Table 2: Data-derived ratio edits (V1/V2 ≤ b) for the 1991 Colombian Manufacturing Survey.

V2

V1 SL UL SW UW VA MU CP
SL 1 20 0.01 0.01 0.1 0.3 2
UL 50 1 0.1 0.005 0.3 5 5
SW 20000 100000 1 50 300 500 1000
UW 66666.7 10000 100 1 200 5000 5000
VA 10000 20000 10 10 1 200 700
MU 50000 100000 33.3 100 100 1 1000
CP 20000 10000 10 16.7 100 100 1

3. SIMULATION STUDY

We use a subset of 6521 establishments from the 1991 Colombian Annual Manufacturing Survey

data comprising seven numerical variables: number of skilled employees (SL), number of unskilled

employees (UL), wages for skilled employees (SW), wages for unskilled employees (UW), value added

(VA), material used in products (MU), and capital (CP). We assume that these records are error-

free. Edit rules are introduced including the range restrictions in Table 1 and ratio constraints

in Table 2. The introduced constraints are data-derived and hypothetical; they are not actual

constraints derived from the domain knowledge of economic experts.

We mask three of the seven variables—number of skilled employees, number of unskilled

employees, and capital—and leave the remaining variables unaltered. To facilitate SDL and

inference, we work with the natural logarithms of all variables. To avoid new notation, we let ỹi
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Table 3: Numbers of records that violate edit rules across the 20 replications after implementing
perturbative SDL methods.

Methods Mean (%) SD
Noise 157.8 (2.45) 10.1
Swap 134.2 (2.09) 6.6
Mic 5.0 (0.08) –
MicN 84.1 (1.31) 6.7

represent the vector of natural logarithms of the seven variables. Thus, yAi comprises the three

log-transformed values (yiSL, yiUL, yiCP).

Five SDL methods are implemented. Four of these are “classical:” adding noise with c = 0.16

(Noise), rank swapping with ζ = 10 (Swap), microaggregation with |Gj| = 3 based on principal

components clustering (Mic), and microaggregation with adding noise (MicN). Partially synthetic

data (Synt) is generated by replacing all of yAi with draws from the model of Kim et al. (2013).

For Synt, we use only only a single draw of the parameters from a converged Markov chain to

generate one realization of Drel; in practice, we recommend using multiple draws and releasing

multiple data sets to enable variance estimation.

As shown in Table 3 and Figure 1, applying Noise, Swap, Mic, or MicN results in edit

violations. Noise pushes many yi outside the boundary of Y , resulting in the largest number

of edit violations. Swap also produces many edit violations, even with a fairly tight swapping

range (ζ = 10). Mic results in the fewest number of masked records that violate the constraints.

If we had applied microaggregation to all of yi, the resulting records always would be inside Y

due to its convexity. Since we replace only each yAi , we guarantee that ỹAi is in the appropriate

subset of the feasible region, but not that ỹi ∈ Y .

Edit-preserving SDL was implemented with Noise and MicN via a rejection sampling scheme.

We attempted to use a rejection sampling scheme for Swap; however, in 1000 generations of

possible Drel contained edit violations. Each Drel had at least 99 out of 6,521 records that

violated the constraints, suggesting that waiting for a constraint-preserving, rank-swapped data

set in this simulation design is hopeless. Therefore, we do not include Swap in evaluations of the
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Figure 1: Illustrative example of SDL methods with linear constraints. Top-left panel shows
pre-SDL data in terms of variables log SL and log SW. Three variables, SL, UL, and CP are
masked by adding noise (Noise, top-right panel), rank swapping (Swap, bottom-left panel), and
microaggregation with adding noise (MicN, bottom-right panel). Solid circles indicate records
that satisfy edit rules and “×” indicate the violated records, i.e., ỹi /∈ Y .
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edit-preserving SDL approach. (We have not considered sub-sampling in this paper, but sub-

sampling in such a manner that no chosen record violates the edit constraints seems likely to

have the same hopelessly unlikely problem as data swapping. If the measurement errors that

cause edit violations are correlated with true data values, rejection-based sub-sampling would

introduce bias.)

