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Abstract

Many statistical organizations collect data that are expected to satisfy linear con-
straints; as examples, component variables should sum to total variables, and ratios
of pairs of variables should be bounded by expert-specified constants. When reported
data violate constraints, organizations identify and replace values potentially in error
in a process known as edit-imputation. To date, most approaches separate the error
localization and imputation steps, typically using optimization methods to identify
the variables to change followed by hot deck imputation. We present an approach
that fully integrates editing and imputation for continuous microdata under linear
constraints. Our approach relies on a Bayesian hierarchical model that includes (i) a
flexible joint probability model for the underlying true values of the data with support
only on the set of values that satisfy all editing constraints, (ii) a model for latent in-
dicators of the variables that are in error, and (iii) a model for the reported responses
for variables in error. We illustrate the potential advantages of the Bayesian editing
approach over existing approaches using simulation studies. We apply the model to
edit faulty data from the 2007 U.S. Census of Manufactures. Supplementary materials
for this article are available online.

Keywords: Bayesian; Economic; Editing; Missing; Mixture; Survey



1. INTRODUCTION

Many statistical organizations collect data that include faulty values, i.e., implausible or in-

consistent data. Left uncorrected, faulty values can hamper the organization’s analysis and

interpretation of the data, and can undermine the public’s confidence in the quality of files

disseminated by the organization. Thus, many organizations spend substantial resources

correcting faulty data in a process known as edit-imputation. For example, Granquist and

Kovar (1997) estimated that national statistical agencies spend 40% of total budgets for

business surveys on edit-imputation processes, and Norberg (2009) reported that Statis-

tics Sweden allocated 32.6% of total costs in business surveys to edit-imputation processes.

Edit-imputation is also a key concept in the total survey error paradigm employed by many

statistical agencies (Groves and Lyberg 2010; Biemer 2010).

Organizations may be able to perform edit-imputation for some records by re-contacting

respondents to ascertain correct values, or by leveraging other data sources like administra-

tive records with (possibly) correct values. Often, however, these options are too expensive

or not available for all records with faulty values. In such cases, organizations typically rely

on automatic editing, in which mathematical algorithms identify and correct faulty values

with minimal human intervention (De Waal and Coutinho 2005; Pannekoek et al. 2013).

Most automatic editing systems in use today run in two steps, an error localization step

in which some set of each faulty record’s variables is determined to be incorrect, and an

imputation step in which those values are replaced with plausibly correct values (De Waal

and Coutinho 2005; De Waal et al. 2011). To understand the need for error localization,

consider three variables required to satisfy x

1

+ x

2

= x

3

. If this relationship does not

hold for a record in the reported data, the failure of the equality potentially could result

from any one of the three variables being incorrect, from any pair being incorrect, or from

all three being incorrect; the editing system must choose among these possibilities. Most

editing systems use an approach to error localization suggested by Fellegi and Holt (1976),

namely to find a solution that changes the minimum number of fields (variables) to make

the faulty record satisfy all constraints (e.g., see Greenberg and Surdi 1984; Kovar et al.

1988; De Waal 1996; Draper and Winkler 1997; Pannekoek and DeWaal 2005; De Jonge and

Van der Loo 2011, 2014). The subsequent imputation step usually is a variant of hot deck
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imputation, although model-based approaches also have been proposed (e.g., Raghunathan

et al. 2001; Tempelman 2007; Parker and Schenker 2007; Kim et al. 2014).

While widely used, Fellegi and Holt approaches to edit-imputation—henceforth abbre-

viated as F-H approaches—have potential drawbacks. First, they do not fully utilize the

information in the data in the error localization process. To illustrate, consider an ex-

ample where the variables include sex, pregnancy status, and age in years. If a record is

reported as a pregnant male who is 40 years old, it seems more plausible to change status

to not pregnant than to change sex to female, because of the association between age and

pregnancy status. The minimum number of fields criterion admits changing either one of

sex or status. The organization would select among these two solutions based on some

heuristic, e.g., change the variable that is more likely to have errors according to the orga-

nization’s experience in other contexts. Second, the process of error localization inherently

has uncertainty—the organization generally cannot be certain that a F-H (or any) error

localization has identified the exact locations of errors—that is ignored by specifying a

single error localization; hence, analyses of the data underestimate uncertainty. For exam-

ple, there is a chance that the person is a pregnant 40 year old woman rather than a not

pregnant 40 year old man, and inferences should reflect that possibility (as well as other

feasible variations) as increased uncertainty. Third, for complicated systems of constraints

involving many variables, the original F-H approach can be computationally time consum-

ing to implement in practice (Garcia 2002; De Waal et al. 2011). Thus, many F-H edit

systems use alternative optimization algorithms to reduce computational burdens, for ex-

ample, cutting plane methods (Garfinkel et al. 1988; Riera-Ledesma and Salazar-González

2007), branch-and-bound algorithms (De Waal 1996; De Waal and Quere 2003; Pannekoek

and De Waal 2005), or algorithms to find suboptimal solutions (Draper and Winkler 1997;

Winkler and Chen 2002; Garcia 2002).

In this article, we propose an integrated approach to edit-imputation that addresses

some of the shortcomings of the F-H paradigm. Our approach relies on a Bayesian hier-

archical model that includes (i) a flexible joint probability model for the underlying true

values of the data with support only on the set of values that satisfy all editing constraints,

(ii) a model for latent indicators of the variables that are in error, and (iii) a model for the
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reported responses for variables in error. We present this hierarchical model for data with

only continuous variables—similar ideas could be used for other data settings—and con-

sider editing constraints in the form of both inequalities and equalities on the relationships

among the variables. Since this model fully integrates the error localization and imputa-

tion steps, it takes advantage of relationships in the data when identifying faulty values,

appropriately incorporates uncertainty over the space of the latent error indicators, and by

design imputes corrected values that are guaranteed to satisfy all constraints. The MCMC

algorithm for estimating the model generates corrected datasets as by-products; these can

be released by the organization as public use files and analyzed using multiple imputation

combining rules (Rubin 1987).

Our approach is similar in spirit to other approaches to dealing with measurement error.

Ghosh-Dastidar and Schafer (2003) use a hierarchical model like ours, with a multivariate

normal distribution for underlying true values, independent binomial distributions for error

indicators, and independent normal distributions for reporting errors. Little and Smith

(1987) use Mahalanobis distances to select faulty values, replacing outliers with imputations

based on a multivariate normal distribution. These approaches are not designed to handle

complex systems of equality and inequality constraints, as they can generate imputations

that violate constraints. They also are based on stronger distributional assumptions than

the underlying mixture model we use.

The remainder of the article is organized as follows. In Section 2, we review automatic

editing, especially focusing on F-H approaches. In Section 3, we present the Bayesian hi-

erarchical model for edit-imputation. In Section 4, we report results of simulation studies

comparing the proposed method with F-H and other edit-imputation approaches. In Sec-

tion 5, we apply the model to edit a set of faulty records from the 2007 U.S. Census of

Manufactures. In Section 6, we conclude with a discussion of future research directions.

2. REVIEW OF AUTOMATIC EDITING

For i = 1, . . . , n, let xi = (xi1, . . . , xip) be the true values of p variables for data subject i,

and let yi = (yi1, . . . , yip) be the corresponding reported values. Any di↵erence between xi

and yi arises from some source(s) of measurement or response errors, e.g., resulting from
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respondent mistakes, interviewer or mode e↵ects, and unclear wording of survey question-

naires (Groves 1989). For i = 1, . . . , n and j = 1, . . . , p, let sij = 0 when yij = xij and

sij = 1 otherwise (i.e., when variable j is in error), and let si = (si1, . . . , sip). We also

set sij = 1 for any yij that is missing in the reported data. Following usual nomenclature

(Garfinkel et al. 1988; Kovar et al. 1988; United Nations 2006; Norberg 2009), we refer to

any variable with sij = 1 as a flagged item or, equivalently, a field to impute.

Many national statistical agencies and survey organizations have developed sets of log-

ical conditions, called edit rules or simply edits, to determine if yi is faulty (
P

j sij > 0)

or not (
P

j sij = 0). Edit rules typically are developed by subject matter experts at the

agency, designed to identify data that are structurally impossible, for example individuals

having more years of work experience than years of life, or practically implausible, for ex-

ample a statistics professor making a billion dollars in salary per year. For continuous data,

typical edit rules include range restrictions of the form Lj  yij  Uj, where Lj and Uj

are variable-specific constants. For example, in economic data many variables are required

to take on non-negative values; any reported record with negative values is deemed faulty.

Variables also can be subject to ratio edits of the form Lj,j0  yij/yij0  Uj,j0 , where Lj,j0

and Uj,j0 are constants bounding the ratio of variable j to variable j

0. For example, an

agency may decide that every business establishment’s total annual wages divided by its

number of employees should be greater than $1,000 and less than $1,000,000; any record

with reported wages and employee size outside this plausible region is deemed faulty. Fi-

nally, continuous variables can be subject to balance edits in which one variable must equal

the sum of others. For example, the total number of employees equals the sum of the

number of production workers and the number of other employees. The entire collection

of range restrictions, ratio edits, and balance edits defines a feasible region comprising all

potential records passing the edits, which we denote by X . For exemplary systems of edit

rules for continuous data, see Winkler and Draper (1996), Garcia and Goodwin (2002),

and Thompson et al. (2004). We note that data also may contain conditional edits, for

example if yij > 0 then yij0 > 0; we do not deal with conditional edits here.

Automatic editing systems based on F-H methods specify si using the minimum fields

to impute (MFI) criterion. Specifically, for each record Fellegi and Holt (1976) find the

4



solution si that minimizes
P

j sij yet still can result in edited values that lie in X ; all

missing fields are forced to have sij = 1. The key insight of Fellegi and Holt (1976) is that

one can use the complete set of explicit edits, i.e., those written by the subject matter

experts, and implied edits, i.e., extra conditions logically derived from explicit edits, in

order to e�ciently find the optimal solution of s under the MFI criterion. In practice,

many systems find the si that minimizes
P

j wjsij, where wj (called the reliability weight

of variable j) is relatively larger for variables pre-determined by the agency as less likely to

be in error. This is referred to as the minimum weighted fields to impute (MWFI) criterion

(Garfinkel et al. 1986).

We now illustrate how implied edits are useful for finding MWFI (or MFI) solutions.

Suppose that an agency specifies two explicit edits, x
1

 x

2

and x

2

 x

3

and reliability

weights (w
1

, w

2

, w

3

) = (1, 2, 3). Suppose that (yi1, yi2, yi3) = (6, 4, 2), which fails both

explicit edits. Without considering implied edits, the optimal MWFI solution at first glance

appears to be (si1, si2, si3) = (0, 1, 0), i.e., change x

2

, because each failed edit involves x
2

.

However, si = (0, 1, 0) is not feasible; no value of x
2

makes (6, x
2

, 2) satisfy both explicit

edits. Once we add the implied edit x

1

 x

3

, it becomes immediately apparent that the

only feasible solutions include (1, 1, 0), (1, 0, 1), (0, 1, 1), and of course (1, 1, 1). The MWFI

criterion selects si = (1, 1, 0) to minimize
P

j wjsij. We note that the implied edits serve to

help identify MFI solutions e�ciently. They are not needed to check if a proposed solution

is feasible, which can be done by determining whether it passes or fails the explicit edits.

Arguably, underlying the use of the MFI or MWFI criterion is a philosophy that the

organization should use as much of the respondent-supplied data as possible. While an

understandable position, it can lead to potentially unrealistic distributions of corrected

values. Consider Figure 1, which depicts a setting with range restrictions and a ratio edit

for two variables. For the faulty case in the lower right corner of the figure, the MFI

criterion would change only one of the two variables. With either choice, the corrected

value after the imputation step is in the extreme tail of the empirical bivariate distribution

of the edit-passing records. It may well be that this is reasonable; on the other hand, it

may not. Other variables on the file could suggest that neither value is likely to be correct.

In the scenario of Figure 1, it is advantageous to allow both fields to change as informed
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Figure 1: Illustrative example of the MFI criterion leading potentially to implausible cor-

rected values. The hexagon represents the feasible region formed by ratio edits and range

restrictions on two variables in the log scale. The solid dots in the hexagon are edit-passing

records, and the open dot outside the hexagon is a faulty record. The dotted lines in the

feasible region represent the support of the imputed values for the faulty record under a

MFI criterion. The resulting imputations will be in the extreme tails of the distribution of

the edit-passing records.

by relationships in the data. This is done in the Bayesian editing model we now describe.

3. BAYESIAN EDITING MODEL

Prior to describing the Bayesian editing model, we introduce some notation for balance

edits. Suppose that there are q distinct balance edits, {B
1

, . . . , Bq}, in a system of edits. For

all records i subject to Bl, the variables involved in Bl comprise a single total variable with

true and reported values (xiTl
, yiTl

), and two or more component variables. For notational

simplicity, henceforth we use Bl to represent both the l-th balance edit and the indexes of

the component variables involved in that edit, with true and reported values {xij : j 2 Bl}

and {yij : j 2 Bl}. Here,
P

j2Bl
xij = xiTl

always, but it is not necessarily the case that
P

j2Bl
yij = yiTl

. Define the set of all-but-total variables by NT = {1, . . . , p} \ {Tl : l =

1, . . . , q}, which includes all component variables and variables not involved in any balance
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edits. For each i, let xi,NT = {xij : j 2 NT} and yi,NT = {yij : j 2 NT} respectively

be the true values and the reported values of variables in NT . With nested balance edits,

for example, xi1 = xi2 + xi3 while xi3 = xi4 + xi5, we include in NT variables that are not

totals, so that we can re-express the balance edits as sums of components. For example, we

make the two balance edits xi1 = xi2 + xi4 + xi5 and xi3 = xi4 + xi5, and let NT = (2, 4, 5).

