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In this paper we give a detailed explanation of how to estimate a multinomial logistic regression model

using data from a longitudinal survey with multiple cohorts. We also show how to estimate the variance

of the parameter estimates by using the estimating function bootstrap or any other design variance es-

timate available in the literature. We argue why it is more appropriate to estimate the autocorrelation

matrix by quasi-least squares rather than by the method of moments or the odds ratios parameterization,

and we show how to do so. We illustrate the technique by estimating a model for employment sector

from the U. S. National Science Foundation’s Survey of Doctorate Recipients, and interpret the results.

Additionally we present a simulated score test for assessing goodness of fit in general, and conclude that

the estimated model for employment sector fits the data well.
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1 Introduction

Although there are many methods of analysis for single-cohort longitudinal surveys, see for example Carrillo

et al. (2010) or Vieira (2009), the estimation of marginal models with data from complex multi-cohort

longitudinal surveys is a topic only lately being developed.

In a recent paper, Carrillo and Karr (2013) proposed, under a weighted generalized estimating equation

framework, a general way of estimating marginal mean models with data from multi-cohort longitudinal

surveys. Their approach permits estimation of the effect of covariates on a response variable, using data

from a variety of types of longitudinal survey data. These include, for example, fixed-panel, repeated-panel,

rotating-panel, or split-panel survey data. That paper, however, only shows how the method applies to a

continuous response. There are no details as of how to proceed with other kinds of responses, for example

categorical responses.

Our goal in this paper is to estimate the effect of covariates on a categorical response, namely employ-

ment sector (such as academia, government or industry) for Ph.D. recipients in the sciences, engineering and

health. We employ data from the Survey of Doctorate Recipients (SDR), which is conducted by the National

Center for Science and Engineering Statistics (NCSES) at the National Science Foundation (NSF). The SDR

is a rotating-panel/repeated-panel longitudinal survey, and hence the estimation methodology proposed by

Carrillo and Karr (2013) is suitable. Here, we present full details of how the technique can be applied to

multinomial responses.

Roberts et al. (2009) is another recent work for estimation of covariates’ effects on a categorical re-

sponse using data from longitudinal surveys. However, they only consider binary responses (as opposed

to multinomial), and more importantly, they consider only single-cohort data. In other words, in a survey

like the SDR, their approach ignores subjects not common to all waves (which can happen either by design

or as the result of nonresponse). The method presented in this paper, on the other hand, can incorporate

all the available data, as long as any design features or nonresponse have been handled by adjustment of

cross-sectional weights.

The paper is organized as follows. In Section 2 we provide the technical details of the application of the

methodology of Carrillo and Karr (2013) to multinomial responses. These details include the description

of the kinds of survey data to which the method can be applied, the model of interest, the estimation of

parameters and of variance, as well as the most suitable way of estimating the autocorrelation matrix used
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by the GEE methodology. Section 3 presents a brief description of the sampling design of the SDR, the

response variable of interest and covariates, and the estimated effects of the latter on the former. There, we

apply the proposed approach to the data at hand, and interpret the results. We close that section by showing

how we go about assessing the goodness-of-fit of the proposed model. Finally, in Section 4 we provide some

concluding remarks.

2 Methodology

In this section, we describe our estimation methodology.

2.1 Sample

We consider the case where the data come from a multi-cohort longitudinal survey, of which a “single-

panel” longitudinal sample is a special case (see Smith et al., 2009). At a certain point in time a (complex)

sample is selected from the target population. For the next wave or cycle, the same set of subjects, or a

subset of them plus some new individuals, is interviewed. The original sample is the first cohort, and the

new subjects introduced at the second wave comprise the second cohort. This mechanism of “thinning”

of previous cohorts and addition of new subjects can be repeated every wave as necessary. Generally, the

purposes of such a rotation mechanism are to control costs and to maintain representativeness of the sample

cross-sectionally over time.

For the purpose of this paper, the population of interest may be defined as (a) “a static population based

on the population at the time the first wave sample is selected,” (b) “the intersection of the cross-sectional

populations at each wave,” or (c) “the union of the cross-sectional populations at each wave” (Smith et al.,

2009). The crucial requirement of our approach is that, whatever the target population is, for each subject

i interviewed at wave j there is a survey weight wi j to represent the target population at wave j. Note that

this is applicable even in case (a), where the target population is defined at wave one, as that is exactly the

same population of interest at wave j. However, in that case, wi j may not depend on j (except perhaps for

nonresponse adjustments).

Obviously, the weighting procedure may not be straightforward. First, the original sample, as well as

the “new” samples selected at each wave, may be complex. Second, the theory of multiple frames may

need to be used; for example where a frame of recent population “births” (e.g., new Ph.D. recipients) is not
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available for one or more waves. Finally, adjustments for nonresponse, dropouts, and intermittent patterns

are required. However, those topics are treated elsewhere, and are beyond the scope of this paper. For the

first, see Särndal et al. (1992), for the second, see for example Rao and Wu (2010), and for the last see Chen

et al. (2012).

2.2 Model

Assume that the categorical variable of interest Y can take on any one of K values labelled 0,1,2, . . . ,K−1.

Paraphrasing Hosmer and Lemeshow (2000), the goal is to model the odds of category outcome as a function

of covariates and to express the results in terms of odds ratios for the different category outcomes.

Let Yi j be the response category for subject i at wave j; where i ∈ s j, the sample at wave j, and j =

1,2, . . . ,J. For each subject there is a (p+1)×1 vector of explanatory variables Xi j at wave j. Interest lies

in estimating the β regression coefficients in the following model:

log
pi jk

pi j0
= log

P(Yi j = k|Xi j)

P(Yi j = 0|Xi j)
= X′i jβββ k, k = 1,2, . . . ,K−1, (1)

where βββ k = (βk0,βk1, . . . ,βkp)
′, pi jk

def
= P(Yi j = k|Xi j) for k = 0,1,2, . . . ,K− 1, and ∑

K−1
k=0 pi jk = 1 for all

i, j. As Agresti (2002) explains, model (1) permits the simultaneous calculation of the (log) odds for all
(K

2

)
pairs of response categories.

2.3 Estimation

The type of longitudinal survey data described in Section 2.1 can be used to estimate model (1) by means of

the approach proposed by Carrillo and Karr (2013). They introduced a methodology suited for estimation

of generalized linear model parameters from multi-cohort longitudinal surveys, but did not demonstrate

how the method applies to multinomial responses. In this section we present the specifics for applying the

technique for estimation of model (1).