As a measure of disclosure risk, we use the percentage of linked criterion of Domingo-Ferrer

et al. (2001). First, we compute the distances

di,j =

√∑
l

(yAil − ỹAjl)2, ∀ i, j = 1, . . . , n,

where l ∈(SL, UL, CP). For each i, we find the record j that achieves the minimum value of di,j.

When yi0 = yj0, i.e., the record in Drel can be linked correctly to D based on matching the

available variables, we let ti = 1 and otherwise let ti = 0. The risk measure is PL =
∑n

i=1 ti/n.

We use two measures of data utility: an approximate Kullback-Leibler (KL) divergence

(Kullback and Leibler 1951) of Drel from D, and the propensity score (Uprop) utility measure

suggested by Woo et al. (2009). For KL, we use a closed-form expression based on a normality

assumption,

KL =
1

2

[
tr
{

(Σrel)−1Σ
}

+
(
ȳrel − ȳ

)T
(Σrel)−1

(
ȳrel − ȳ

)
− p− log

(
|Σrel|
|Σ|

)]
, (2)

where ȳ and Σ are the sample mean and the sample covariance of {y1, . . . ,yn} in D, and ȳrel

and Σrel are the corresponding statistics of {ỹ1, . . . , ỹn} in Drel. For Uprop, we first concatenate

Drel and D, and add an indicator variable whose values equal one for all records in Drel and

equal zero for all records in D. Using the concatenated data, we estimate the logistic regression

of the indicator variable on all seven variables (after log transformations), including main effects
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and all interactions up to third order; that is, we fit

log

(
pi

1− pi

)
= β0 +

7∑
a=1

βa log Yia +
∑
a,b

log Yia log Yib

+
∑
a,b,c

βabc log Yia log Yib log Yic.

For i = 1, . . . , 2n, we compute the set of predicted probabilities p̂i. The risk measure is

Uprop =
1

2n

2n∑
i=1

(
p̂i −

1

2

)2

.

Values of Uprop near zero represent high data utility, since they imply we are not able to distin-

guish between Drel and D.

For each method we generate 20 masked datasets, each from different random seeds. Note

that all 20 datasets for MIC are identical, since this methods is deterministic. Table 4 displays the

average values of KL, Uprop and PL over the 20 replicates for each method. For methods that can

be implemented with both approaches, namely Noise and MicN, the risk-utility profiles are very

similar. This suggests that, for qualifying methods, the decision to deal with edits after or during

SDL has little impact on disclosure risk and data quality. However, the risk-utility profiles are

quite different across SDL techniques. In particular, according to both utility measures, Synt

preserves the distribution of the original data most faithfully, with Swap a somewhat distant

second place. In terms of disclosure risks, MicN has the smallest value of PL, although the values

of PL are fairly low for all methods in this simulation.

Figure 2 displays a risk-utility (R-U) map (Duncan and Stokes 2004; Gomatam et al. 2005;

Cox et al. 2011) of the results, using KL as the utility measure. The figure includes values for all

20 realizations of Drel,m. Smaller values of PL and KL represent higher levels of data protection

and data utility, so the risk-utility frontier consists of candidate releases with no other candidate

to their “‘southwest.” The R-U frontier includes MicN, which among these methods has the

minimum level of disclosure risk, and Synt, which among these methods has the maximum level

of data utility and a low level of disclosure risk.
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Figure 2: Risk-utility map with the SDL methods. The solid line indicates the risk-utility
frontier. The open symbols represent Approach I and the solid symbols represent Approach II.
The smaller values of PL and KL represent the higher levels of data protection and data utility.
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Table 4: Measured data utility and disclosure risk. Entries include the averages of KL, Uprop

and PL from 20 replications of each method.