We assume that the feasible region X is defined by a combination of balance edits,

ratio edits, and range restrictions. We assume that X is bounded and not empty; that

is, the system of edits is consistent and has solutions. For convenience, we define D to

be the convex polytope defined by only ratio edits and range restrictions. Thus, we can

characterize X as the space in which all xi 2 D and
P

j2Bl
xij = xiTl

for l = 1, . . . , q. We

note that it is prudent for agencies to check the feasibility of D before edit-imputation.

We consider scenarios where any yi that passes all edits is treated as a true value, i.e.,

sij = 0 and xij = yij for all j. We also set sij = 0 for any other value known to be

correct (e.g., from manual edits), and we fix sij = 1 when yij is missing or violates range

restrictions. For the remaining cases, we leave sij unspecified. By treating yij = xij for

all j when yi passes all edits, we mimic the actions of automatic editing systems in use

by many national statistical agencies including, for example, the Census Bureau, Statistics

Canada, and Statistics Netherlands (De Waal et al. 2011).

To facilitate model specification, it is convenient to categorize records based on if and

how they violate the edit constraints. Specifically, we define Ai = 0 when record i satisfies

all edits (
P

j sij = 0); Ai = 1 when record i fails at least one balance edit and passes all

inequality constraints; Ai = 2 when record i passes all balance edits but fails at least one

inequality constraint; and Ai = 3 when record i fails at least one balance edit and at least

one inequality constraint. Each Ai is completely determined given yi and the edit rules,

but not necessarily given si.

We first present the model in a general form, then present a specification of the model

relevant for editing the Census of Manufactures (CM) data.
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3.1 General Form of Bayesian Editing Model

We use a Bayesian hierarchical model with three levels (plus prior distributions) including a

model for xi, a model for (si, Ai) given xi, and a model for yi given (xi, si, Ai). The model

for xi can be any multivariate continuous distribution with support only on X . Letting ✓

be the parameters of this model, we write the model as

f(xi|✓) = f (xi,NT |✓)
qY

l=1

�

 
xiTl

�
X

j2Bl

xij

!
I [xi 2 D] (1)

for i = 1, . . . , n, where f(xi,NT |✓) is a (p� q)-dimensional joint density for the all-but-total

variables, �(·) is the Dirac delta function with the point mass at zero, and I[·] = 1 if the

statement inside the brackets is true and I[·] = 0 otherwise. This model restricts totals to

equal the sum of their components, and restricts all variables to lie within D.

For the error indicators (si, Ai), a generic form of the model is f(si, Ai | xi, s), where

 s are parameters assumed to be distinct from ✓. This generic form allows errors potentially

to depend on xi; for example, records with small values of some xij are more likely to have

sij = 1 (or simply to have Ai > 0) than records with large values of xij. In this case, one

possible model is a logistic regression of sij on variables in xi, in which case  sj includes the

regression coe�cients. More simply, one could favor certain combinations of si over others

within categories Ai. For example, one could assume Pr(sij = 1 | Ai 6= 0,xi, sj) =  sj,

giving higher prior probability to changing some variables over others, e.g., when total

variables are deemed more reliable than component variables.

For the reported values yi, we use measurement error models for variables with sij = 1

and set yij = xij whenever sij = 0. Given (xi, si, Ai), we partition yi = (yUF
i ,y

F
i ),

where y

UF
i = {yij : sij = 0, j = 1, . . . , p} are correctly reported (not flagged) values and

y

F
i = {yij : sij = 1, j = 1, . . . , p} are incorrectly reported (flagged) values. Either set may

be empty. We partition xi = (xUF
i ,x

F
i ) corresponding to the same si. These partitions

generally are not fixed for faulty records; rather, they are redefined each time we draw a

new value of si in the MCMC algorithm described in Section 3.3. We write the reporting

model with parameters  y as

f(yi | xi, si, Ai, y) = f

�
y

F
i | xi, Ai, y

�
�

�
y

UF
i � x

UF
i

�
.
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Illustrative reporting models include, for example, yFij ⇠ N(xF
ij, �

2

j ) and, in the absence of

any information about reporting error, f(yFij) / 1. The formulation allows the reporting

model to di↵er with Ai. It can be sensible to use di↵erent models for yFij due to reporting

error and y

F
ij due to missing data, e.g., a normal distribution for reporting error and a

uniform distribution for missing data.

This construction allows the distribution of the edited values to depend explicitly on

the observed data. To see this, consider the conditional distribution of (xi, si), assuming

all variables are subject to edits. Ignoring parameters for notational simplicity, we have

f(xi, si | yi, Ai) / f(yi|xi, si, Ai)f(si, Ai | xi)f(xi). (2)

Thus, the model favors edit-imputations that (i) are not unlikely under the posited model

for reporting error, (ii) are not unlikely under the posited model for error indicators, and

(iii) are not unlikely under the posited model for the underlying data. For example, if

we assume f(yi|xi, si, Ai) / 1 and f(si, Ai | xi) / 1, as we do in Section 3.2, the model

favors changing reported values that have low likelihood according the model for xi, such

as outliers or combinations of variables that do not accord with the correlation structure

in the data.

Because the model is modular, it can be easily integrated with other editing strategies.

For example, agency experts can identify values clearly in error, such as outliers known

from external information or previous history to be implausible, as recommended in Kozak

(2005) and Ban↵ Support Team (2007), and set their corresponding sij = 1 before running

the Bayesian editing procedure. This way, the agency ensures replacing these values with

imputations. As another example, agencies can use manual editing procedures to detect

typing errors and sign errors (Scholtus 2009, 2011; Van der Loo et al. 2011; Pannekoek

et al. 2013). Before running the Bayesian editing procedure, the agency can correct such

errors if true values can be inferred, or otherwise set the corresponding sij = 1.

Some analysts may want to use only records that pass all edits, or perhaps records that

pass all edits for the subset of variables relevant to a particular analysis. These scenarios are

akin to complete-cases and available-cases analyses, respectively, in the standard missing

data literature (Little and Rubin 2002). To characterize when such analyses can be valid,

we define faulty at random (FAR) mechanisms that satisfy the following criteria. Let Ci
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index the set of variables known to have sij = 0, with corresponding values yCi
i = x

Ci
i and

s

Ci
i = 0. Let Ei be the set of remaining values for record i, i.e., all cases with missing or

possibly erroneous yij, with corresponding values (xEi
i , s

Ei
i ,y

Ei
i ). A mechanism is FAR if for

each record the likelihood for (sEii ,y
Ei
i , Ai) is conditionally independent of xEi

i , i.e.,

f(sEii ,y
Ei
i , Ai | xEi

i ,x
Ci
i , s

Ci
i ,y

Ci
i , s, y,✓) = f(sEii ,y

Ei
i , Ai | xCi

i , s
Ci
i ,y

Ci
i , s, y,✓).

We note that the conditioning need only be on any two variables in (xCi
i , s

Ci
i ,y

Ci
i ), but we

leave all three to emphasize the distinction between Ci and Ei. FAR implies that any two

records with the same values of (xCi
i , s

Ci
i ,y

Ci
i ) have the same distribution of xEi

i , as the

reported values yEi
i and indicators of errors sEii do not depend on x

Ei
i . Embedded in FAR

is the condition that xij is missing at random (Rubin 1976) for any record with sij = 1

because yij is not reported. Assuming ( s, y) is distinct from ✓, analyses of complete

or available cases are valid under FAR mechanisms provided that the variables in x

Ci
i are

accounted for in the analysis, e.g., they are included as predictors in regression models.

The proof of this statement is similar to the proof for standard ignorable missing data

mechanisms (Little and Rubin 2002), in that the likelihood for ✓ can be made free of xEi
i

under these conditions.

3.2 Model Specification for the CM Data

We now specify particular true data, error indicator, and reporting models for the CM data.

For a graphical summary of all model components, see Appendix A of the supplementary

material.

True Data Model. In the CM and other databases with economic variables, the joint

distribution of x has complex features not easily captured by standard multivariate distri-

butions, such as non-Gaussian tails and nonlinear dependencies. Thus, we prefer a flexible

underlying model for x; for continuous multivariate data, one such model is the mixture of

multivariate normal distributions (MacEachern and Müller 1998). However, we also must

restrict the support of x to X , which includes balance equations and inequality constraints.

To do so, we extend the approach of Kim et al. (2014), who propose a finite mixture of

multivariate normal distributions for fixed si with support on arbitrary D but no balance
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edits. As in Kim et al. (2014), we work with the natural logarithms of all non-zero values,

setting log(0) = log(!) where ! is a pre-determined, small number. Although not nec-

essary, using logarithms facilitates computation and prior specification (Little and Smith

1987).

Specifically, we suppose that each individual belongs to exactly one of K mixture com-

ponents. For all i, let zi 2 {1, . . . , K} be a latent indicator of mixture component mem-

bership, and let Pr(zi = k) = ⇡k where
P

k ⇡k = 1. Let µk and ⌃k be respectively the

mean vector and the covariance matrix of log xi,NT in the k-th mixture component; let

µ = (µ
1

, . . . ,µK) and ⌃ = (⌃
1

, . . . ,⌃K); let ⇡ = (⇡
1

, . . . , ⇡K); and, let ✓ = (µ,⌃,⇡).

Thus, for (1) we use

xi|µ,⌃, zi / N
�
logxi,NT |µzi ,⌃zi

� qY

l=1

�

 
xiTl

�
X

j2Bl

xij

!
I [xi 2 D] , (3)

zi ⇠ Categorical(⇡
1

, . . . , ⇡K). (4)

For µ and ⌃, we use conjugate prior distributions (Lavine and West 1992). For k =

1, . . . , K and j = 1, . . . , p� q, we have

µk|⌃k ⇠ N(µ
0

, h

�1

0

⌃k), (5)

⌃k ⇠ InverseWishart(⇣
0

,�), � = diag(�
1

, . . . ,�p�q), (6)

�j ⇠ Gamma(a
�

, b

�

), (7)

where Gamma(a, b) denotes the Gamma distribution with mean a/b. In the simulations

and application to the CM data, we set a
�

= b

�

= 0.25 to put substantial prior mass on

modest-sized variances; ⇣
0

= (p � q) + 1 to ensure proper distributions; µ
0

equal to the

mean of log y from edit-passing records only; and h

0

= 5.

For ⇡, we use a finite Dirichlet process (Ishwaran and James 2001), using the stick-

breaking representation of Sethuraman (1994). We have

⇡k = vk

Y

g<k

(1� vg) for k = 1, . . . , K, (8)

vk ⇠ Beta(1,↵) for k = 1, . . . , K � 1; vK = 1, (9)

↵ ⇠ Gamma(a↵, b↵). (10)
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Following Dunson and Xing (2009), we set a↵ = b↵ = 0.25, which represents a vague

specification for the Gamma prior distribution. Sensitivity analyses in the simulations and

CM analysis show no practical di↵erences for other sensible choices of (a
�

, b

�

, a↵, b↵, h0

),

which mirrors a finding of Kim et al. (2014).

We recommend setting K to be large enough to capture patterns in the data, but not

so large so as to create many components with no observed data. Analysts can examine

the posterior distribution of the number of unique values of zi among the n observed cases

during the MCMC fitting to diagnose if K is large enough. Significant posterior mass at a

number of classes equal to K suggests that K be increased. For the simulations and CM

application, we use K = 50.

Error Indicator Model. For i = 1, . . . , n, we assume that

f(Ai | xi, s) / 1, f(si | Ai = 0,xi, s) = �(si = 0), f(si | Ai 6= 0,xi, s) / 1. (11)

This implies that, for any record i, a priori all candidate si that can result in feasible

solutions (with sij = 0 for all variables not subject to edits) for that record are equally

likely. The uniform distribution is computationally convenient and allows the observed data

to drive the error localization. We note that, provided Ai does not depend on xij involved

in edit failures, the exact nature of the prior distribution on Ai in (11) is irrelevant since

Ai is determined by yi and the edit rules.

Reporting Model. When specifying models for yi, we divide records into three types:

passing all edits (Ai = 0), failing some balance edits (Ai = 1, Ai = 3), and passing all

balance edits but failing some inequality constraints (Ai = 2). As an example of a record

with Ai = 2, consider a respondent that reports true values for some component variables,

faulty values for other component variables as determined by ratio edits or range restric-

tions, and the total variable as the sum of the component values. We combine Ai = 1 and

Ai = 3 because, as we describe below, the support of yi in both cases can be defined by

the same mathematical expression, whereas the support of yi when Ai = 2 has a di↵erent

form.

For records with Ai = 0, we follow the CM editing practice and set f(yi|xi, si, Ai, y) =
Qp

j=1

� (yij � xij). For records with failed edits we use uniform distributions to represent

vague knowledge about the nature of reporting errors. In discussions with Census Bureau
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personnel about editing processes for the CM, we were not able to identify more specific

measurement error models. With uniform reporting distributions, given (xUF
i , si, Ai) the

value of yF
i does not provide any information about x

F
i and so can be disregarded, even

for missing yij.

When Ai 2 {1, 3}, we have

f(yi|xi, si, Ai, y) =
Y

{j:sij=1,j2NT}

Unif
⇣
log yij 2 [log L̃j, log Ũj]

⌘

⇥
Y

{j:sij=0}

� (yij � xij)
Y

l2Bpass

�

 
yiTl

�
X

j2Cl

yij

!
(12)

where B
pass

denotes the (observed) set of passed balanced edits. Following convention in

the optimization-based editing literature (see Riera-Ledesma and Salazar-González 2007,

and references therein), the space Y (� X ) is the predetermined orthotope such that Y =

{(y
1

, . . . , yp) : L̃j  yj  Ũj, j = 1, . . . , p}, where (L̃j, Ũj) are constants. In practice these

can be set as the minimum and maximum reported values of item j in the industry or the

entire census. The range of the observed values (L̃j, Ũj) may not be the same as the range

restriction (Lj, Uj).