Using model (1) with the proposal in Carrillo and Karr (2013), the solution to the estimating equations

Ψs(βββ ) = ∑
i∈s

∂p′i
∂βββ

V−1
i Wi(yi−pi) = 0 (2)

is consistent for the βββ k’s as nm (the minimum of the cross-sectional sample sizes) increases. In expres-

sion (2), the sum is over s, the entire sample, i.e., all subjects regardless of in what waves they are observed;

pi =
(
p′i1,p

′
i2, . . . ,p

′
iJ
)′; pi j = (pi j1, pi j2, . . . , pi j(K−1))

′; βββ =
(
βββ
′
1,βββ

′
2, . . . ,βββ

′
(K−1)

)′; Wi = diag{wi1I(K−1),
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wi2I(K−1), . . . ,wiJI(K−1)}; wi j is the survey weight for subject i at wave j if that subject is interviewed

at wave j and 0 otherwise; I(K−1) is the identity matrix of size K − 1; yi =
(
y′i1,y

′
i2, . . . ,y

′
iJ
)′; yi j =

(yi j1,yi j2, . . . ,yi j(K−1))
′; yi jk = 1 if Yi j = k and 0 otherwise; Vi = A1/2

i R(α̂)A1/2
i ; Ai = diag{νi1,νi2, . . . ,νiJ};

νi j = diag{pi j1(1− pi j1), pi j2(1− pi j2), . . . , pi j(K−1)(1− pi j(K−1))}; and α̂ is a n1/2
m -consistent estimator of

α such that R(α) is a conformable correlation matrix (see Liang and Zeger, 1986, for details). We extend

the discussion about this last matrix in the next section.

Based on straightforward calculations, we have that

∂pi

∂βββ
= {1′(K−1)⊗pi}◦

{
Xi−

[({
IJ⊗1′(K−1)

}{[
1′(K−1)⊗pi

]
◦Xi
})
⊗1(K−1)

]}
,

where 1(K−1) is a column vector of K− 1 ones, “⊗” denotes the Kronecker product, “◦” denotes element-

wise multiplication, Xi =
(
X ′i1,X

′
i2, . . . ,X

′
iJ
)′, Xi j = I(K−1)⊗X′i j, and IJ is the identity matrix of size J.

Expression (2) is a generalization of equation (20.4) in Roberts et al. (2009) in two ways. Firstly,

whereas Roberts et al. (2009) consider only the case where the response has two categories, equation (2)

is applicable when the response variable can take on any of K categories. More important, expression (2)

allows for application to data from multi-cohort surveys, of which the case examined by Roberts et al.

(2009), i.e., a single cohort with no dropouts or intermittent patterns, is just a particular example.

With respect to the variance of the estimator β̂ββ , i.e. the solution to (2), Carrillo and Karr (2013) argue

that, if the sampling fraction is small, it can be estimated by

V̂ (β̂ββ ) = [Ĥ(β̂ββ )]−1 V̂ar[Ψs(βββ N)] [Ĥ(β̂ββ )]−1, (3)

where Ĥ(βββ ) = ∑i∈s (∂p′i/∂βββ )V−1
i Wi(∂pi/∂βββ ), and setting wi0 = 0,

Var[Ψs(βββ N)] =
J

∑
j=1

{
Var
[
∑
i∈s j

wi jBi1U(i)ei( j···J)
]
−Var

[
∑

i∈s j−1

wi, j−1Bi1U(i)ei( j···J)
]}

, (4)

where s j is the set of subjects interviewed at wave j; Bi = (∂p′i/∂βββ )|βββ=βββ N
V−1

i ; βββ N is the “census estimator”

that would be obtained as solution to equation (2) if it were applied to the full finite population U instead

of to the sample at hand; 1U(i) = diag[1U1(i)I(K−1), 1U2(i)I(K−1), . . . , 1UJ (i)I(K−1)]; 1U j(i) is the indicator

of whether or not subject i is part of the finite population at time j; ei( j...J) =
(
0′( j−1),1

′
(J− j+1)

)′ ◦ ei; ei =

yi−pi(βββ N); and 0( j−1) is a column vector of j−1 zeroes.

To compute V̂ (β̂ββ ) from (3), it is necessary to get an estimate of Var[Ψs(βββ N)] in expression (4); all the

terms involved in this expression are design variances of cross-sectional survey design weighted estimators,
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for which several estimation methods exist (Wolter, 2007). For estimating these variances in the application

in Section 3 we use the estimating function bootstrap proposed by Roberts et al. (2003). Carrillo and Karr

(2013) explain the procedure as follows: for estimation of the j-th term in (4), “the r-th replicate of the first

term is ∑i∈s j w(r)
i j Bi(β̂ββ )Ii(U)ei( j···J)(β̂ββ ), where w(r)

i j is the r-th replicate weight for subject i at wave j, and

the r-th replicate of the second term is ∑i∈s j−1 w(r)
i, j−1Bi(β̂ββ )Ii(U)ei( j···J)(β̂ββ ), where w(r)

i, j−1 is the r-th replicate

weight for subject i at wave j−1.”

2.3.1 Estimation of Autocorrelation Matrix

The method of moments proposed by Liang and Zeger (1986) for the estimation of α can produce an

estimated matrix R(α̂) that is non-positive definite even though R(α) is positive definite. According to Cha-

ganty et al. (2012), the fact that R̂ may be non-positive definite “can lead to (most harmlessly) convergence

problems, but it can also lead to artificially deflated estimator variances for the regression parameters and

is thus subject to improper or incorrect inference.” Not only that, a non-positive definite R̂ may lead to a

non-invertible Vi, which breaks the iteration procedure, impeding the estimation of βββ .

There are several reasons why one may obtain non-positive definite correlation matrices in practice (see

for example Wothke, 1993). We concentrate on the most important one for our case. In words of Wothke

(1993), “missing observations due to nonresponse, response sampling design, morbidity, and various other

reasons are a standard occurrence in social science data” and “under pairwise deletion of missing data the

estimated sample covariance matrices may become indefinite.”

The problem in our situation is that the missing data issue is taken to the extreme. Not only do we have

the usual missingness of dropouts and intermittent patterns present in any longitudinal survey, but also the

rotation mechanism of multiple cohorts induces missing data by design. Subjects in different cohorts enter

and leave the survey at different waves. At the times when they are not part of the survey, they are “missing”

from the dataset.