Approach Noise Swap Mic MicN Synt

KL
I .34 .24 1.34 .64 –

II .35 – – .66 .02

Uprop
I .0225 .0013 .0463 .0406 –

II .0225 – – .0425 .0007

PL
I 2.05 1.12 .78 .45 -

II 2.26 – – .45 .70

4. CONCLUDING REMARKS

We have shown how it is possible to perform SDL for data subject to edit rules. Consistent with

other studies, microaggregation followed by additive noise and partially synthetic data seem to

be particularly effective strategies. The latter has the additional advantage that the synthesis

methodology can be used to impute missing data values and implement edit-preserving SDL

simultaneously, following the two-stage approach described in Reiter (2004).

An intriguing aspect of the editing–SDL “disconnect” is whether edited values should be

protected in the same way as original reported data. This point, perhaps, is more subtle than it

may seem initially. One interpretation is that a statistical agency promises to protect whatever

information the subjects provide, even if that information is believed, or known to be, erroneous.

Under this logic, edited and imputed values are not respondent information (i.e., they have been

imputed rather than reported) and therefore might be treated differently during SDL. Another

view is that the agency is also charged with protecting its best estimate of actual values, as

opposed to reported values, which implies that edited and imputed values do require SDL.

To our knowledge this issue remains unresolved, and, indeed, largely unaddressed. As noted in

Section 1, we believe that in the long run, the most desirable approach is one that fully integrates

editing, imputation and SDL.

Finally, we note two somewhat technical issues. First, some statistical agencies do not always

include edit and imputation flags in released data. The risk and utility consequences of doing
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this are unexplored. The underlying issue is one of transparency (Karr 2009; Cox et al. 2011).

Second, our research to date has not touched the role of weights, which was addressed to some

extent in Cox et al. (2011). Weights themselves may pose disclosure risk (e.g., of unreleased

values of design variables), but are generally ignored in all three of the editing, imputation and

SDL processes. Some editing procedures, such as seeking additional information from “large” and

low–weight respondents, consider weights implicitly. Some implementations of data swapping

can accommodate weight constraints. For example, indexed microaggregation of Cox et al.

(2011) is able to protect risky weights. However, by any measure, much more remains to be

done than has been done.

APPENDIX: THE JOINT MULTIVARIATE IMPUTATION USING

NORMAL MIXTURE

As described in Section 2, the joint multivariate imputation method developed in Kim et al.

(2013) is used. The likelihood function in (1) can be re-expressed with latent variables zi by

f(yi | zi, µ,Ω) ∝ N(yi | µzi ,Ωzi)I(yi ∈ Y)

and

P (zi = k) = wk, k = 1, . . . , K.

Following Lavine and West (1992), we assume the prior distributions,

µk | Ωk ∼ N(µ0, h
−1Ωk), Ωk ∼ IW(f,Φ)

where Φ = diag(φ1, . . . , φp), and φj ∼ Γ(aφ, bφ) for j = 1, . . . , p. Here, IW denotes the inverse

Wishart distribution and Γ denotes the Gamma distribution with mean aφ/bφ. For flexible

modeling of the component weights, we adopt the stick-breaking representation of a truncated
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Dirichlet process (Sethuraman 1994; Ishwaran and James 2001):

wk = vk
∏
g<k

(1− vg) for k = 1, . . . , K

vk ∼ Beta(1, α) for k = 1, . . . , K − 1; vK = 1

α ∼ Gamma(aα, bα).

In the simulation study, we follow Kim et al. (2013) and set µ0 = 0, h = 1, f = p + 1,

aφ = bφ = 0.25, aα = bα = 0.25 and K = 40.