When Ai = 2, we have

f(yi|xi, si, Ai, y) = i

Y

{j:sij=1,j2NT}

Unif
⇣
log yij 2 [log L̃j, log Ũj]

⌘

⇥
Y

{j:sij=0}

� (yij � xij)
qY

l=1

�

 
yiTl

�
X

j2Cl

yij

!
I [yi /2 X ] . (13)

In this case, we require a normalizing constant i that is not straightforward to compute

due to the complexity of the feasible region. We approximate it by Monte-Carlo simulation

as follows. Step (a): generate log y0ij from Unif
⇣
log L̃j, log Ũj

⌘
for variables j 2 NT such

that sij = 1. Step (b): put y

0
ij = yij for variables j such that sij = 0. Step (c): fill in

the total variables Tl such that siTl
= 1 by y

0
iTl

=
P

j2Bl
y

0
ij. Step (d): repeat steps (a)–(c)

n

simul

times, where each iterate generates y0(r)
i . Step (e): count the number of edit-failing

values, n
fail

=
Pnsimul

r=1

I[y0(r)
i /2 X ]. Finally, let the normalizing constant for record i be

i = n

simul

/n

fail

. Each i can be approximated for each si prior to MCMC implementation,

as it is free from other unobservables including x

F
i and ✓. We use n

simul

= 100 simulated
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values in the simulations and CM editing. In the examples, using n

simul

= 1000 does not

result in noticeable improvement in editing and inference.

3.3 Estimating the Model via MCMC

The posterior distribution of interest is f(Xn,Sn,⇥ | Y n, An,X ), whereXn = (x
1

, . . . ,xn),

Sn = (s
1

, . . . , sn), Y n = (y
1

, . . . ,yn), An = (A
1

, . . . , An) and ⇥ includes all parameters

in (3) – (13). In this section, we highlight two key aspects of the strategy for sampling

(Xn,Sn,⇥) from the posterior distribution via MCMC. Details of the full MCMC imple-

mentation are presented in Appendix A of the supplementary material.

To update ✓, we use a data augmentation technique that follows the approach in Kim

et al. (2014), which is based on the ideas in O’Malley and Zaslavsky (2008) and Manrique-

Vallier and Reiter (2014). We suppose the observed data are a sample from a hypothetical

sample of N
aug

individuals, where N

aug

is a random variable. We assume that record i

in the hypothetical sample X

aug

= (Xn,XNaug�n), where XNaug�n = {xi /2 D : i =

n + 1, . . . , N
aug

} are the N

aug

� n hypothetical, unobserved individuals, follows a mixture

of unconstrained normal distributions given by

f(xi|µ,⌃,⇡) =
KX

k=1

⇡kN (logxi,NT |µk,⌃k)
qY

l=1

�

 
xiTl

�
X

j2Bl

xij

!
(14)

for i = 1, . . . , N
aug

. Following Meng and Zaslavsky (2002) and O’Malley and Zaslavsky

(2008), we assume n ⇠ Binomial (N
aug

, h(✓)), where

h(✓) =

Z

x2X

KX

k=1

⇡kN(logxNT |µk,⌃k) d logx

and f(N
aug

) / 1/N
aug

. The resulting draws of the ✓ from (14) are equivalent to draws

from the constrained model in (1).

For each faulty record i, we draw xi and si jointly as follows: (i) propose s

0
i consistent

with Ai, (ii) propose x

0
i given s

0
i, and (iii) accept or reject the proposed (x0

i, s
0
i) via a

Metropolis-Hastings step. Here, we consider only proposed s

0
i that can result in feasible

solutions under X given yi. For example, we cannot propose sij + sij0 = 0 when the ratio

edit for j and j

0 fails for that record. When p is small, it is possible to identify each
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record’s set of feasible si, which we write as S(yi, Ai) ⇢ {0, 1}p, before implementing the

MCMC sampler. When p is not small, so that enumeration of S(yi, Ai) is computationally

very expensive, one can propose s

0
i and check if it is feasible within the MCMC sampler,

which we do via a simplex algorithm; see Appendix B of the supplementary material for

details. When p is not small, many feasible solutions are likely to have low probability

mass, so that it can be ine�cient to propose random jumps within S(yi, Ai). Instead, we

implement a birth-death process that proposes moves from the current s(t�1)

i to a neighbor

in S(yi, Ai). The birth-death process results in higher acceptance rates than a completely

random proposal which more often proposes moves in regions with low probability mass.

To illustrate the process of sampling (xi, si), we return to the example in Section 2 with

two explicit edits, x
1

 x

2

and x

2

 x

3

, and yi = (6, 4, 2). Suppose the current value of

s

(t)
i = (1, 1, 0) in the Markov chain. We propose the next iteration of si by changing two

values, for example s

0
i = (1, 0, 1). We then check whether the proposal is feasible or not

using a simplex algorithm, tossing out infeasible combinations such as si = (0, 1, 0). Using

the proposed s

0
i, we randomly draw values of xi for all variables j with s

0
ij = 1, resulting

in the proposal (s0i,x
0
i), where x

0
i = (x

0F
i ,y

UF ). The Metropolis-Hastings step accepts

or rejects (s0i,x
0
i) by comparing the conditional densities (si,xi|µ,⌃, zi,yi, s, y, Ai) of

(s(t)i ,x

(t)
i ) and (s0i,x

0
i). We do not need to derive the implied edits to check the feasibility

of s0i given yi. We can use the simplex algorithm in standard form to check whether the

suggested si generates a non-null space of xi given the yi and explicit edits only.

4. SIMULATION STUDIES

In this section, we present results of a simulation study comparing the Bayesian editing

model to F-H and other approaches. We generate a population X

pop comprising 1,000,000

records measured on p = 9 variables. Each xi satisfies two balance edits, xi1 = xi2+xi3+xi4

and xi5 = xi6 + xi7, and ratio edits for all pairs of variables of interest in {xi1, xi5, xi8, xi9}.

This mimics the structure of the constraints in the CM, namely some variables of interest

must satisfy both balance and ratio edits and other variables of interest must satisfy only

ratio edits. We generate each xi by sampling all variables except xi1 and xi5 from a mixture

of three multivariate normal distributions and then setting xi1 and xi5 equal to sums of
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their component variables. Each xi 2 X

pop satisfies all edit constraints; see Appendix C

of the supplementary material for details of edit rules and parameter values.

We sample R = 500 independent simple random samples X

r, where r = 1, . . . , R, of

size n = 1000 from X

pop. In each X

r, we randomly select 600 records to have Ai = 0 for

which xi = yi, 200 records to have Ai 2 {1, 3}, and 200 records to have Ai = 2. Within

each group of 200 records, we randomly draw the simulated values of si and yi by rejection

sampling: generate sij ⇠ Bernoulli( sj) for j = 1, . . . , p, generate yij for sij = 1 from the

appropriate uniform distribution, and accept the generated values when yi violates edit

rules in accord with the corresponding Ai. See Appendix C of the supplementary material

for parameter values  sj .

In each simulation run, we implement several methods for data editing, including

• BE: Bayesian editing described in Section 3.

• FH: F-H error localization under a MWFI criterion, and imputation of flagged vari-

ables from the model in Section 3 fixing each si at the F-H solution. We set the

reliability weight wj = 1 �
Pn

i=1

s

⇤
ij/n, where s

⇤
i is the simulated (true) si corre-

sponding to yi.

• BE-min: Bayesian editing under a MFI criterion, i.e, restricting the support of s to

the set of values that minimize
P

j sij.

• AAI: Fixing sij = 1 for all active items, i.e., all variables involved in edit violations,

and imputation of flagged variables from the model in Section 3.

• BE-sgl: Bayesian editing with a single, constrained multivariate normal distribution

for f(xi,NT ) instead of the mixture of K multivariate normal distributions.

For each method, we run an appropriate MCMC algorithm with 5000 iterations after a

burn-in period of 5000 iterations. We keep the imputed values of each x

F
i for every 500th

iteration to create M = 10 multiply imputed, plausible datasets {Xr(1)
, . . . ,X

r(M)}. See

Appendix D of the supplementary material for the MCMC steps for editing methods other

than BE.
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In general, across simulation runs the completed datasets from BE tend to approximate

the distribution of Xr more faithfully than the other editing methods. This is illustrated in

Figure 2, which displays plots of log xi1 and log xi9 for one X

r and one randomly selected

completed dataset Xr(m). Unlike the distribution of Xr(m) for BE, the distributions for FH

and BE-min include imputed values that have relatively low probability density according

to the distribution of Xr on the log scale. This is similar to the pattern seen in Figure 1.

We note that AAI results in reasonable distributions, with added variability in imputations

compared to BE due to the replacement of additional values. Similar patterns are evident

in Figure 3, which displays the pairwise correlations across all variables in X

r and each

X

r(m). The correlations for BE are quite similar to those in X

r, whereas FH and BE-min

result in underestimation.

We also investigate repeated sampling properties of the editing procedures. After cre-

ating the M = 10 datasets for each simulation, we apply standard multiple imputation

techniques to calculate point estimates and 95% confidence intervals for a variety of popu-

lation quantities. We also compute these quantities for three models that o↵er context on

the quality of the editing methods. These include using X

r for all cases, using the sample

of edit-passing records only (Xr,pass) as a type of “complete-case” analysis, and using the

model in Section 3 with each sij fixed at the true s⇤ij. The first and third analyses generally

are not possible outside simulation studies.

Let Q denote some population quantity in X

pop, and let q̂r be the point estimate of Q

from replicate sample r. For each method, we compute relBias =
⇣PR

r=1

q̂r/R�Q

⌘
/|Q|,

and relRMSE =

✓qPR
r=1

(q̂r �Q)2/R

◆
/|Q|. We also compute the empirical percentage

of 95% confidence intervals that include their corresponding Q. As representative Q, we

use the mean of each variable and the coe�cients in the regression,

log xi9 = �

0

+ �

1

log xi1 + �

2

log xi5 + �

3

log xi8 + "i, "i ⇠ N(0, �2).

Population values for the means and �s are computed from X

pop.

Tables 1 and 2 summarize the simulation results for the population means and regres-

sion coe�cients. Overall results across the two tables are similar. Among all the editing

methods, BE tends to result in the lowest biases and root mean squared errors (RMSE),

while having close to nominal 95% coverage rates. In contrast, FH and BE-min are highly un-
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Figure 2: Plots of log xi1 and log xi9 in the simulation example. The black dots represent

X

r(m) of BE (top left), FH (top right), BE-min (bottom left) and AAI (bottom right); the

gray dots in background represent Xr.
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Figure 3: The set of pairwise correlations from the nine log transformed variables. X-axis

and Y-axis represent the correlation coe�cients calculated from a true sample X

r and an

edited dataset Xr(m), respectively. The solid dots of BE which are close to the 45 degree

line indicate that BE preserves the correlation structure of Xr.
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Table 1: Summaries of the estimators of population mean across R = 500 simulations. The

columns labeled X

r and X

r,pass display results based on the true data and the edit-passing

records only, respectively. The column labeled TrueS displays the results using the model

in Section 3 with each sij fixed at the true s

⇤
ij.

Editing methods

X

r
X

r,pass TrueS BE FH BE-min AAI BE-sgl

relBias (⇥100)

X̄
1

0.1 0.3 0.1 -0.1 2.8 6.2 0.9 3.4

X̄
2

0.6 0.1 2.1 0.4 65.0 88.3 8.3 -5.2

X̄
3

0.2 0.4 0.2 0.1 1.5 3.3 0.2 3.5

X̄
4

0.0 0.0 -0.1 -0.6 0.4 5.5 1.7 4.0

X̄
5

-0.1 -0.1 -0.1 -1.1 103.9 91.3 6.5 -0.7

X̄
6

-0.1 -0.2 0.0 -0.9 213.0 168.6 8.8 0.0

X̄
7

-0.1 0.0 -0.2 -1.2 56.0 57.4 5.4 -1.0

X̄
8

0.4 0.5 0.5 0.7 2.3 6.6 0.7 2.0

X̄
9

0.0 -0.2 0.4 -0.5 18.6 31.2 4.3 -1.5

relRMSE (⇥100)

X̄
1

2.7 3.4 2.7 2.8 4.5 7.6 3.3 4.5

X̄
2

8.1 10.0 8.6 8.4 68.4 94.8 14.2 10.1

X̄
3

3.5 4.5 3.5 3.6 4.9 6.7 4.3 5.2

X̄
4

3.7 4.8 3.8 4.0 4.1 7.7 4.9 6.0

X̄
5

2.4 3.1 2.4 2.7 107.0 96.2 8.1 2.8

X̄
6

3.3 4.2 3.4 3.7 222.6 185.7 13.3 4.5

X̄
7

2.8 3.7 2.9 3.2 60.4 65.6 7.5 3.3

X̄
8

2.8 3.6 3.0 3.1 4.4 8.2 3.4 3.8

X̄
9

4.5 5.9 4.8 4.8 21.5 36.3 7.8 5.3

95% CI Coverage

X̄
1

95.2 95.4 96.2 95.8 90.0 73.8 96.2 89.2

X̄
2

93.0 95.4 95.6 95.4 6.4 15.4 97.0 86.6

X̄
3

94.4 95.6 94.0 96.2 95.2 96.4 97.6 92.6

X̄
4

93.4 93.0 94.6 94.8 96.6 87.0 95.2 93.0

X̄
5

93.8 94.0 94.4 92.4 0.0 2.0 93.4 94.2

X̄
6

94.8 94.2 93.8 93.0 0.8 23.4 97.8 94.8

X̄
7

94.8 94.4 94.2 92.2 10.8 42.2 94.4 93.0

X̄
8

95.0 95.6 94.6 93.8 96.6 84.8 95.8 93.0

X̄
9

95.6 92.2 96.4 95.4 67.0 56.8 94.0 92.4
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reliable, resulting in some estimates with high bias and poor coverage rates. AAI also tends

to result in reasonable coverage rates, although it tends to have larger RMSEs than BE (but

smaller RMSEs than FH and BE-min). The RMSEs for BE tend to be smaller than those

based on X

r,pass, indicating that BE takes advantage of information in the faulty cases that

complete-case analysis would ignore. All editing methods have diminished performance

compared to using X

r, which is to be expected.