In the application presented in Section 3, estimating the matrix R using Liang and Zeger’s methodology

does generate a non-positive definite R̂. Unfortunately, the approach proposed by Lipsitz et al. (1991) and

Roberts et al. (2009), which is arguably more appropriate for binary (or multinomial) responses, fails to

resolve the issue. This should not be surprising as “existing methods for estimating α sometimes run into

problems as there is no guarantee that the estimated value ensures that R(α) is positive definite” (Chaganty

and Joe, 2004).
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To avoid the non-positiveness issue, Chaganty (1997) proposed a “quasi-least squares” estimation ap-

proach, which is a modification of the original GEE methodology of Liang and Zeger (1986). They propose

to estimate the parameters by solving equation (2) along with the following equation for the correlation

structure (as opposed using to the method of moments):

∑
i∈s

Z′i
∂R−1(α)

∂αq
Zi = 0, 1≤ q≤ Q,

if there are Q correlation parameters (i.e., R is parameterized by Q elements in α), where Zi =W 1/2
i A−1/2

i (yi−

pi).

On the other hand, if, as in our case, one prefers not to stipulate any particular structure for the matrix

R, and let the data “speak for themselves,” Chaganty and Shults (1999) recommend the estimator

R̂ =


R̂um = R̂mdiag{(R̂m ◦ R̂m)

−11}R̂m if R̂m is positive definite

R̂sm =
(
diag{Ẑ}

)−1/2Ẑ
(
diag{Ẑ}

)−1/2 otherwise,
(5)

where R̂m =∆−1/2(∆1/2Ẑ∆1/2)1/2∆−1/2; ∆ is the solution to the fixed point equation ∆= diag{∆1/2Ẑ∆1/2}1/2;

and Ẑ = ∑i∈s ZiZ′i. They argue that for some longitudinal data, it is possible that R̂m is not positive definite,

which would indicate that the (multinomial) data are overdispersed (see Collett, 2003, Ch. 6, for overdisper-

sion). However, in any case, Rsm is positive definite, and therefore the R̂ in (5) is always positive definite; see

Chaganty and Shults (1999) for details. Fortunately, in our application in Section 3, R̂m is positive definite,

and so we can conclude that the data at hand are not overdispersed. Finally, Chaganty and Naik (2002) show

that, like GEE estimators, the quasi-least squares estimators obtained by solving equation (2), paired with

the correlation matrix in (5), are also consistent for βββ .

We end this section sketching an algorithm (adapted from Chaganty and Naik, 2002) for the computation

of the quasi-least squares estimator:

1. Set a starting value βββ
(0) for βββ , can be βββ

(0)
k =

(
log(p̂k/ p̂0), 0′(p)

)′ for k = 1,2, . . . ,K, with p̂k =

(∑i∈s ∑
J
j=1 wi jyi jk)/(∑i∈s ∑

J
j=1 wi j) and p̂0 =

(
∑i∈s ∑

J
j=1 wi j(1−∑

K
k=1 yi jk)

)
/(∑i∈s ∑

J
j=1 wi j).

2. With the current value of βββ
(0) calculate A(0)

i , p(0)i , Z(0)
i , and Ẑ(0).

3. Set a starting value ∆(0) for ∆, can be an identity matrix.

4. Calculate ∆(1) = diag{(∆(0))1/2Ẑ(0)(∆(0))1/2}1/2.
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5. Repeat step 4 with ∆(0) = ∆(1) until convergence.

6. With the current values of Ẑ(0) and ∆(0) calculate R̂(0)
m , R̂(0)

um , R̂(0)
sm (if necessary), and R̂(0).

7. Calculate V (0)
i using the current A(0)

i and R̂(0).

8. Compute the updated value

βββ
(1) = βββ

(0)+

[
∑
i∈s

{
∂p′i
∂βββ

∣∣∣
βββ=βββ

(0)

(
V (0)

i

)−1Wi
∂pi

∂βββ

∣∣∣
βββ=βββ

(0)

}]−1[
∑
i∈s

{
∂p′i
∂βββ

∣∣∣
βββ=βββ

(0)

(
V (0)

i

)−1Wi
(
yi−p(0)i

)}]
.

9. Stop if βββ
(1) ≈ βββ

(0); otherwise repeat steps 2-8, with βββ
(0) replaced by βββ

(1).

3 Application to the SDR

In this section we illustrate how the general methodology proposed by Carrillo and Karr (2013), and laid out

in the previous section for the case of multinomial responses, applies to a real life example. In that paper,

the authors only present an application example for a continuous response, namely (log of) salary, but do

not show how the method applies to multinomial responses. We briefly describe the survey of interest, the

response variable as well as the covariates, and then we discuss the results of the model fitting. Finally we

show how the goodness of fit can be ascertained.

The Survey of Doctorate Recipients (SDR) is a National Science Foundation (NSF) longitudinal survey

whose design incorporates features of both repeated panels and rotating panels. The purpose of the survey

is to study U.S. doctorate recipients in science, engineering, and health fields. It is conducted approximately

every two years; in this paper we restrict our attention to the data collected from 1995 through 2008 (7

waves). Subjects are in scope until the age of 75, while living in the U.S. during the survey reference week,

and while not institutionalized. A detailed description of the SDR can be found at NSF (2012).

The sampling design of the SDR, which mimics the dynamics of the finite population, is depicted in Fig-

ure 1. At any particular wave a new cohort is selected. The new cohort consists of a sample of recent gradu-

ates (from the previous two years) selected from the Doctorate Records File, which is a database constructed

mainly from the Survey of Earned Doctorates (http://www.nsf.gov/statistics/srvydoctorates/).

Not all the sampled graduates are retained in the SDR sample forever. Some individuals, rather than entire

cohorts, are dropped from the sample in order to a) include the new graduates in the new cohorts and b)

8
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maintain a relatively constant sample size across waves. For details see Carrillo and Karr (2013) or NSF

(2012).

j : 1 2 3 · · · J−1 J
s1(1) ⊇ s2(1) ⊇ s3(1) ⊇ ·· · ⊇ sJ−1(1) ⊇ sJ(1)
n1(1) ≥ n2(1) ≥ n3(1) ≥ ·· · ≥ nJ−1(1) ≥ nJ(1)

s2(2) ⊇ s3(2) ⊇ ·· · ⊇ sJ−1(2) ⊇ sJ(2)
n2(2) ≥ n3(2) ≥ ·· · ≥ nJ−1(2) ≥ nJ(2)

s3(3) ⊇ ·· · ⊇ sJ−1(3) ⊇ sJ(3)
n3(3) ≥ ·· · ≥ nJ−1(3) ≥ nJ(3)

. . .
...

...
sJ−1(J−1) ⊇ sJ(J−1)

nJ−1(J−1) ≥ nJ(J−1)

sJ(J)
nJ(J)

s1 s2 s3 · · · sJ−1 sJ
n1 n2 n3 · · · nJ−1 nJ

Figure 1: SDR Sample

At wave 1, a (complex) sample s1(1) = s1 of n1(1) = n1 subjects is selected from within the N1 elements

in U1 (i.e., Ph.D. holders, either recent or not, who satisfy the requirements of the SDR at wave 1). Each

element i in s1 is interviewed and its data collected; also, there is a design weight wi1 = 1/πi1 associated

with it, which is the inverse of its inclusion probability at wave 1.