To facilitate the estimation of µ and Ω, we use a data augmentation technique developed by

O’Malley and Zaslavsky (2008). The data augmentation adopts a larger, hypothetical sample

YN = {Yn, YN−n} where Yn is the set of yi ∈ Y following the likelihood in Equation (1) and

YN−n consists of the values from outside of Y , so that

p(YN | Θ1, . . . ,ΘK) =
N∏
i=1

K∑
k=1

wkN(yi | µk,Ωk).

where Θk = (µk,Ωk, wk). Given the augmented sample YN , the parameters Θk = (wk,µk,Ωk)

can be sampled via Gibbs sampling. Setting p(N) ∝ 1/N as suggested by Meng and Zaslavsky

(2002) and O’Malley and Zaslavsky (2008), the conditional density of the size of YN−n is dis-

tributed as

N − n | n,Θ1, . . . ,ΘK ,Y ∼ NegativeBinomial (n, 1− hΘ(Y)) .

where

hΘ(Y) =

∫
{y:y∈Y}

K∑
k=1

wkN(y;µk,Ωk)dy.

The following MCMC steps after initialization are implemented.

1. For each k, draw Ωk ∼ IW(fk,Φk) and then draw µk ∼ N (µ∗k,Ωk/h) where µ∗k = (Nkȳk +

hµ0)/(Nk + h), fk = f + Nk, Φk = Φ + Sk + (µ∗k − µ0)(µ∗k − µ0)′/(1/Nk + 1/h). We

calculate the sample mean ȳk and the sample covariance Sk from the error-free, pre-SDL
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values Yn = {yi, i = 1, . . . , n} and the drawn auxiliary values YN−n by ȳk =
∑
{i:zi=k} yi/Nk

where Nk =
∑N

i=1 I(zi = k) and Sk =
∑
{i:zi=k}(yi − ȳk)(yi − ȳk)

′.

2. For each k, draw vk ∼ Beta
(

1 +Nk, α +
∑

g>kNg

)
. Set vK = 1 and calculate wk =

vk
∏

g<k(1− vg).

3. For each j = 1, . . . , p, draw φl ∼ Γ
(
aφ +K(p+ 1)/2, bφ +

∑K
k=1 Ω−1

k(r,r)/2
)

where Ω−1
k(r,r) is

the r-th diagonal element of Ω−1
k .

4. Draw α from Γ (aα +K − 1, bα − logwK).

5. For each i = 1, . . . , n, sample zi ∼ Categorical(w∗i1, . . . , w
∗
iK) where

w∗ik = wkN(yi;µk,Ωk)/
[∑K

g=1wgN(yi;µg,Ωg)
]
.

6. Sample (N,ZN−n, YN−n) jointly from their full conditional distribution starting with cin =

cout = 0.

6.1. Draw z∗ ∼ Categorical(w1, . . . , wK).

6.2. Draw y∗ ∼ N(µz∗ ,Ωz∗).

6.3. If y∗ ∈ Y , set cin = cin + 1.

If y∗ ∈ Yc, set cout = cout + 1 , yn+cout = y∗, and zn+cout = z∗.

6.4. Repeat 6.1 through 6.3 until cin = n.

6.5. Let N = n+ cout.

7. To correct post-SDL records with edit violations, a special type of Metropolis-Hastings,

called the Hit-and-Run sampler (Chen and Schmeiser 1993), is adopted. In the initializa-

tion step, we propose any starting value ỹ
A(0)
i such that (yUi , ỹ

A(0)
i ) ∈ Y by using rejection

sampling or extreme points approach (see Kim et al. 2013). Then, the following steps

update ỹ
A(t)
i which will replace ỹAi which violates edit rules.

7.1. Draw a direction d∗ uniformly from the surface of the |ỹAi |-dimensional unit sphere

centered at the origin.
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7.2. Draw a signed distance λ∗ from the uniform distribution on Ξ,

Ξ =
{
λ :
(
yUi , ỹ

A(t)
i + λd∗

)
∈ Y

}

7.3. Accept or reject the proposal ỹA∗i = ỹ
A(t)
i + λ∗d∗ with the acceptance probability ρi,

where

ρi = min

[
1,
f(yUi , ỹ

A∗
i |Θzi)

f(yUi , ỹ
A(t)
i |Θzi)

]
.
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