The results also suggest that the choice of error localization technique is crucial to the

performance of editing procedures. The RMSEs for TrueS are close to those based on

X

r, indicating that the imputation model underlying the editing strategies is e↵ective—

this is not too surprising since the imputation model matches the data generation model.

The RMSEs of BE are only slightly worse than those for TrueS, reflecting the merits of

stochastic error localization informed by the data relative to MFI (MWFI) error localization

procedures or an all active items procedure. Interestingly, using an incorrect imputation

model with stochastic error localization (BE-sgl) still outperforms the procedures based

on MFI (MWFI) error localization even with a correct imputation model.

Over the 500 replications, the averages of the number of changed fields for cases with edit

failures,
P

{i:Ai>0}
P

j sij/400, are 2.8 for TrueS, 1.7 for FH, and 7.0 for AAI. For methods

updating of si during MCMC iterations, the averages of
P

{i:Ai>0}
P

j sij/400 over the 10

multiply imputed datasets and 500 replications are 3.8 for BE, 1.7 for BE-min, and 4.0 for

BE-sgl. Thus, FH and BE-min tend to underestimate the number of variables that should

be replaced, whereas BE (and BE-sgl) tend to overestimate the number. Evidently, with

a good-fitting imputation model, changing too many variables is less problematic than

changing too few variables, the latter of which can result in unrealistic imputed values.

We also evaluated data quality using the propensity score metric from the literature

on statistical disclosure limitation (Woo et al. 2009), which determines how well one can

discriminate Xr(m) from X

r. Inability to discriminate suggests similar distributions, which

means high quality of Xr(m). Results were similar to those in Tables 1 and 2; these are

reported in Appendix E of the supplementary material.

We also ran simulation studies in which f(si, Ai | xi, s) 6= f(si, Ai |  s); results

are reported in Appendix F of the supplementary material. In particular, we ran a FAR
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Table 2: Summaries of the estimators of regression coe�cients across R = 500 simulations.

The columns labeled X

r and X

r,pass display results based on the true data and the edit-

passing records only, respectively. The column labeled TrueS displays the results using the

model in Section 3 with each sij fixed at the true s

⇤
ij.

Editing methods

X

r
X

r,pass TrueS BE FH BE-min AAI BE-sgl

relBias (⇥100)

�
0

0.2 0.1 0.3 0.9 -2.6 2.8 -1.8 2.5

�
1

-0.8 -1.6 -0.3 -2.9 51.7 39.7 10.3 -5.4

�
2

0.0 0.4 0.3 1.7 -41.6 -24.7 -3.3 3.1

�
3

0.2 0.5 -0.3 -0.4 0.0 -9.0 -2.2 -1.4

relRMSE (⇥100)

�
0

8.0 10.2 8.9 9.4 12.9 12.3 10.5 9.9

�
1

13.7 18.2 15.0 16.3 54.4 43.2 21.2 17.0

�
2

9.9 12.9 10.9 11.9 43.2 28.0 13.3 12.3

�
3

9.2 12.0 10.4 11.0 13.5 15.6 11.7 11.3

95% CI Coverage

�
0

94.8 94.6 94.0 95.2 88.6 89.4 94.0 93.2

�
1

93.2 91.8 92.8 94.0 11.8 34.6 91.4 92.4

�
2

92.6 94.0 92.8 93.2 3.8 37.8 95.2 92.6

�
3

94.4 93.2 95.2 94.2 91.0 83.0 93.2 92.4
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scenario in which the data generating distribution for Ai depends on one variable known

to be correct for all records, and a not FAR scenario in which the the data generating

distribution for Ai depends on a variable that is subject to reporting errors. We fit the

editing procedures without any adjustments. In the additional FAR scenario, the results

for the editing procedures are similar to those in Tables 1 and 2, with BE the only editing

procedure that o↵ers reliable inferences. In the not FAR scenario, all editing procedures

result in some obviously invalid inference, as expected since each model presumes some

variant of FAR. Interestingly, in this simulation BE continues to dominate the other editing

procedures.

Finally, since some statistical agencies use outlier detection algorithms before imple-

menting F-H error localization, we also run a simulation comparing BE to such an approach;

see Appendix G in the supplementary materials for details. In particular, we identify uni-

variate outliers using a technique from the Ban↵ system of Statistics Canada (Kozak 2005;

Ban↵ Support Team 2007), examining three cutpoints for defining outliers. We then set

sij = 1 for cases identified as outliers, and run a minimum number of fields to impute

approach (BE-min, since it outperformed FH) on the subsequent data. For some cutpoint

values, forced editing of the selected outliers improves the quality of inferences for BE-min.

However, BE still dominates BE-min combined with outlier detection at each cutpoint. We

also examined a procedure that sets sij = 1 for cases identified as outliers before running the

BE approach. This modified version of BE also outperforms BE-min with outlier detection,

suggesting benefits of stochastic error localization even after outlier identification.

5. EDITING THE CENSUS OF MANUFACTURES

The Census of Manufactures is part of the U.S. Economic Census, which is conducted every

five years by the Census Bureau. The CM data comprise information on manufacturing es-

tablishments in the U.S. with one or more paid employees, including data on employment,

payroll, and production. To collect CM data, the Census Bureau mails a questionnaire

to every manufacturing establishment except so-called administrative record cases, which

generally are very small manufacturing establishments (typically fewer than five employ-

ees). Values for these establishments are taken from administrative records of other federal
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agencies. The CM data are subject to Title 13 and hence accessible only to approved

researchers in the Census Research Data Centers. We use data from the 2007 Economic

Census, as data from the 2012 Economic Census were not available to us. We note that

the results below are primarily illustrative of automatic editing, as there are additional

complexities in the CM that are not addressed here.

The CM data are organized by industry classification codes. Within each code, es-

tablishments are required to satisfy industry-specific edit rules (Winkler and Draper 1996;

Garcia and Goodwin 2002; Thompson et al. 2004). Inevitably, the reported data violate

these rules, so that the Census Bureau must do edit-imputation. For some establishments,

particularly those known to be large, the Census Bureau uses telephone interviews to col-

lect information on missing values and to verify or correct values suspected to be faulty.

It also takes some information from administrative records. Due to cost considerations,

the Census Bureau does not use these manual edit procedures for all establishments. For

the remaining establishments, the Census Bureau uses the SPEER system (Greenberg and

Surdi 1984; Winkler and Draper 1996; Draper and Winkler 1997) for automatic editing.

This system implements a variant of MWFI error localization followed by a combination

of mean imputation, ratio imputation, and regression imputation.

The CM data include p = 27 variables involved in edits, comprising 12 variables subject

to ratio edits, of which six also are subject to balance edits, and 15 component variables

that are part of balance edits but not subject to ratio edits. All 27 variables and the

balance edits are described in Table 3; see Appendix H of the supplementary material for

more information on the edit rules. We replace the balance edit TE = PW + OE with

TE = (PW
1

+ PW
2

+ PW
3

+ PW
4

)/4 + OE, that is, we combine the nested balance edits

for total variables TE and PW.

We use an industry broadly described as metalworking machinery manufacturing (NAICS

code of 33351400). Data for this industry were made available to us by the Census Bureau.

The CM data for this industry include 1869 establishments. These data already have been

subject to manual edits and are the same as those edited using the SPEER system. We

replace zeros in yi with ! = 0.1. This is necessary for ratio edits to be sensible, since one

cannot divide by zero (see Kovar et al. 1988). Out of the 1869 records, 585 records fail the
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Table 3: Variables used in the CM edit rules. All 12 variables in the first column are

subject to ratio edits. Here, C⇤, IB⇤ and IE⇤ denote reported components for TC, TIB and

TIE, respectively, and PW⇤ denotes the number of production workers reported in each

quarter.

Variables Description Components (if any)

TC Total Cost of Materials ($1000) Ca + Cb + Cc + Cd + Ce

TIB Total Inventory Begin Yr. ($1000) IBa + IBb + IBc

TIE Total Inventory End Yr. ($1000) IEa + IEb + IEc

TVS Total Value of Shipments ($1000)

PW Number of Production Workers (PW
1

+ PW
2

+ PW
3

+ PW
4

)/4

OE Number of Other Employees

TE Total Employment PW+OE

WW Production Workers Wages ($1000)

OW Other Workers Wages ($1000)

SW Total Salaries and Wages ($1000) WW+OW

BEN Total Benefits to Employees ($1000)

PH Production Worker Hours (1000 hours)

edits, either due to missing values or violations in the reported values. Specifically, 489

records fail at least one balance edit (Ai 2 {1, 3}) and 96 records pass all balance edits but

fail ratio edits (Ai = 2).

We apply BE and BE-min to create two sets of M = 10 corrected versions of X that

satisfy all edit constraints. For each, we run a single MCMC for 10000 iterations, tossing

the first 5000 as burn in. We then select M datasets by storing every 500th iterate. The

10000 iterations take approximately one day of CPU time using a server available in the

Research Data Centers of the Census Bureau. To check convergence of the MCMC chain,

we monitor the draws of N
aug

and ↵. These parameters are not subject to label switching

and, in our experience, are highly sensitive to lack of convergence.

The resulting di↵erences in the completed datasets are illustrated in Figure 4, which dis-

plays multiple imputation estimates of pairwise correlations among the 27 log-transformed

variables after edit-imputation versus the corresponding correlations based on only the

edit-passing records (Xr,pass). The correlations from BE are similar to those computed
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from X

r,pass, whereas the correlations from BE-min are noticeably attenuated. This follows

the pattern in Figure 3 from the simulation study. We note that the correlations from

the SPEER edits are similar to those from BE-min (although a handful of correlations are

completely di↵erent because the Census Bureau subsequently replaced values of some vari-

ables with imputations using information not available to us). Assuming the mechanism for

the faulty/incomplete values is ignorable, one would expect imputations for faulty data to

reflect the correlational structure in the edit-passing data. Although we cannot be certain

that BE results in more plausible imputations than the MFI approach—as with any missing

data setting, where the truth is not known—the closer similarity with the complete case

results is suggestive that BE o↵ers more plausible imputations. We note that using the BE

imputations carries advantages over using the edit-passing records only, in that (i) delet-

ing partially completed cases sacrifices e�ciency compared to editing and imputing the

faulty cases, and (ii) using only the complete cases creates terrible biases when estimating

(unweighted) population totals.

BE and BE-min also result in completed datasets with di↵erent means, as evident in

Figure 5. The means from BE generally are smaller than those from BE-min. Once again,

this pattern accords with the simulation results in Table 1.

6. CONCLUDING REMARKS

Our simulation studies suggest that using stochastic error localization can result in better

performance than using the minimum number of fields criterion. Stochastic error local-

ization allows relationships in the data to inform the localization, while fully reflecting

uncertainty. The model-based approach always generates corrected values that satisfy all

edits; only a single pass through the data is required. The approach also avoids the compu-

tationally di�cult exercise of identifying all implied edits used in some automatic editing

processes (see Garcia 2002). The support of the imputation step is pre-defined only on the

feasible space, and proposed solutions are checked via a simplex method embedded in the

estimation algorithms. The approach handles both balance edits and inequality constraints

simultaneously.

As noted by reviewers, agencies using F-H approaches could construct heuristics that
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Figure 4: Pairwise correlations from the 27 log-transformed variables in the CM data

computed for edit-passing records only (X-axis) and for all records after edit-imputation

(Y-axis).
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Figure 5: Ratios of means of BE to those of BE-min for the 27 variables of the CM data.

Values below 1.0 imply that the mean of BE is smaller than the mean of BE-min.

force higher probability of editing certain fields based on combinations of variables from

other fields. For example, using the motivating example of a 40 year old pregnant male

in Section 1, the agency could set a rule that changes pregnancy status when the 40 year

old person also subscribes to men’s magazines and buys men’s clothing, but change gender

when the 40 year old buys diapers and maternal clothing. Such heuristics could get cum-

bersome in high dimensions, particularly when heuristics should be based on multivariate

relationships. The stochastic editing approach automatically lets the data identify unusual

combinations based on relationships among all variables in the data, thereby potentially

leveraging important patterns that were not pre-determined by the agency. Unlike F-H

approaches with such heuristics, the stochastic editing approach allows for uncertainty in

the fields to be imputed. The 40 year old person still could be a pregnant woman buying

men’s clothes for her husband (or herself) and subscribing to men’s magazines, or a man

buying diapers for his child and clothes for his wife.

We believe that the Bayesian editing approach can be applied “as is” in many settings

with edit constraints based on equalities and linear inequalities. Mixtures of multivariate

normal distributions are flexible enough to capture many distributional shapes with mini-

mal tuning, and the uniform distributions for the reporting errors and the error indicators

represent a default position for lack of knowledge about the nature of the measurement
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error. An R package implementing Bayesian editing for continuous data will be available

on CRAN in early 2015. That said, agencies could adjust aspects of the model to their

advantage; for example, replace the uniform distribution for reporting errors with an in-

formative distribution determined from past experience. For individuals experienced with

Bayesian modeling, the adaptations to the Gibbs sampler are straightforward.