At the second wave, the elements in s1(1) who are no longer in scope are simply dropped from the frame

(though their observations at wave 1 are kept), and a subsample s2(1), of size n2(1), of those still in scope is

selected. Not all the members in s1(1) who are still in scope at wave 2 are retained in the sample. This is in

order to be able to make up room for the sample of the new Ph.D. recipients and still maintain more or less

the same sample size as in wave 1. A sample s2(2) of size n2(2) is selected from U2(2) (i.e., recent in-scope

Ph.D. recipients, who have obtained their degree since wave 1); people in s2(2) form the second cohort. The

total sample at wave 2 is s2 = s2(1)∪ s2(2), which is of size n2 = n2(1)+n2(2), which is approximately equal

to n1. All the people in s2 are interviewed at wave 2. The design weights at wave 2, wi2 = 1/πi2, are such

that the sample s2 represents the population of interest at wave 2, namely U2.

The same procedure is repeated at each wave, until the last one (J), where a subsample of the remaining

subjects from each of the previous J− 1 cohorts is selected, and a new sample (the new cohort) sJ(J) of

recent graduates is selected from UJ(J). At the last wave, all people in sJ =
⋃J

j′=1 sJ( j′) are interviewed and a

design weight wiJ = 1/πiJ is created for each person interviewed, so that sJ represents the finite population

9
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UJ .

We notice that the SDR sampling scheme is a special case of the general multi-cohort sampling mecha-

nisms described in Section 2.1. The survey weights wi j for cross-sectional analyses of the SDR are available

and can be used in equation (2).

Reflecting NSF and societal interest in labor force mobility, the response variable we study is employ-

ment sector, with seven response categories: “tenured in academics (AcadT),” “non-tenured in academics

(AcadNT),” “academics with tenure not applicable (AcadTNA),” “government (Gov),” “business/industry

(Bus),” “self-employed (SelfEmpl),” and “unemployed or not in the labor force (Unempl).” The covariates

in our model are: age, age squared, and age cubed, all centered at 45 years of age; time in years since 1995;

number of years since receiving the doctorate degree (centered at 15 years); indicator for US citizenship;

gender; race/ethnicity (with categories non-Hispanic white, Black, Hispanic, Asian, and other/multi-race);

marital status/children living at home (married or in a marriage-like relationship with children at home, mar-

ried or in a marriage-like relationship with no children at home, single or not in a marriage-like relationship

with children at home, and single or not in a marriage-like relationship with no children at home); and field

of degree (biological sciences, computing and information sciences, mathematics and statistics, physical

and astronomical sciences, psychology, social sciences, engineering, and health). The covariates that we

considered were suggested either by exploratory analyses or by subject matter experts at the NCSES.

In this analysis, we are asking the question “To what extent, and in what ways, do these covariates

affect cross-sector mobility for Ph.D. holders?” Note that this analysis is not able to “see” intra-sector

mobility, such as a move from a tenured position at one university to a tenured position at another university.

And in the opposite direction, some seeming changes, such as receiving tenure and remaining at the same

institution, appear in our analysis as a form of “faux mobility.”

The SDR dataset consists of 61,559 subjects from seven cohorts and 214,103 observations across seven

waves (1995, 1997, 1999, 2001, 2003, 2006, and 2008), distributed as: n95 = 33,571, n97 = 33,240,

n99 = 29,985, n01 = 30,115, n03 = 28,940, n06 = 29,450, and n08 = 28,802. Those data correspond

to subjects with non-missing response variable or covariates (whenever they are in the sample), and whose

position is not a postdoctoral one. The average cross-sectional survey weight for each of those waves are:

w̄95 = 15.48, w̄97 = 16.74, w̄99 = 20.10, w̄01 = 21.08, w̄03 = 23.00, w̄06 = 23.15, and w̄08 = 25.16.

10
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3.1 Results for the SDR

In Table 1, we present the parameter estimates, along with the standard errors, 95% confidence intervals,

and p-values, for model (1) fitted to the SDR dataset. The reference categories of the response variable

(tenured in academics) and of the categorical covariates (US citizen, male, non-Hispanic white, married or

in a marriage-like relationship with children at home, and biological sciences) are not included in the table

as they are set to zero. The estimated autocorrelation matrix R̂ appears in the appendix.

Table 1: Parameter Estimates

Parameter Response Estimate Std.Err LL UL Pr(> |t|)

(intercept)

AcadNT -1.01807 0.03804 -1.09262 -0.94352 <0.001 **

AcadTNA -1.26781 0.04117 -1.34851 -1.18712 <0.001 **

Gov -0.92726 0.04194 -1.00945 -0.84506 <0.001 **

Bus 0.12239 0.02990 0.06378 0.18100 <0.001 **

SelfEmpl -2.46204 0.05988 -2.57940 -2.34469 <0.001 **

Unempl -2.13701 0.04223 -2.21978 -2.05425 <0.001 **

Age-45

AcadNT -0.04296 0.00371 -0.05022 -0.03569 <0.001 **

AcadTNA 0.00710 0.00381 -0.00036 0.01456 0.062

Gov 0.02984 0.00405 0.02191 0.03777 <0.001 **

Bus -0.03496 0.00345 -0.04171 -0.02821 <0.001 **

SelfEmpl 0.02718 0.00469 0.01800 0.03637 <0.001 **

Unempl 0.03258 0.00396 0.02482 0.04034 <0.001 **

(Age-45)2

AcadNT 0.00445 0.00021 0.00403 0.00486 <0.001 **

AcadTNA 0.00491 0.00023 0.00446 0.00535 <0.001 **

Gov 0.00355 0.00021 0.00313 0.00397 <0.001 **

Bus 0.00374 0.00018 0.00338 0.00411 <0.001 **

SelfEmpl 0.00248 0.00030 0.00188 0.00307 <0.001 **

Unempl 0.00971 0.00021 0.00930 0.01012 <0.001 **

(Age-45)3

AcadNT 0.00004 0.00001 0.00002 0.00006 <0.001 **

AcadTNA -0.00004 0.00001 -0.00006 -0.00002 <0.001 **

Gov -0.00009 0.00001 -0.00011 -0.00007 <0.001 **

Bus -0.00006 0.00001 -0.00007 -0.00004 <0.001 **

SelfEmpl 0.00002 0.00001 0.00000 0.00004 0.063

Unempl -0.00012 0.00001 -0.00013 -0.00010 <0.001 **

Years since 1995

AcadNT 0.02269 0.00262 0.01755 0.02783 <0.001 **

AcadTNA 0.01195 0.00281 0.00643 0.01747 <0.001 **

Gov 0.00916 0.00260 0.00407 0.01425 <0.001 **

Bus 0.02007 0.00209 0.01597 0.02417 <0.001 **

SelfEmpl 0.00876 0.00318 0.00252 0.01500 0.006 **

Unempl -0.01528 0.00259 -0.02035 -0.01022 <0.001 **
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Years since degree - 15