While the MCMC algorithm we coded runs in reasonable time on the CM data, stochas-

tic editing can be implemented with increased computational e�ciency. Each (xi, si) can

be updated in parallel with very little overhead cost to manage the parallel threads. Pa-

rameters from the Dirichlet process mixture model can be updated using e�cient parallel

computation algorithms developed for cluster and GPU computing (Suchard et al. 2010).

It is also possible to simplify the model to reduce computing time, for example by reducing

the number of clusters K or by capping the maximum total number of fields that the model

allows to be in error (e.g., require
P

sij  m for some m). This latter strategy reduces the

space of plausible si to search over. When estimating one model for each of many industry

types, the agency can distribute the models over many CPUs. For MCMC convergence

diagnostics in such cases, we suggest running long chains and focusing evaluations on in-

dustries with large proportions of edit failures, as these are most likely to have the most

trouble with convergence.

The favorable performance of the Bayesian editing model suggests several areas for fu-

ture research. First, due to lack of knowledge about measurement error in the Census of

Manufactures, we use uniform distributions for the reporting and error indicator models.

Conceptually, it is straightforward to incorporate other reporting models or error indicator

models that are functions of missing xij. It would be informative to characterize how much

information can be gained when using informative reporting and error indicator distribu-

tions versus these simple models. Such investigations also could shed light on when it is

worthwhile for agencies to spend resources on specifying measurement error models. Sec-

ond, for values involved in edit failures, the Bayesian editing model encourages corrections

that are consistent with the distributions of the edit-passing values. For cases with odd

relationships among their true values, the edited values could be shrunk inappropriately

towards the mass of edit-passing data. It would be informative to evaluate the impact
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of such shrinkage on the quality of inferences, both for the Bayesian editing model and

for MFI solutions. We conjecture that it will be advantageous to use manual editing for

unusual cases. Of course, budgets for manual edits are finite, which points to another topic

for research: how organizations should select the records to edit manually also known as

selective editing (De Waal 2013; Arbues et al. 2013; Di Zio and Guarnera 2013; Pannekoek

et al. 2013). Finally, the use of a uniform distribution for the reported values greatly sim-

plifies the treatment of missing yij, as the model does not need y

F
i once si is determined

and sij = 1 for all cases with missing reported values (as an aside, we recommend including

flags in any released data that di↵erentiate missing and erroneous fields, so as to help sec-

ondary analysts understand the corrected data). Clearly, if the missing xij follow di↵erent

distributions than the xij subject to errors, treating missing and erroneous data identically

will result in lower quality inferences. It would be useful to develop methods for handling

such situations.

SUPPLEMENTARY MATERIAL

Appendices: The steps for the MCMC algorithm for the Bayesian editing model, method-

ology for checking whether or not a proposed error localization has a feasible solution,

specification of the parameters used in the simulation study, summaries of fitting pro-

cedures for the other editing methods used in the simulation study, an evaluation of

the quality of the edited data in the simulation study via a propensity score utility

measure, additional simulation studies where Ai depend on the values of xi, addi-

tional simulation studies with outlier detection methods, and information on the edits

for the industry we use in the CM application. (.pdf file)

Notations: Table of notations and abbreviations used in the main text. (.pdf file)
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Supplementary Materials: Appendices

Simultaneous Edit-Imputation

for Continuous Microdata

Hang J. Kim, Lawrence H. Cox, Alan F. Karr, Jerome P. Reiter and Quanli Wang

In Section APPENDIX A, we include the steps for the MCMC algorithm for the Bayesian

editing model. In Section APPENDIX B, we describe methodology for checking whether

or not a proposed error localization has a feasible solution. In Section APPENDIX C,

we specificy the parameters used in the simulation study. In Section APPENDIX D, we

summarize the fitting procedures for the other editing methods used in the simulation study.

In Section APPENDIX E, we present an evaluation of the quality of the edited data in

the simulation study via a propensity score utility measure. In Section APPENDIX F, we

present results from two additional simulation studies where Ai depends on the values of

X

Ci
i or XEi

i , respectively. In Section APPENDIX G, we present results of a simulation study

involving outlier detection methods. Finally, in Section APPENDIX H we provide more

information on the edit rules for the metalworking machinery manufacturing industry we

use in the 2007 Census of Manufactures application.

APPENDIX A. MCMC STEPS FOR BAYESIAN EDITING

We estimate the Bayesian editing model from Section 3.2 in the main text (graphically repre-

sented in Figure A.1) using an MCMC sampler. Here, any yi that passes all edits is treated

as a true value, i.e., sij = 0 and xij = yij for all j. We also set sij = 0 for any other value
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known to be correct (e.g., from manual edits), and we fix sij = 1 when yij is missing or

violates range restrictions. For the remaining cases, we make sij missing. Each iteration t

of the MCMC involves the following steps.

Step 1. For each edit-failing record i, update (xi, si).

1. Propose a feasible s

0
i from neighbors of s(t�1).

(a) Define the set comprising of the all-but-total variables and total variables that are

involved in the failed balance edits by NT

⇤ = NT [ {Tl : l /2 Bpass}. Enumerate

all feasible proposals {s0i = (s0i1, . . . , s
0
ip)} for each of the following procedures.

i. Birth procedure (B)

Randomly choose a variable j0 from {j : s(t�1)
ij = 0, j 2 NT

⇤}, and let s0ij0 = 1.

For variables j 2 NT

⇤ \ {j0}, let s

0
ij = s

(t�1)
ij . For each l 2 Bpass, let s

0
iTl

=

maxj⇤2Bl
s

0
ij⇤ .

ii. Swap procedure (S)

Randomly choose a variable j

0
1 from {j : s

(t�1)
ij = 0, j 2 NT

⇤}, and let

s

0
ij0

1

= 1. Randomly choose a variable j

0
2 from {j : s(t�1)

ij = 1, j 2 NT

⇤},

and let s

0
ij0

2

= 0. For variables j 2 NT

⇤ \ {j01, j02}, let s

0
ij = s

(t�1)
ij . For each

l 2 Bpass, let s0iTl
= maxj⇤2Bl

s

0
ij⇤ .

iii. Death procedure (D)

Randomly choose a variable j0 from {j : s(t�1)
ij = 1, j 2 NT

⇤}, and let s0ij0 = 0.

For variables j 2 NT

⇤ \ {j0}, let s

0
ij = s

(t�1)
ij . For each l 2 Bpass, let s

0
iTl

=

maxj⇤2Bl
s

0
ij⇤ .

(b) For each procedure, count the number of feasible s0i denoted by n

proc

, for proc =

B, S, D. See Appendix B for how to check if s0i is feasible.
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(c) Let g0a denote the inverse of the number of “available” procedures for which n

proc

>

0. Randomly choose a procedure proc0 among the available procedures with

probability g

0
a.

(d) Randomly choose a s

0
i from the set of the feasible proposals for the chosen proce-

dure proc0 with equal probability g

0
b = 1/n

proc

0 . The proposal distribution of s0i

is g(s0i|s(t�1)) = g

0
ag

0
b.

2. Propose x

0
i given s

0
i.

(a) For unflagged variables {j : s0ij = 0}, let x0
ij = yij.

(b) Find the set of “free” variables F , to be drawn from a joint distribution, by the

following rule.

• All flagged variables not involved in any balance edit are free variables, i.e.,

F � {j : s0ij = 1, j /2 Bl, j 6= Tl, l = 1, . . . , q}.

• For each balance edit l, there are (n0
Bl

+ s

0
iTl

� 1)-free variables where n

0
Bl

=
P

j2Bl
s

0
ij is the number of flagged component variables.

(i) If the total variable involved in balance edit j is flagged, all flagged com-

ponent variables involved in l are free variables, i.e., F � {j : s0ij = 1, j 2 Bl}

if s0iTl
= 1.

(ii) If the total variable involved in balance edit j is unflagged, the first

(n0
Bl

� 1) component variables involved in l are free variables, i.e., F �

{jm : s0ijm = 1, jm 2 Bl,m = 1, . . . , n0
Bl

� 1} if s0iTl
= 0. For example, if

(s0i1, s
0
i2, s

0
i3) = (0, 1, 1) and the balance edit is xi1 = xi2+xi3, the second vari-

able is a free variable whose value x0
i,2 will be drawn from a joint distribution.

(c) Draw proposed values for the free variables x

0
i,F = {x0

ij : j 2 F} from a multi-
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variate joint distribution

logx0
i,F ⇠ N(µ0

i,⌃
0
i)

where µ

0
i is the sub-vector of µ(t�1)

z
(t�1)

i

and ⌃0
i is the sub-matrix of ⌃(t�1)

z
(t�1)

i

corre-

sponding to the free variables {j : j 2 F}.

(d) The remaining flagged variables {j : s0ij = 1, j /2 F} are calculated by the balance

edits x

0
iTl

=
P

j2Bl
x

0
ij. For example, assume the balance edit is given as x1 =

x2 + x3. For MCMC iterations where (s0i1, s
0
i2, s

0
i3) = (1, 1, 0) is proposed, we

impute a value of xi2 inside the feasible space and then construct x0
i1 = x

0
i2 + x

0
i3

where x

0
i3 = yi3. For MCMC iterations where (s0i1, s

0
i2, s

0
i3) = (0, 1, 1) is proposed,

we impute a value of xi3 inside the feasible space and then make x

0
i2 = x

0
i1 � x

0
i3

where x

0
i1 = yi1.

The proposal distribution of x0
i is expressed by

g(x0
i|s0i) =

2

4
Y

{j:s0ij=0}

�

�
x

0
ij � yij

�
3

5 N
�
logx0

i,F |µ0
i,⌃

0
i

� qY

l=1

�

 
x

0
iTl

�
X

j2Bl

x

0
ij

!
.

3. Accept (x0
i, s

0
i) with the acceptance probability

min

(
1,

f(yi|x0
i, s

0
i)f(x

0
i|✓)f(s0i)

f(yi|x
(t�1)
i , s

(t�1)
i )f(x(t�1)

i |✓)f(s(t�1)
i )

· g(x
(t�1)
i |s(t�1)

i )g(s(t�1)
i |s0i)

g(x0
i|s0i)g(s0i|s

(t�1)
i )

)
.

Step 2. Update xi given (x(t)
i , s

(t)
i ) for each edit-failing record i. This step is not required to

build a stationary distribution, but adding it improves the mixing and convergence properties

of the Markov chains. We propose x

0
i given s

(t)
i by again running Step 1.2. Accept x0

i with
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the acceptance probability

min

(
1,

f(yi|x0
i, s

(t)
i )f(x0

i|✓)
f(yi|x

(t)
i , s

(t)
i )f(x(t)

i |✓)
· g(x

(t)
i |s(t)i )

g(x0
i|s

(t)
i )

)
.

Step 3. For each i = 1, . . . , n, draw z

(t)
i ⇠ Categorical(⇡⇤

i1, . . . , ⇡
⇤
iK) where

⇡

⇤
ik =

⇡kN(logxi,NT |µk,⌃k)PK
k0=1 ⇡k0N(logxi,NT |µk0 ,⌃k0)

for k = 1, . . . , K.

Step 4. Jointly sample auxiliary values (N (t)
aug,X

(t)
N

aug

�n, z
(t)
N

aug

�n) where z
(t)
N

aug

�n = {z(t)n+1, . . . , z
(t)
N

aug

}.

Starting with cin = cout = 0,

1. Draw z

0 ⇠ Categorical(⇡1, . . . , ⇡K).

2. Draw logx0
NT ⇠ N(µz0 ,⌃z0) and calculate total variables {x0

Tl
, l = 1, . . . , q} by balance

edits x0
Tl
=

P
j2Bl

x

0
j.

3. If x0 2 D, set cin = cin + 1.

If x0
/2 D, set cout = cout + 1 , x(t)

n+c
out

= x

0, and z

(t)
n+c

out

= z

0.

4. Repeat (a) through (c) until cin = n.

5. Let N (t)
aug = n+ cout.

Step 5. For each k = 1, . . . , K, draw ⌃k ⇠ InverseWishart(⇣k,�k) and then draw µk ⇠

N(µ⇤
k,⌃k/hk) where Nk =

PN
aug

i=1 I[zi = k], ⇣k = Nk + ⇣0, hk = Nk + h0, µ⇤
k = (Nkx̄k +

h0µ0)/hk and �k = � + Sk + (µ⇤
k � µ0)(µ

⇤
k � µ0)

T
/(1/Nk + 1/h0). The sample mean

and the sum of squared distances are calculated by x̄k =
P

{i:zi=k} logxi,NT/Nk and Sk =
P

{i:zi=k}(logxi,NT � x̄k)(logxi,NT � x̄k)T .

Step 6. For each k = 1, . . . , K � 1, draw vk ⇠ Beta
⇣
1 +Nk,↵ +

P
g>k Ng

⌘
and let vK = 1.

Then calculate the mixture component weights ⇡k = vk

Q
g<k(1� vg) for k = 1, . . . , K.
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Step 7. For each j = 1, . . . , p � q, draw �j ⇠ Gamma
⇣
a� + ⇣0K/2, b� +

PK
k=1 ⌃

�1
k(j,j)/2

⌘

where ⌃�1
k(j,j) is the j-th diagonal element of ⌃�1

k .

Step 8. Draw ↵ from Gamma (a↵ +K � 1, b↵ � log ⇡K).