AcadNT -0.13430 0.00316 -0.14049 -0.12811 <0.001 **

AcadTNA -0.10000 0.00350 -0.10685 -0.09315 <0.001 **

Gov -0.08574 0.00345 -0.09251 -0.07898 <0.001 **

Bus -0.04354 0.00314 -0.04970 -0.03738 <0.001 **

SelfEmpl -0.04587 0.00397 -0.05364 -0.03809 <0.001 **

Unempl -0.04907 0.00333 -0.05560 -0.04254 <0.001 **

US citizen No

AcadNT 0.07641 0.04437 -0.01056 0.16338 0.085

AcadTNA 0.09717 0.05666 -0.01388 0.20823 0.086

Gov -0.71015 0.06418 -0.83593 -0.58437 <0.001 **

Bus 0.04040 0.03833 -0.03472 0.11552 0.292

SelfEmpl -0.12151 0.09677 -0.31118 0.06816 0.209

Unempl 0.03649 0.06495 -0.09080 0.16378 0.574

Gender F

AcadNT 0.23083 0.03709 0.15814 0.30352 <0.001 **

AcadTNA 0.40114 0.04381 0.31528 0.48700 <0.001 **

Gov 0.01821 0.04537 -0.07072 0.10714 0.688

Bus -0.08394 0.03512 -0.15276 -0.01511 0.017 *

SelfEmpl 0.61959 0.05667 0.50851 0.73067 <0.001 **

Unempl 0.86145 0.04197 0.77918 0.94372 <0.001 **

Race /

Ethnicity

Black

AcadNT -0.10356 0.07454 -0.24964 0.04253 0.165

AcadTNA -0.13015 0.09268 -0.31180 0.05149 0.160

Gov -0.08207 0.08821 -0.25495 0.09082 0.352

Bus -0.37422 0.07462 -0.52048 -0.22796 <0.001 **

SelfEmpl -0.95780 0.13388 -1.22020 -0.69539 <0.001 **

Unempl -0.62594 0.09227 -0.80678 -0.44510 <0.001 **

Hispa

AcadNT -0.09656 0.07718 -0.24783 0.05472 0.211

AcadTNA -0.17896 0.09386 -0.36293 0.00501 0.057

Gov -0.18919 0.09347 -0.37239 -0.00599 0.043 *

Bus -0.26710 0.07448 -0.41308 -0.12112 <0.001 **

SelfEmpl -0.37095 0.12641 -0.61871 -0.12318 0.003 **

Unempl -0.40395 0.09761 -0.59526 -0.21264 <0.001 **

Asian

AcadNT -0.04460 0.05188 -0.14627 0.05708 0.390

AcadTNA 0.06682 0.05768 -0.04622 0.17986 0.247

Gov 0.10139 0.06442 -0.02488 0.22767 0.116

Bus 0.59569 0.04646 0.50463 0.68675 <0.001 **

SelfEmpl -0.20763 0.08668 -0.37753 -0.03773 0.017 *

Unempl 0.25760 0.05804 0.14384 0.37137 <0.001 **

Other

AcadNT -0.04728 0.12493 -0.29214 0.19758 0.705

AcadTNA -0.05319 0.13485 -0.31749 0.21111 0.693

Gov 0.03621 0.15722 -0.27193 0.34435 0.818

Bus 0.05609 0.11868 -0.17652 0.28869 0.637

SelfEmpl -0.07491 0.16410 -0.39655 0.24672 0.648

Unempl -0.14102 0.16015 -0.45491 0.17286 0.379
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ChildLivi

MarrLike, NO children

ENT 0.10541 0.02631 0.05384 0.15699 <0.001 **

AcadTNA 0.07533 0.02999 0.01654 0.13412 0.012 *

Gov 0.03863 0.02757 -0.01541 0.09266 0.161

Bus 0.00988 0.01900 -0.02736 0.04712 0.603

SelfEmpl 0.03024 0.03180 -0.03209 0.09258 0.342

Unempl 0.08276 0.02935 0.02524 0.14029 0.005 **

SingLike, NO children

AcadNT 0.23034 0.03446 0.16279 0.29789 <0.001 **

AcadTNA 0.24898 0.03973 0.17111 0.32686 <0.001 **

Gov 0.22326 0.03953 0.14579 0.30074 <0.001 **

Bus 0.08589 0.02827 0.03049 0.14130 0.002 **

SelfEmpl 0.17895 0.05276 0.07554 0.28237 <0.001 **

Unempl 0.13788 0.04331 0.05299 0.22278 0.001 **

SingLike, Children YES

AcadNT 0.06347 0.05690 -0.04806 0.17499 0.265

AcadTNA 0.10304 0.06922 -0.03264 0.23872 0.137

Gov 0.05608 0.04647 -0.03499 0.14716 0.227

Bus 0.03314 0.03352 -0.03255 0.09883 0.323

SelfEmpl 0.08689 0.06837 -0.04711 0.22089 0.204

Unempl -0.17128 0.08212 -0.33224 -0.01032 0.037 *

Degree field

CompInfo

AcadNT -0.63432 0.09768 -0.82577 -0.44287 <0.001 **

AcadTNA -1.17312 0.15323 -1.47345 -0.87280 <0.001 **

Gov -1.43016 0.17706 -1.77719 -1.08313 <0.001 **

Bus -0.03226 0.09856 -0.22544 0.16091 0.743

SelfEmpl -0.37146 0.21181 -0.78660 0.04368 0.079

Unempl -0.83341 0.15297 -1.13323 -0.53358 <0.001 **

MatheSci

AcadNT -0.56553 0.06173 -0.68651 -0.44454 <0.001 **

AcadTNA -1.08257 0.08331 -1.24585 -0.91929 <0.001 **

Gov -1.17355 0.10560 -1.38053 -0.96657 <0.001 **

Bus -0.70582 0.06012 -0.82366 -0.58798 <0.001 **

SelfEmpl -0.75895 0.13058 -1.01488 -0.50302 <0.001 **

Unempl -0.70505 0.07290 -0.84792 -0.56218 <0.001 **

PhysicalSc

AcadNT -0.13701 0.05000 -0.23501 -0.03901 0.006 **

AcadTNA 0.08017 0.05459 -0.02683 0.18717 0.142

Gov 0.25362 0.05184 0.15201 0.35523 <0.001 **

Bus 0.71979 0.04055 0.64031 0.79926 <0.001 **

SelfEmpl 0.27719 0.07711 0.12606 0.42831 <0.001 **

Unempl 0.32687 0.04765 0.23348 0.42026 <0.001 **

Psychology

AcadNT -0.38277 0.05080 -0.48234 -0.28319 <0.001 **

AcadTNA -0.11102 0.05631 -0.22138 -0.00066 0.049 *

Gov 0.03431 0.05961 -0.08253 0.15115 0.565

Bus 0.16309 0.04729 0.07041 0.25576 <0.001 **

SelfEmpl 1.80476 0.06415 1.67903 1.93049 <0.001 **

Unempl -0.20597 0.05609 -0.31591 -0.09602 <0.001 **
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SocialSci