When implementing this algorithm in the CM data, we repeat Steps 1–2 ten times at

each iterate. This improves mixing in the Markov chain and helps it converge faster. Our

empirical investigations suggest that repeating these steps ultimately is computationally

more e�cient, despite the increased computation time for each iterate.
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Figure A.1: Graphical representation of the Bayesian hierarchical model introduced in Sec-
tion 3.2 of the main text. Rectangles represent observed data or fixed hyperparameters and
circles represent unobservables.
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APPENDIX B. FINDING THE SET OF FEASIBLE

SOLUTIONS OF si

In the MCMC, only proposed si that permit imputations satisfying all edits are acceptable,

i.e, we require si 2 S(yi, Ai). For any si, this condition can be checked using a sequential

approach as follows.

1. Initial checks. Proposals must satisfy the following initial tests.

(a) If the reported value of variable j is originally missing, the missing data item must

be flagged.

(b) If ratio edits fail, at least one of the variables subject to any ratio edit must be

flagged.

(c) If balance edit l fails, at least one of variables involved in edit l must be flagged,

i.e.,
P

j2Bl
sij + siTl

> 0.

(d) If balance edit l passes, the total variable must be flagged if one of its component

variables is flagged, i.e., siTl
= maxj2Bl

sij.

2. Checking edit failures for unflagged items. Assuming a record passes Step 1,

this step checks whether y

UF
i passes edit rules by A

0
y

UF
i  b

UF where A

0 and b

UF

are the edit matrix and vector formed by “relevant” edit rules – range restrictions of

unflagged variables, ratio edits between unflagged variables, and balance edits of which

all component variables and the total variable are unflagged. See Kim et al. (2014)

for details of how to express ratio edits and range restrictions by A

0 and b

UF . We

express balance edits as two inequality constraints by adding a small threshold, i.e.,

yiTl
=

P
j2Bl

yij implies that yiTl
� ✏ 

P
j2Bl

yij  yiTl
+ ✏ for a small positive value ✏,

e.g., 0.6 in our empirical study. If A0
y

UF
i  b

UF , Step 2 is passed.
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3. Checking for a feasible region for flagged items. Assuming a record passes Step

2, this step checks whether there exists a feasible region for imputed values of flagged

variables, xF
i . Let the vector of the proposed values xi pass edit rules if and only if

Axi  b where A and b are the matrix and vector formulated by all edit rules. After

partitioning xi as xi = (yUF
i ,x

F
i ), Axi  b is re-expressed by

0

B@
A

0
A

00

A

10
A

1

1

CA

0

B@
y

UF
i

x

F
i

1

CA 

0

B@
b

UF

b

F

1

CA

where the sub-matrices are partitions of A with the sorted rows and columns corre-

sponding to the order of variables in (yUF
i ,x

F
i ). Specifically, A0 and b

UF are the edit

matrix and vector for yUF
i used in Step 2, and A

00 is a zero-matrix. We refer readers to

Appendix of Kim et al. (2014) for an illustrative example of the matrix manipulation.

After defining the edit matrices and vectors, we check whether there exists a non-zero

density region of the proposed values xF
i by solving the simplex algorithm in standard

form: minimize c

T
x

F
i subject to A

1
x

F
i  b

F � A

10
y

UF
i and x

F
i � 0 where c is an

arbitrary objective function, e.g., (1, . . . , 1) in our examples. If there exists a feasible

solution of the linear program, Step 3 is passed and let si 2 S(yi, Ai).

For each proposed si, the feasibility check described above does not need to derive all

implied edits. In Step 3, we use the set of explicit edits, reported values yi, and the first

phase of the simplex algorithm to check whether the suggested si generates non-null space of

x

F
i . Ideally, we would implement the simplex algorithm only once for each proposed possible

solution, store the feasibility status in a look-up table, and reuse it when the proposal is

revisited. When the number of variables involved in edits is not small, unfortunately it is

not possible with most standard computers to store all visited unique solutions in memory.

We thus recommend keeping in memory the feasibility status (feasible or not) for a large

9



but manageable number of recently visited unique proposals. For any proposed si, we first

check the in-memory look-up tables (implemented as one hash table per record) to see if we

already know its status, and retrieve it directly if it is in the look-up table. If not, we run

the simplex algorithm to determine feasibility and add the solution to the look-up table. For

example, in the CM application we store up to 30000 solutions from each record. We also

keep and update the MCMC iteration a solution is last visited. When the storage becomes

full, we bump the 30% of the stored solutions with last-visited iterations in the earliest parts

of the chain.

APPENDIX C. PARAMETERS OF SIMULATION STUDY

This section describes all simulated values and edit rules used for the simulation study in

Section 4 of the main text. Motivated by the CM editing system, we introduce explicit edit

rules consisting of the ratio edits (Lj,j0 , Uj,j0) and balance edits shown in Table C.1. The

table also displays the support of reported values Y = (L̃1, Ũ1)⇥ . . .⇥ (L̃p, Ũp). Note that it

is natural to assume X ⇢ Y in data editing for continuous data. To make X bounded, we

set the range restrictions equal to the ranges of reported values, i.e., (Lj, Uj) = (L̃j, Ũj) for

j = 1, . . . , p.

We generate a population X

pop by following steps: (i) generate x by sampling the all-

but-total variables xNT = (x2, x3, x4, x6, x7, x8) from a mixture of three multivariate normal

distributions, logxNT ⇠ N(µz,⌃z) where z ⇠ Categorical(0.25, 0.60, 0.15), (ii) set x1 and

x5 equal to sums of their component variables, (iii) accept the generated value if x 2 X and

reject it otherwise. Repeat steps (i)–(iii) until 1,000,000 records of xi 2 X are generated.

The simulation parameters used are

µ1 = (3, 6, 5, 2, 3, 8, 7)T ,µ2 = (4, 9, 8, 4, 5, 9, 7.5)T ,µ3 = (7, 5, 7, 5, 5, 10, 9)T ,
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Table C.1: Nine variables used in the simulation study of Section 4 of the main text. The
left table shows the ranges of reported values (L̃j, Ũj) and the balance edits which we intro-
duce for illustration. The right table shows that the ratio edits (Lj,j0 , Uj,j0) on each pair of
variables. There are no explicit range restrictions.

Var. L̃j Ũj Balance Edit xj/xj0 Lj,j0 Uj,j0

x1 2.1 1200000 x1 = x2 + x3 + x4 x1/x5 0.367 148.41

x2 0.1 100000 x1/x8 0.082 20.09

x3 1.0 1000000 x1/x9 0.007 148.41

x4 1.0 100000 x5/x8 0.006 2.72

x5 0.2 200000 x5 = x6 + x7 x5/x9 0.007 148.41

x6 0.1 100000 x8/x9 0.007 148.41

x7 0.1 100000

x8 1.0 1000000

x9 1.0 1000000

⌃1 =

2

6666666666666666664

1.0 0.2 0.1 �0.1 �0.2 0.4 0.1

0.2 1.0 0.1 0.0 0.0 0.2 0.1

0.1 0.1 1.0 �0.3 0.0 0.0 0.1

�0.1 0.0 �0.3 1.0 0.4 �0.2 0.1

�0.2 0.0 0.0 0.4 1.0 �0.1 0.1

0.4 0.2 0.0 �0.2 �0.1 1.0 0.1

0.1 0.1 0.1 0.1 0.1 0.1 1.0

3

7777777777777777775

⌃2 =

2

6666666666666666664

0.7 �0.2 �0.2 0.0 0.0 0.1 0.1

�0.2 0.7 �0.2 0.0 0.0 0.2 0.1

�0.2 �0.2 0.7 0.0 0.0 0.0 0.1

0.0 0.0 0.0 0.5 0.1 �0.1 0.1

0.0 0.0 0.0 0.1 0.5 �0.1 0.1

0.1 0.2 0.0 �0.1 �0.1 0.5 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.8

3

7777777777777777775

,
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and

⌃3 =

2

6666666666666666664

0.5 0.1 0.2 �0.2 0.0 0.1 0.1

0.1 0.3 �0.2 0.0 �0.2 0.1 0.1

0.2 �0.2 0.7 0.0 0.0 0.1 0.1

�0.2 0.0 0.0 0.4 0.0 0.0 0.1

0.0 �0.2 0.0 0.0 0.4 0.0 0.1

0.1 0.1 0.1 0.0 0.0 0.4 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.7

3

7777777777777777775

.

We sample R = 500 independent simple random samples X

r, where r = 1, . . . , R, of

size n = 1000 from X

pop. In each X

r, we randomly select 600 records to have Ai = 0 for

which xi = yi, 200 records to have Ai 2 {1, 3}, and 200 records to have Ai = 2. Within

each group of 200 records, we randomly draw the simulated values of si and yi by rejection

sampling as follows. First, we randomly draw sij ⇠ Bernoulli( sj) for j = 1, . . . , p where

( s
1

, . . . , s
9

) = (0.41, 0.21, 0.08, 0.29, 0.31, 0.11, 0.09, 0.32, 0.29). Second, we randomly draw

values of yij whenever sij = 1 from the appropriate uniform distribution with the limits

(L̃j, Ũj) shown in Table C.1. Finally, we accept the proposed yi when it violates edit rules

in accord with the corresponding Ai, i.e., yi with Ai 2 {1, 3} fails at least one balance

edit and yi with Ai = 2 passes all balance edits but fails at least one inequality constraint.

Specifically for records with Ai = 2, we propose values of yij for sij = 1 and j /2 {1, 5} from

the uniform distribution, calculate the total variables yi1 = yi2 + yi3 + yi4 and yi5 = yi6 + yi7,

and check if yi violates inequality constraints. In our process of sampling the simulated

values by rejection sampling, typically around 79% of (si,yi) with Ai 2 {1, 3} are accepted

and around 46% of (si,yi) with Ai = 2 are accepted.
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APPENDIX D. MCMC STEPS FOR OTHER EDITING

METHODS

To implement the editing methods in Section 4 of the main text, we modify the MCMC

steps for BE described in Appendix A as follows.

FH: For each i, determine the error indicators si under MWFI criterion. We set the assumed

reliability weight of item j by wj = 1 �
Pn

i=1 s
⇤
ij/n where s

⇤
ij is the simulated (true) sij

used to generate the simulated reported dataset. Given the fixed value of si, we implement

MCMC Steps 2–8 in Appendix A.

BE-min: The feasible region of s is restricted to SFH(yi, Ai) which is the set of s0i 2 S(yi, Ai)

such that
P

j s
0
ij 

P
j sij for all other si 2 S(yi, Ai). Then, we run the MCMC in Ap-

pendix A with replacing S(yi, Ai) with SFH(yi, Ai). In Step 1.1.(a), we only need the swap

procedure because
P

j s
0
ij is fixed to

P
j s

(t�1)
ij .

AAI: For each i, determine si to flag all active items, which have conflict with other data

items. That is, let sij = 1 for variables j that are involved in failed edits (including balance

edits, ratio edits and range restrictions). Additionally, we set sij = 1 for all j 2 Bl if siTl
= 1.

Given the fixed value of si, we implement MCMC Steps 2–8 in Appendix A.

BE-sgl: Implement the MCMC steps in Appendix A with modifying steps as follows:

· In Step 1, omit subscript z(t�1)
i from µ

(t�1)

z
(t�1)

i

and ⌃(t�1)

z
(t�1)

i

.

· Omit Steps 3, 6, 7 and 8.

· Modify Step 4 as follows: Starting with cin = cout = 0,
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(a) Draw logx0
NT ⇠ (µ,⌃) and calculate total variables {x0

Tl
, l = 1, . . . , q} by balance

edits x0
Tl
=

P
j2Bl

x

0
j.

(b) If x0 2 D, set cin = cin + 1.

If x0
/2 D, set cout = cout + 1 , x(t)

n+c
out

= x

0.

(c) Repeat (a) through (c) until cin = n.

(d) Let N (t)
aug = n+ cout.

· Modify Step 5 as follows.

Draw ⌃ ⇠ InverseWishart(⇣⇤,�⇤) and then draw µ ⇠ N(µ⇤
,⌃/h⇤) where ⇣

⇤ =

Naug + ⇣0, h⇤ = Naug + h0, µ⇤ = (Naugx̄
⇤ + h0µ0)/h

⇤, �⇤ = � + S

⇤ + (µ⇤ � µ0)(µ
⇤ �

µ0)
T
/(1/Naug + 1/h0). The sample mean and the sum of squared distances are calcu-

lated by x̄

⇤ =
PN

aug

i=1 logxi,NT/Naug and S

⇤ =
PN

aug

i=1 (logxi,NT � x̄

⇤)(logxi,NT � x̄

⇤)T .

In our simulation study, we put weak priors for � = diag(�1, . . . ,�p�q) where �j = 0.01

for j = 1, . . . , p� q.

TrueS

Implement MCMC Steps 2–8 in Appendix A with each si fixed at the simulated values s⇤i .

APPENDIX E. EVALUATIONS OF PROPENSITY SCORE

UTILITY MEASURE

In the simulation study in Section 4 of the main text, we also evaluated data quality using

the propensity score metric from the literature on statistical disclosure limitation (Woo

et al. 2009), which determines how well one can discriminate X

r(m) from X

r. Inability

to discriminate suggests similar distributions, which means high quality of X

r(m). The

propensity score for some X

r(m) and X

r is calculated as follows.
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Table E.1: Summary of propensity score utility measures PSr (times 100) across the 500
simulations.

TrueS BE FH BE-min AAI BE-sgl

Mean 3.56 6.40 20.94 16.23 10.06 12.00
S.E. 0.02 0.03 0.10 0.13 0.04 0.04

1. Concatenate X

r and X

r(m), and add an indicator variable with values equal to zero

for all records in X

r and equal to one for all records in X

r(m).

2. Using the concatenated data, estimate the logistic regression of the indicator vari-

able on all p = 9 variables (after log transformations), including main e↵ects and all

interactions up to third order. Thus, we estimate the logistic regression function,

log

✓
pi

1� pi

◆
= �0+

9X

a=1

�a log xia+
X

a,b

�ab log xia log xib+
X

a,b,c

�abc log xia log xib log xic.