AcadNT -0.45801 0.04672 -0.54959 -0.36644 <0.001 **

AcadTNA -0.85161 0.05749 -0.96428 -0.73894 <0.001 **

Gov -0.70182 0.06323 -0.82575 -0.57790 <0.001 **

Bus -0.98835 0.05302 -1.09226 -0.88444 <0.001 **

SelfEmpl -0.37867 0.08487 -0.54501 -0.21233 <0.001 **

Unempl -0.82988 0.05539 -0.93844 -0.72133 <0.001 **

Engineering

AcadNT -0.54673 0.05526 -0.65503 -0.43843 <0.001 **

AcadTNA -0.54109 0.07088 -0.68001 -0.40217 <0.001 **

Gov -0.01633 0.06282 -0.13946 0.10681 0.795

Bus 0.79038 0.04721 0.69786 0.88290 <0.001 **

SelfEmpl 0.48493 0.08373 0.32081 0.64904 <0.001 **

Unempl 0.11307 0.05908 -0.00272 0.22886 0.056

Health

AcadNT -0.05731 0.06657 -0.18779 0.07317 0.389

AcadTNA -0.59408 0.07905 -0.74902 -0.43914 <0.001 **

Gov -0.45342 0.08617 -0.62232 -0.28452 <0.001 **

Bus -0.17005 0.06295 -0.29343 -0.04667 0.007 **

SelfEmpl -0.18220 0.10826 -0.39438 0.02999 0.092

Unempl -0.67445 0.08148 -0.83415 -0.51475 <0.001 **

Significance codes: ‘**’ 0.01, ‘*’ 0.05

Since the age factor is included in the model as linear, quadratic, and cubic covariates, the interpretation

of the corresponding coefficients is not straightforward. Instead, we ought to combine the three covariate

effects into a single “Age” effect. Figure 2 shows the effect of age on the odds of a given category as opposed

to a tenured position in academics.

Between the ages of 45 and 54, the odds of being in a non-tenured position in academics instead of in

a tenured one are less than one; with the lowest odds being at around 49. For the other ages, the opposite

happens: the odds are bigger than one and increase as one moves away from 49. For example, for the ages

of 35 and 65 the odds of being in a non-tenured position in academics rather than in a tenured one are about

three times the odds at the age of 45.

At 45 years of age the odds of being in a tenure not applicable position in academics instead of tenured

in academics are lower than at any other age. The odds increase as one moves away from 45; for example, at

the ages of 30 and 60 the odds of being in a non-applicable tenure position in academics rather than tenured

are about three times the odds at 45.

With respect to the government sector, something different happens. The lowest odds are at around 41;

at that age the odds of being tenured in academics instead of in the government are about 6% higher than
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at 45 (or at 38 for that matter). Between the ages of 38 and 45 the likelihood of being in the government is

lower than that of being in a tenured position in academics. For the other ages, the opposite holds.

We notice that before 45 and after 56 years of age the odds of being in industry instead of tenured in

academics are larger than between 45 and 56. The difference in odds is more pronounced the younger the

subject is; for example, at 31 years of age the odds of being in industry rather than in a tenured position in

academics are four times larger than at 45.

For self-employment, the opposite happens. After 45 years of age the odds of being self-employed

instead of tenured in academics are larger than before 45. The difference in odds is more pronounced the

older the subject is. For example, at 60 the odds of being self-employed instead of tenured in academics are

around three times larger than at 45.

Finally, the odds of being unemployed or not in the labor force rather than tenured in academics are

lowest between 40 and 45, with them increasing as one moves away from 43 (when one is the least likely to

be unemployed or not in the labor force).

Moving on to the subject of clock time, for every additional year since 1995, the odds of other categories

instead of tenured in academics increase by 1–2%. With the unemployed/not in the labor force, the opposite

occurs; for every additional year since 1995, the odds of being unemployed versus tenured in academics
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(or in any other category, for that matter) decrease. We may interpret this in the following way: as time

passes, fewer and fewer people can afford to get by without working. Although the SDR does distinguish

being unemployed from not being in the labor force, in our analyses we collapsed the two (for sample sizes

purposes). As a result, we may be unable to resolve or interpret some effects. That is, for this population,

the unemployment rate reduces with time. On the other hand, as time passes, the odds of being either

in industry or non-tenured in academics increase by about 2% every year (compared to the odds of being

tenured in academics).

With respect to the experience, the odds of being tenured in academics versus in any other category

increase for every year of experience after Ph.D. graduation. The decrease rate is not as marked for industry

and self-employed and is the largest for non-tenured in academics. This obviously means that the longer the

time since graduation, the less likely it is to find a person in a non-tenured academic position.

Not surprisingly, the only category for which US citizenship is significant is government. The odds of

being in a tenured position in academics instead of in a position in the government are twice for non US

citizens as they are for citizens.

For women, the odds of being unemployed or not in the labor force instead of tenured in academics

are 2.37 times the odds for men. Also, for women the odds of being self-employed instead of tenured in

academics are around 86% higher than for their male counterparts. Similarly, the odds for women of being

non-tenured in academics or in academics with tenure not applicable instead of tenured are higher than the

corresponding odds for men.

The race/ethnicity covariate presents an interesting picture. In the population of interest, i.e., Ph.D.

recipients in the fields mentioned, non-Hispanic Whites are less likely to be in tenured positions in academics

rather than in industry or self-employed, when compared to both Black and Hispanic. However, they are

more likely to be in tenured positions in academics rather than in industry when compared to Asians.

Note that for single people with no children living at home the odds of being in any other category

instead of in a tenured position in academics are between 9% and 28% higher than the odds for married

people with children at home. For married people with no children at home the odds of being either in a

non-tenured position in academics or unemployed instead of tenured in academics are around 10% higher

than the corresponding odds for married people with children at home. (As always, we caution against

over-reaching causal interpretations. Children may not impede tenure, but instead people may wait until

they receive tenure before having children. Moreover, there is also an age–tenure–children interaction.)
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For the degree field covariate we concentrate on the two largest significant effects. The largest effect

overall is the effect of having a doctorate degree in psychology on self-employment. For subjects with a

degree in psychology the odds of being self-employed instead of in a tenured position in academics are more

than six times the odds for people with degrees in biological sciences. Many “practicing” psychologists are,

of course, self-employed.

The second largest effect is that of having a degree in computing or information sciences on having a

job in the government. For biological science graduates, the odds of having a job in the government instead

of being tenured in academics are more than four times the corresponding odds for people with doctorate

degrees in computing or information sciences. The other coefficients can be interpreted similarly.

3.2 Goodness of Fit

The last step in our analysis is to assess the goodness of fit of the estimated model presented in Table 1.

We use a slightly modified version of the GEE score statistic proposed by Horton et al. (1999), which is

in turn an “extension of the Hosmer and Lemeshow goodness-of-fit statistic for ordinary logistic regression

to marginal regression models for repeated binary responses.” Our modification consists of two parts; first,

our application requires a modification to survey data, and second, our response is multinomial rather than

binary.

The first step is to divide the observations into G (=10 in our case) weighted deciles of risk. We use

weighted deciles, as our application is for data from a complex survey. The weights are the survey weights.

All the observations i, j are sorted by the sum of estimated probabilities ∑
K−1
k=1 p̂i jk = 1− pi j0 (as in Fagerland

et al., 2008); then (as in Graubard et al., 1997) n(1) observations with the smallest sums are in the first group,

g1, where n(1) is chosen so that ∑i, j∈g1 wi j/∑i∈s ∑
J
j=1 wi j ≈ 1/G; the n(2) observations with the next smallest

sums are in the second group, g2, where n(2) is chosen so that ∑i, j∈g2 wi j/∑i∈s ∑
J
j=1 wi j ≈ 1/G; and so on,

until group G, which will contain the n(G) observations with the largest sums, where n(G) is chosen so that

∑i, j∈gG
wi j/∑i∈s ∑

J
j=1 wi j ≈ 1/G.

Mimicking Horton et al. (1999), define the G−1 group indicators:

δi jg =


1 if p̂i j is in group g

0 otherwise,

for g = 1,2, . . . ,G− 1. A test of the goodness-of-fit of model (1) can be based on testing the hypothesis
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H0 : γ1,1 = ...= γ1,G−1 = γ2,1 = ...= γ2,G−1 = · · ·= γK−1,1 = ...= γK−1,G−1 = 0 in the alternative model:

log
pi jk

pi j0
= X′i jβββ k + γk,1δi j1 + · · ·+ γk,G−1δi j(G−1), k = 1,2, . . . ,K−1.

The GEE score statistic for testing H0 : γγγ = 0 is

X2 = u2(β̂ββ ,0)′
{

V̂ar[u2(β̂ββ ,0)]
}−1u2(β̂ββ ,0),

where

u2(βββ ,γγγ) = ∑
i∈s

∂pi(βββ ,γγγ)
′

∂γγγ
V−1

i Wi
(
yi−pi(βββ ,γγγ)

)
,

∂pi(βββ ,γγγ)

∂βββ
= {1′(K−1)⊗pi}◦

{
∆i−

[({
IJ⊗1′(K−1)

}{[
1′(K−1)⊗pi

]
◦∆i
})
⊗1(K−1)

]}
,

∆i =
(
∆′i1,∆

′
i2, . . . ,∆

′
iJ
)′, ∆i j = I(K−1)⊗∆∆∆

′
i j, and ∆∆∆i j = (δi j1,δi j2, . . . ,δi j(G−1))

′. Obviously, to calculate

V̂ar[u2(β̂ββ ,0)] we can use the same method used to estimate Var[Ψs(βββ N)] (the estimating function bootstrap

in our case). Horton et al. (1999) conclude by saying that “a signicant GEE score statistic indicates that the

proposed model leaves a substantial amount of variability in the data not taken into account.”

The value of the GEE score test statistic for the multinomial model for sector, in Table 1, is X2 = 24.97.

To calculate the p-value we follow the procedure used in (Graubard et al., 1997). They use a simulated Wald

test, but since we are using the score statistic, our procedure is a “simulated score test.”

As in Graubard et al. (1997), the algorithm for calculating the p-value for the simulated score test is as

follows: (1) fit model (1) to the true dataset, and calculate the score statistic X2 for that model; (2) generate

999 synthetic datasets by generating for each subject 999 response vectors based on the estimated model

in Table 1, along with the autocorrelation matrix in the appendix and his/her own set of covariates; (3) fit

model (1) to each of the 999 synthetic datasets taking into account the original survey design characteristics,

and also compute the score statistic for each of them (call it X2
(syn)); (4) calculate the p-value as:

1+∑
999
1 {X2

(syn) ≥ X2}
1000

.

In our process, steps (1), (3), and (4) are straightforward; the time-consuming part is step (2). For

each subject in the dataset we have to, 999 times, generate a set of correlated multinomial responses; for

example, for a subject who is part of the survey in the waves 1997, 1999, and 2003, we have to simulate a 3-

dimensional 7-category response variable based on his/her (time-dependent) covariates and the appropriate

rows and columns from the autocorrelation matrix in the appendix (the 21 rows and 21 columns correspond-

ing to the years 1997, 1999, and 2003 in this case). The method used for generation is the one proposed
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by Song (2000), which is a method for generating multivariate dispersion data based on the multivariate

Gaussian copula; multinomial variables are a special case of exponential family, which in turn is a special

case of dispersion models. Song’s method requires computing, for each subject i, a Ji-dimensional normal

distribution function with standardized margins (where Ji is the number of waves that subject i is part of the

survey). We used the R package “OpenMx” (see Boker et al., 2011, 2012) for calculating the multivariate

normal distribution function.

The results of fitting model (1) to the 999 synthetic datasets and computing the X2
(syn)’s yielded 101 values

larger than X2 = 24.97; which produces a simulated p-value for the score test of (1+101)/1,000 = 0.102.

Since the p-value is larger than 0.05, we cannot reject the null hypothesis H0 : γγγ = 0. Therefore, we conclude

that the estimated model in Table 1 is a good fit to the data.

4 Final Remarks

We have shown how we can use the methodology proposed by Carrillo and Karr (2013) to estimate the

effect of covariates on a multinomial response using the data from a survey with multiple cohorts. The only

requirement is that there exists a cross-sectional survey weight for each subject, at each wave that the subject

is part of the survey, to represent to cross-sectional population of interest at that wave. We showed the details

for estimation of effects and variance of the parameter estimates, either by the estimating function bootstrap

(as in our case) or by any other of the methods available in the literature.