(E.1)

3. For i = 1, . . . , 2n, we compute the set of predicted probabilities p̂i using the MLEs of

the coe�cients in (E.1).

4. The propensity score utility measure for Xr(m) is defined as

PSr(m) =
1

2n

2nX

i=1

✓
p̂i �

1

2

◆2

.

For each X

r, we compute PSr =
PM

m=1 PS
r(m)

/M . Table E.1 shows that the propensity

score of BE is much lower than other methods (about a third of that of FH), implying that

the multivariate distribution in the edited data from BE is more similar to the multivariate

distribution of Xr than those from other editing methods.
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APPENDIX F. SIMULATION STUDIES WHERE Ai DEPENDS

ON x

Ci
i OR x

Ei
i .

In this section, we apply the Bayesian editing to simulation examples where the data gen-

erating distribution for Ai depends on xi. We modify the simulation design of the main

text as follows. We use the population X

pop and its R = 500 samples generated in Section

4. In each X

r, the values of Ai for i = 1, . . . , n are randomly drawn with probabilities

P (Ai = 0) = 1 � 1/[1 + exp(�ui)] and P (Ai = 1) = P (Ai = 2) = 1/2[1 + exp(�ui)] where

ui = 17� 2xi,8.

We assume two scenarios where the data generating distribution for Ai depends on one

variable known to be correct for all records x

Ci
i (FAR scenario) and on a variable that is

subject to reporting errors xEi
i (not FAR scenario). For the FAR scenario, for records with

Ai > 0, we generate the simulated values of si by randomly drawing sij ⇠ Bernoulli( sj) for

j = 1, . . . , p until the generated si is in the feasible region S(yi, Ai) where ( s
1

, . . . , s
9

) =

(0.41, 0.21, 0.08, 0.29, 0.31, 0.11, 0.09, 0.00, 0.29). Thus, variable j = 8 is assumed known to

be correct and has si8 = 0 for all i. For the not FAR scenario, we generate the simulated

values of si with ( s
1

, . . . , s
9

) = (0.41, 0.21, 0.08, 0.29, 0.31, 0.11, 0.09, 0.32, 0.29). Thus,

variable j = 8 may or may not be known to be correct. For records with Ai = 0, set yi = xi.

For records with Ai > 0, models in (11) and (12) in the main text are used to generate yi

corresponding to the given values of si, for both of scenarios.

Tables F.1 and F.2 summarize the simulation results of the FAR scenario. The overall

results are similar to Table 1 of the main text. BE tends to result in the smallest biases

and root mean squared errors (RMSE) among all the editing methods, and its 95% coverage

rates are close to the nominal values.

Tables F.3 and F.4 summarize the results from the not FAR scenario. Because none of
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Table F.1: Summaries of the estimators of population mean across R = 500 simulations in
the FAR scenario – the data generating distribution for Ai depends on xi8 which is assumed
known to be correct. The columns labeled X

r and X

r,pass display results based on the true
data and the edit-passing records only, respectively. The column labeled TrueS displays the
results using the model in Section 3 with each sij fixed at the true s

⇤
ij.

Editing methods
X

r
X

r,pass TrueS BE FH BE-min AAI BE-sgl

relBias (⇥100)
X̄1 0.1 15.1 0.2 -0.1 3.4 3.2 1.5 2.3
X̄2 0.6 44.2 1.4 0.2 95.3 70.6 5.3 0.0
X̄3 0.2 15.6 0.2 0.0 -0.6 0.2 0.7 4.0
X̄4 0.0 11.6 0.1 -0.3 4.1 3.8 2.7 -1.2
X̄5 -0.1 11.0 -0.2 -1.3 38.5 21.6 5.1 -2.8
X̄6 -0.1 15.5 -0.1 -1.0 86.0 38.7 5.6 -1.8
X̄7 -0.1 9.0 -0.3 -1.5 17.7 14.0 4.9 -3.3
X̄8 0.4 35.5 0.4 0.4 0.4 0.4 0.4 0.4
X̄9 0.0 23.6 0.3 0.0 36.9 37.9 6.6 -0.3

relRMSE (⇥100)
X̄1 2.7 15.5 2.7 2.8 4.6 4.4 3.4 3.7
X̄2 8.1 45.9 8.3 8.1 100.6 76.6 10.6 8.1
X̄3 3.5 16.3 3.5 3.6 3.7 3.7 4.1 5.5
X̄4 3.7 12.6 3.8 4.1 6.3 6.1 5.5 4.4
X̄5 2.4 11.4 2.4 2.8 40.8 23.3 6.1 3.8
X̄6 3.3 16.3 3.3 3.6 92.8 44.1 7.5 4.0
X̄7 2.8 9.7 2.8 3.3 21.0 16.8 6.4 4.4
X̄8 2.8 35.7 2.8 2.8 2.8 2.8 2.8 2.8
X̄9 4.5 24.5 4.6 4.7 40.5 41.9 9.1 4.7

95% CI Coverage
X̄1 95.2 0.0 95.2 94.2 82.4 83.0 93.6 90.8
X̄2 93.0 2.6 94.8 94.0 2.0 17.0 94.8 93.6
X̄3 94.4 9.0 94.4 94.2 94.4 94.8 94.0 87.8
X̄4 93.4 31.4 93.6 94.2 90.8 90.0 91.8 92.6
X̄5 93.8 2.0 94.2 92.0 1.4 22.8 82.4 78.2
X̄6 94.8 5.0 95.0 92.8 6.4 63.4 92.6 89.2
X̄7 94.8 24.2 95.0 92.2 73.2 78.2 88.8 78.6
X̄8 95.0 0.0 95.0 95.0 95.0 95.0 95.0 95.0
X̄9 95.6 4.0 95.2 96.0 36.6 37.6 89.0 96.2
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Table F.2: Summaries of the estimators of regression coe�cients across R = 500 simulations
in the FAR scenario – the data generating distribution for Ai depends on xi8 which is assumed
known to be correct. The columns labeled X

r and X

r,pass display results based on the true
data and the edit-passing records only, respectively. The column labeled TrueS displays the
results using the model in Section 3 with each sij fixed at the true s

⇤
ij.

Editing methods
X

r
X

r,pass TrueS BE FH BE-min AAI BE-sgl

relBias (⇥100)
�0 0.2 -27.4 0.7 4.3 -16.8 -14.8 -9.8 2.3
�1 -0.8 -26.9 -0.7 -7.6 29.5 17.7 9.2 -18.7
�2 0.0 22.1 0.1 3.3 -4.9 10.8 5.5 12.8
�3 0.2 24.6 -0.3 -1.8 2.2 -3.3 0.0 0.1

relRMSE (⇥100)
�0 8.0 32.3 9.6 12.2 20.6 19.0 16.8 11.8
�1 13.7 32.5 15.3 18.6 34.2 25.0 23.4 24.4
�2 9.9 26.3 11.3 12.9 14.3 18.1 16.1 17.9
�3 9.2 28.2 10.3 11.4 12.2 12.6 12.1 11.0

95% CI Coverage
�0 94.8 61.0 94.8 94.0 65.6 70.4 86.2 94.2
�1 93.2 65.6 93.6 92.6 58.0 81.0 92.0 79.4
�2 92.6 61.4 93.6 92.2 86.6 81.4 93.0 80.6
�3 94.4 55.8 94.0 94.8 94.4 93.4 93.8 94.0
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the editing procedures account for the nonignorable selection of faulty data, estimators of

X̄8 are biased for all editing methods. Nonetheless, BE still tends to perform best among the

editing methods.
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Table F.3: Summaries of the estimators of population mean across R = 500 simulations
in the not FAR scenario – the data generating distribution for Ai depends on xi8 which is
subject to reporting errors. The columns labeled X

r and X

r,pass display results based on the
true data and the edit-passing records only, respectively. The column labeled TrueS displays
the results using the model in Section 3 with each sij fixed at the true s

⇤
ij.

Editing methods
X

r
X

r,pass TrueS BE FH BE-min AAI BE-sgl

relBias (⇥100)
X̄1 0.1 15.1 0.4 1.6 8.4 6.1 7.8 6.1
X̄2 0.6 44.2 1.9 4.3 111.3 87.5 21.6 10.8
X̄3 0.2 15.6 0.4 1.8 4.2 3.2 7.8 7.5
X̄4 0.0 11.6 0.3 1.1 8.5 5.5 6.7 2.8
X̄5 -0.1 11.0 -0.1 -0.9 140.7 62.7 8.2 5.4
X̄6 -0.1 15.5 -0.1 -0.4 292.2 118.5 10.2 18.6
X̄7 -0.1 9.0 -0.2 -1.1 74.3 38.3 7.3 -0.4
X̄8 0.4 35.5 5.0 9.4 15.3 14.4 18.0 13.6
X̄9 0.0 23.6 0.4 1.6 40.8 40.2 11.6 5.5

relRMSE (⇥100)
X̄1 2.7 15.5 2.7 3.3 9.5 7.4 8.4 7.0
X̄2 8.1 45.9 8.5 9.9 116.9 94.9 24.1 17.0
X̄3 3.5 16.3 3.6 4.1 7.4 6.3 8.9 8.8
X̄4 3.7 12.6 3.9 4.3 10.2 7.5 8.2 5.2
X̄5 2.4 11.4 2.4 2.8 146.7 67.8 9.0 11.9
X̄6 3.3 16.3 3.4 4.0 312.3 136.5 12.0 36.3
X̄7 2.8 9.7 2.8 3.3 82.9 45.2 8.3 7.0
X̄8 2.8 35.7 5.8 9.9 16.4 15.6 18.3 14.1
X̄9 4.5 24.5 4.6 5.1 45.4 45.4 13.5 9.8

95% CI Coverage
X̄1 95.2 0.0 95.8 90.8 52.8 74.2 36.8 62.2
X̄2 93.0 2.6 94.8 95.2 1.4 15.2 59.8 95.2
X̄3 94.4 9.0 94.6 93.0 96.0 96.4 61.8 68.4
X̄4 93.4 31.4 94.6 92.8 73.0 85.2 73.2 93.0
X̄5 93.8 2.0 94.8 93.4 0.0 19.4 61.4 95.8
X̄6 94.8 5.0 94.6 94.4 4.6 68.8 75.2 97.0
X̄7 94.8 24.2 95.0 92.4 34.8 78.8 79.2 89.2
X̄8 95.0 0.0 59.0 12.2 19.6 24.2 0.0 2.8
X̄9 95.6 4.0 95.6 95.6 44.6 41.0 65.6 95.2
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Table F.4: Summaries of the estimators of regression coe�cients across R = 500 simulations
in the not FAR scenario – the data generating distribution for Ai depends on xi8 which is
subject to reporting errors. The columns labeled X

r and X

r,pass display results based on the
true data and the edit-passing records only, respectively. The column labeled TrueS displays
the results using the model in Section 3 with each sij fixed at the true s

⇤
ij.

Editing methods
X

r
X

r,pass TrueS BE FH BE-min AAI BE-sgl

relBias (⇥100)
�0 0.2 -27.4 -0.4 -2.8 -16.8 -7.5 -21.1 -13.6
�1 -0.8 -26.9 -0.9 -8.8 50.7 32.2 0.8 -14.4
�2 0.0 22.1 -0.1 4.6 -34.3 -7.2 9.9 13.6
�3 0.2 24.6 0.4 3.6 8.3 -7.1 10.8 10.6

relRMSE (⇥100)
�0 8.0 32.3 10.0 12.2 21.7 15.0 26.5 19.1
�1 13.7 32.5 15.2 19.1 53.8 36.8 20.6 21.5
�2 9.9 26.3 11.0 13.4 37.1 17.0 17.1 18.4
�3 9.2 28.2 11.1 12.9 16.3 15.0 17.4 16.5

95% CI Coverage
�0 94.8 61.0 94.8 95.8 61.6 85.2 67.0 79.6
�1 93.2 65.6 95.4 90.4 18.6 52.8 95.4 84.8
�2 92.6 61.4 94.8 93.4 16.4 82.8 90.8 79.0
�3 94.4 55.8 94.2 94.8 86.4 84.4 86.0 84.4
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APPENDIX G. SIMULATION STUDIES WITH OUTLIER

DETECTION

Some automatic editing systems combine a minimum number of fields to impute approach

with outlier detection methods (Kozak 2005). For example, the agency could flag reported

values far in the tail of a univariate (or multivariate) distribution as outliers, and ensure

that those values are blanked and imputed. In this section, we perform a simulation study

that implements an outlier detection procedure from the Ban↵ editing system of Statistics

Canada (Ban↵ Support Team 2007) before applying BE-min and BE.

We base the simulation study on the 500 replicated datasets described in Section 4 of the

main text. For each of these 500 sets Y r, for each variable j we compute the first quartile

Q1j, the median Q2j, and the third quartile Q3j of log Y r
ij. We identify as outliers all yij such

that log yij < Q2j�CdQ
1j or log yij > Q2j+CdQ

3j , where dQ1j = Q2j�Q1j, dQ
3j = Q3j�Q2j,

and C is a pre-specified threshold. This is a univariate outlier detection scheme, finding cases

that are in the tails of marginal distributions. We fix sij = 1 for all specified outliers, and of

course si = 0 for all cases with no outliers and no edit failures. For all other values, we let

the sij be unknown and run a minimum number of fields to impute method (BE-min, since

it outperformed FH in the other simulations) and the Bayesian editing method (BE).

Figure G.1 displays a typical result of applying outlier detection before BE-min. When

C = 6, the distribution of log xi1 and log xi9 when applying outlier detection followed by

BE-min is similar to that generated by applying BE-min alone, with some outlying reported

values left unedited. When C = 2, applying outlier detection before BE-min results in many

true values being labeled outliers and replaced with imputations. Clearly, the procedure

works best when C = 4.

Tables G.1 and G.2 summarize the simulation results. When C = 4, forced editing of the
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Figure G.1: Plots of log xi1 versus log xi9 when applying outlier detection followed by BE-min.
Results are based on one randomly selected true X

r and one randomly selected dataset
after applying edit-imputation to this Xr. The top left panel shows the imputed values of
BE-min without outlier detection, and other panels show BE-min after the outlier detection
procedures with di↵erent values of C. The black dots represent values after editing and
imputation, and the blue dots in background represent the true values in X

r.
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selected outliers improves the quality of inferences for BE-min. However, in this simulation,

BE still dominates BE-min with outlier detection. Interestingly, setting sij = 1 for cases

identified as outliers before running BE also outperforms BE-min with outlier detection. This

suggests benefits of stochastic error localization even after outlier identification. We also ran

the simulation with outlier detection on the original scale (without taking logarithms for

outlier detection). Overall, the repeated sampling properties are poorer than those reported

in Tables G.1 and G.2.

APPENDIX H. EDIT RULES FOR CM APPLICATION

We use data of a metalworking machinery manufacturing industry (NAICS code of 33351400)

from the 2007 U.S. Economic Census, which include p = 27 variables involved in the edit

rules. The industry-specific edits are provided by the Census Bureau, which were used in the

SPEER system for automatic editing. The explicit edits consist of 66 ratio edits (Lj,j0 , Uj,j0)

for all possible pairs of 12 variables subject to ratio edits and six balance edits.

For confidentiality reasons, we are not able to disclose the exact values of ratio edit

limits. Instead, we summarize the structure of edit rules for CM editing in Table H.1. We

replace zeros in yi with a small positive value ! = 0.1 because it is necessary for ratio

edits to be defined, since one cannot divide by zero (see Kovar et al. 1988). The ranges

of reported values (L̃j, Ũj) are introduced by setting L̃j = 0.001 for all j and Ũj with the

value either 104, 105 or 106 such that Ũj/10 < maxi yij  Ũj. This lets all yi be in the

support Y = (L̃1, Ũ1) ⇥ . . . ⇥ (L̃p, Ũp) but not too close to the boundary of Y . No explicit

range restriction is provided in the CM data. To make X (⇢ Y) bounded, we set the range

restrictions equal to the ranges of reported values, i.e., (Lj, Uj) = (L̃j, Ũj) for j = 1, . . . , p.

24



Table G.1: Summaries of the estimators of population mean across 500 simulations in outlier
detection simulation. The first and second columns display results of the editing methods
without an outlier detection step, which are exactly the same as the sixth and fourth columns
of Table 1 of the main text, respectively. The value of C indicates the threshold parameter
of the outlier detection method.

With Outlier Detection
BE-min BE

BE-min BE C=6 C=4 C=2 C=6 C=4 C=2

relBias (⇥100)
X̄1 6.2 -0.1 4.8 2.4 -6.6 -0.1 -0.1 -5.6
X̄2 88.3 0.4 66.8 54.0 69.4 0.1 -8.7 -8.1
X̄3 3.3 0.1 1.2 -0.4 -10.5 0.2 0.5 -3.8
X̄4 5.5 -0.6 7.1 3.9 -4.8 -0.5 -0.7 -9.5
X̄5 91.3 -1.1 16.4 3.4 -5.3 -1.3 -1.9 -8.0
X̄6 168.6 -0.9 29.4 6.3 -1.7 -1.1 -1.4 -6.7
X̄7 57.4 -1.2 10.7 2.1 -6.9 -1.4 -2.1 -8.6
X̄8 6.6 0.7 3.9 1.2 -7.6 0.7 0.6 -6.9
X̄9 31.2 -0.5 20.2 4.4 -22.1 -0.6 -1.9 -24.8

relRMSE (⇥100)
X̄1 7.6 2.8 6.0 3.8 7.3 2.7 2.8 6.6
X̄2 94.8 8.4 73.5 59.6 74.0 8.6 12.4 14.8
X̄3 6.7 3.6 4.4 3.7 11.1 3.6 3.7 6.0
X̄4 7.7 4.0 9.1 6.3 6.4 4.0 4.1 10.4
X̄5 96.2 2.7 17.9 4.5 6.0 2.8 3.1 8.4
X̄6 185.7 3.7 34.0 8.2 4.2 3.7 3.7 7.7
X̄7 65.6 3.2 12.7 3.9 7.6 3.3 3.6 9.1
X̄8 8.2 3.1 5.7 3.4 8.4 3.1 3.2 7.9
X̄9 36.3 4.8 23.9 7.4 22.6 4.9 5.4 25.1

95% CI Coverage
X̄1 73.8 95.8 72.6 86.8 25.0 95.4 96.2 42.6
X̄2 15.4 95.4 23.4 34.6 7.2 94.2 76.0 84.6
X̄3 96.4 96.2 95.6 93.8 11.4 95.8 97.0 70.0
X̄4 87.0 94.8 78.4 87.2 67.2 95.4 94.6 27.4
X̄5 2.0 92.4 61.8 86.2 32.2 91.4 85.4 8.2
X̄6 23.4 93.0 78.2 87.4 86.0 93.6 91.0 40.8
X̄7 42.2 92.2 83.8 94.0 24.4 91.2 87.6 11.0
X̄8 84.8 93.8 90.4 93.6 20.6 94.8 94.8 30.0
X̄9 56.8 95.4 51.2 85.2 0.8 94.4 90.6 0.0
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Table G.2: Summaries of the estimators of regression coe�cients across 500 simulations in
the outlier detection simulation. The first and second columns display results of the editing
methods without an outlier detection step, which are exactly the same as the sixth and fourth
columns of Table 2 of the main text, respectively. The value of C indicates the threshold
parameter of the outlier detection method.

With Outlier Detection
BE-min BE

BE-min BE C=6 C=4 C=2 C=6 C=4 C=2

relBias (⇥100)
�0 2.8 0.9 5.4 7.6 9.2 0.7 -1.9 -8.8
�1 39.7 -2.9 24.7 20.7 55.6 -2.9 -3.4 36.2
�2 -24.7 1.7 -3.9 -2.7 -21.0 1.8 4.0 -1.7
�3 -9.0 -0.4 -16.3 -16.9 -26.6 -0.3 0.9 -12.1

relRMSE (⇥100)
�0 12.3 9.4 11.8 12.2 15.8 9.2 10.2 17.6
�1 43.2 16.3 29.8 26.0 57.4 16.5 16.7 40.4
�2 28.0 11.9 13.9 12.6 25.6 11.9 13.3 17.4
�3 15.6 11.0 20.2 20.0 29.1 10.9 11.2 18.8

95% CI Coverage
�0 89.4 95.2 88.0 86.8 83.6 96.6 95.0 85.0
�1 34.6 94.0 66.8 72.0 3.0 94.2 92.4 45.4
�2 37.8 93.2 90.0 93.8 67.0 93.2 92.4 92.6
�3 83.0 94.2 68.2 63.2 33.4 94.0 94.8 80.0
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Table H.1: Variables used in the CM edit rules. The upper table shows the ranges of reported
values (L̃j, Ũj) we introduced and whether a variable is subject to ratio edits. The values of
the ratio edits provided by the Census Bureau are not displayed due to confidential reasons.
The lower table displays the six balance edits.

Var. Name TC TIB TIE TVS PW OE TE WW OW

L̃j 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Ũj 106 105 105 106 10000 10000 10000 106 105

Ratio edit? Y Y Y Y Y Y Y Y Y

Var. Name SW BEN PH Ca Cb Cc Cd Ce IBa

L̃j 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Ũj 106 105 10000 106 105 10000 10000 105 105

Ratio edit? Y Y Y N N N N N N

Var. Name IBb IBc IEa IEb IEc PW1 PW2 PW3 PW4

L̃j 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Ũj 105 105 105 105 105 10000 10000 10000 10000

Ratio edit? N N N N N N N N N

Balance Edits
TC = Ca +Cb +Cc +Cd +Ce TIB = IBa + IBb + IBc

TIE = IEa + IEb + IEc PW = (PW1 + PW2 + PW3 + PW4)/4
TE = PW+OE SW = WW+OW
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Supplementary Materials for “Simult. Edit-Imputation for Cont. Microdata”

Notations

xi = (xi1, . . . , xip) true values of p variables for data subject i

yi = (yi1, . . . , yip) reported values corresponding to xi

si = (si1, . . . , sip) error indicator corresponding to yi

(Lj, Uj) range restriction for variable j

(Lj,j0 , Uj,j0) ratio edit for variables j and j

0

Bl l-th balance edit, l = 1, . . . , q

B
pass

observed set of passed balanced edits

Tl total variable involved in l-th balance edit. xiTl
and yiTl

are true

and reported values of Tl of subject i

Bl index of component variables involved in l-th balance edit. Note

that for notational simplicity we use Bl to represent both the l-th

balance edit and the indexes of its component variables.

NT set of all-but-total variables, i.e., {1, . . . , p} \ {Tl : l = 1, . . . , q}
xi,NT and yi,NT are true and reported values of variables in NT

X region of all potential records that passes all edits

D region of all potential records that passes all inequality constraints.

Note that X = D \ {x :
P

j2Bl
xj = xTl

, 8l}
Y support of reported values yi. Note that generally X ⇢ Y for editing of

continuous data

(L̃j, Ũj) range of reported values of variable j. Note that (L̃j, Ũj) may

or not equal to (Lj, Uj)

Ai indicator showing how record i violates edit constraints. In our model,

Ai = 0 if i satisfies all edits

Ai = 1 if i fails at least one balance edit and x 2 D
Ai = 2 if i passes all balance edits but x /2 D
Ai = 3 if i fails at least one balance edit and x /2 D.
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✓ parameter of true data model f (xi,NT |✓)
 s parameter of error indicator model f(si, Ai | xi, s)

 y parameter of reporting model f(yi | xi, si, Ai, y). Note that

ḟ(yi|xi, si, Ai, y) is an unnormalized density of f(yi | xi, si, Ai, y)

f(xi,NT |✓) joint density of true values for all-but-total variables

y

UF
i correctly reported (not flagged) values given (xi, si, Ai),

i.e., {yij : sij = 0, j = 1, . . . , p}
y

F
i incorrectly reported (flagged) values given (xi, si, Ai),

i.e., {yij : sij = 1, j = 1, . . . , p}
x

UF
i ,x

F
i true values corresponding to y

UF
i and y

F
i

Ci set of variables known to have sij = 0 with corresponding values

y

Ci
i = x

Ci
i and s

Ci
i = 0.

Ei set of remaining values for record i, i.e., all cases with missing or possibly

erroneous yij, with corresponding values (xEi
i , s

Ei
i ,y

Ei
i ).

Xn,Sn,Y n collection of values for n subjects: Xn = (x
1

, . . . ,xn),

Sn = (s
1

, . . . , sn) and Y n = (y
1

, . . . ,yn)

S(yi, Ai) set of feasible si for subject i, which is function of yi and Ai

XNaug�n set of xi for Naug

� n hypothetical, unobserved individuals,

which are used to estimate parameters of Xn from an unconstrained

distribution of X
aug

= (Xn,XNaug�n)

zi mixture membership indicator of record i, i.e., zi 2 {1, . . . , K}
when the mixture of K distributions is used

⇡k parameters for zi, i.e., Pr(zi = k) = ⇡k where
P

k ⇡k = 1

µk, ⌃k mean vector and covariance matrix of normal distribution for log(xi,NT )

in the k-th mixture component

µ,⌃,⇡ parameters of a mixture of distributions defined as µ = (µ
1

, . . . ,µK),

⌃ = (⌃
1

, . . . ,⌃K) and ⇡ = (⇡
1

, . . . , ⇡K)
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µ

0

, h

0

parameters for µk

�, ⇣
0

, a

�

, b

�

parameters for ⌃k where � = diag(�
1

, . . . ,�p�q)

↵, a↵, b↵ parameters for ⇡k (or ⌫k)

X

pop population used in the simulation study of Section 4 comprising

1000000 records measured on p = 9 variables

X

r
r-th random sample of size n = 1000 drawn from X

pop,

r = 1, . . . , R

Y

r reported dataset corresponding to X

r

X

r(m)

m-th corrected (completed) dataset corresponding to Y

r

(and X

r), m = 1, . . . ,M

X

r,pass sample of edit-passing records only, corresponding to Y

r

! pre-determined small number replacing nonpositive values,

to work with ratio edits. In our example, ! = 0.1

wj reliability weight of variable j

�(·) Dirac delta function with the point mass at zero

I[·] indicator with the value one if the statement inside the brackets

is true and zero otherwise

Bernoulli(p) Bernoulli distribution with success probability p

Beta(a, b) Beta distribution with mean a/(a+ b)

Binomial(n, p) Binomial distribution with mean np

Categorical(p
1

, . . . , pK) Categorical distribution with the event probabilities p
1

, . . . , pK

where
P

k pk = 1

Gamma(a, b) Gamma distribution with mean a/b

InverseWishart(a,B) Inverse Wishart distribution with d.f. a and the scale matrix B

N(µ,⌃) Normal distribution with the mean vector µ and the covariance

matrix ⌃. N(x|µ,⌃) indicates the density of N(µ,⌃) evaluated

at x

Unif(A) Uniform distribution on the support A
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Abbreviations

AAI all active items

CM Census of Manufactures

FAR faulty at random

F-H Fellegi and Holt

MFI minimum fields to impute

MWFI minimum weighted fields to impute

NFAR not faulty at random

RMSE root mean squared errors
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