We also argue why estimating the autocorrelation matrix by the method of quasi-least squares is more

appropriate for binomial or multinomial responses and give a general algorithm for point estimation of the

parameters of interest by using this approach.

After arguing why the described approach is suitable for application to the SDR, we present the results

for a model explaining employment sector as a function of several demographic, time, experience, and de-

gree field variables. Additionally, we give extensive interpretation of the significant effects in the estimated

model.

Finally, by using a simulated score test, whose procedure for general application we describe in detail,

we argue that the estimated model fits the data well.
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Appendix: Estimated Autocorrelation Matrix

AcadNT AcadTNA Gov Bus SelfEmpl Unempl AcadNT AcadTNA Gov Bus SelfEmpl Unempl
AcadNT 1 -0.097 -0.100 -0.234 -0.063 -0.091 0.394 0.050 -0.069 -0.151 -0.029 -0.032
AcadTNA -0.097 1 -0.085 -0.194 -0.057 -0.091 0.061 0.387 0.008 -0.103 -0.028 -0.029
Gov -0.100 -0.085 1 -0.212 -0.070 -0.091 -0.052 -0.027 0.596 -0.134 -0.033 -0.038
Bus -0.234 -0.194 -0.212 1 -0.144 -0.199 -0.128 -0.089 -0.135 0.558 -0.011 -0.052
SelfEmpl -0.063 -0.057 -0.070 -0.144 1 -0.081 -0.032 -0.025 -0.039 -0.003 0.372 -0.022
Unempl -0.091 -0.091 -0.091 -0.199 -0.081 1 -0.034 -0.032 -0.050 -0.059 -0.002 0.362
AcadNT 0.394 0.061 -0.052 -0.128 -0.032 -0.034 1 -0.096 -0.098 -0.236 -0.057 -0.093
AcadTNA 0.050 0.387 -0.027 -0.089 -0.025 -0.032 -0.096 1 -0.081 -0.183 -0.053 -0.090
Gov -0.069 0.008 0.596 -0.135 -0.039 -0.050 -0.098 -0.081 1 -0.225 -0.064 -0.094
Bus -0.151 -0.103 -0.134 0.558 -0.003 -0.059 -0.236 -0.183 -0.225 1 -0.139 -0.201
SelfEmpl -0.029 -0.028 -0.033 -0.011 0.372 -0.002 -0.057 -0.053 -0.064 -0.139 1 -0.079
Unempl -0.032 -0.029 -0.038 -0.052 -0.022 0.362 -0.093 -0.090 -0.094 -0.201 -0.079 1
AcadNT 0.258 0.065 -0.035 -0.085 -0.018 -0.006 0.405 0.049 -0.052 -0.121 -0.028 -0.029
AcadTNA 0.028 0.319 -0.027 -0.066 -0.026 -0.011 0.050 0.410 -0.032 -0.095 -0.025 -0.019
Gov -0.051 -0.002 0.489 -0.112 -0.035 -0.029 -0.053 -0.035 0.557 -0.123 -0.029 -0.041
Bus -0.117 -0.082 -0.104 0.452 -0.004 -0.042 -0.136 -0.090 -0.119 0.527 -0.016 -0.067
SelfEmpl -0.026 -0.016 -0.021 0.001 0.274 -0.005 -0.036 -0.024 -0.036 -0.008 0.337 -0.002
Unempl -0.026 -0.021 -0.019 -0.024 0.007 0.226 -0.039 -0.034 -0.034 -0.046 -0.013 0.337
AcadNT 0.174 0.075 -0.023 -0.057 -0.012 -0.009 0.253 0.071 -0.032 -0.082 -0.018 -0.024
AcadTNA 0.028 0.260 -0.023 -0.063 -0.016 -0.006 0.053 0.306 -0.020 -0.083 -0.023 -0.008
Gov -0.045 0.001 0.414 -0.097 -0.029 -0.019 -0.044 -0.022 0.473 -0.108 -0.026 -0.033
Bus -0.104 -0.063 -0.087 0.383 -0.003 -0.032 -0.111 -0.072 -0.103 0.438 -0.010 -0.046
SelfEmpl -0.022 -0.020 -0.022 0.007 0.220 0.003 -0.032 -0.019 -0.028 0.001 0.281 -0.011
Unempl -0.022 -0.019 -0.014 0.002 0.002 0.149 -0.033 -0.022 -0.025 -0.014 -0.016 0.224
AcadNT 0.120 0.056 -0.016 -0.042 -0.009 -0.002 0.158 0.068 -0.024 -0.055 -0.016 -0.009
AcadTNA 0.027 0.200 -0.027 -0.047 -0.012 -0.011 0.042 0.224 -0.023 -0.063 -0.010 -0.006
Gov -0.034 0.004 0.342 -0.081 -0.023 -0.014 -0.037 -0.014 0.383 -0.089 -0.020 -0.022
Bus -0.085 -0.050 -0.066 0.315 -0.009 -0.014 -0.094 -0.051 -0.082 0.362 -0.021 -0.028
SelfEmpl -0.025 -0.021 -0.013 0.011 0.179 0.007 -0.032 -0.020 -0.019 0.009 0.226 0.008
Unempl -0.028 -0.008 -0.009 0.018 -0.003 0.091 -0.031 -0.012 -0.012 0.005 -0.008 0.135
AcadNT 0.094 0.060 -0.020 -0.036 -0.012 -0.009 0.119 0.070 -0.023 -0.044 -0.013 -0.014
AcadTNA 0.021 0.120 -0.013 -0.040 -0.007 -0.001 0.042 0.140 -0.020 -0.052 -0.012 0.008
Gov -0.029 0.002 0.284 -0.070 -0.018 -0.009 -0.026 -0.007 0.308 -0.079 -0.015 -0.012
Bus -0.078 -0.028 -0.060 0.265 -0.007 -0.006 -0.088 -0.031 -0.063 0.303 -0.018 -0.019
SelfEmpl -0.026 -0.014 -0.006 0.018 0.140 0.005 -0.032 -0.016 -0.011 0.016 0.192 -0.005
Unempl -0.017 -0.001 0.002 0.018 -0.001 0.060 -0.020 -0.004 0.001 0.008 -0.014 0.099
AcadNT 0.068 0.047 -0.010 -0.028 -0.009 -0.003 0.103 0.035 -0.015 -0.032 -0.011 -0.001
AcadTNA 0.015 0.091 -0.017 -0.025 -0.003 0.003 0.022 0.118 -0.021 -0.036 -0.006 0.003
Gov -0.026 -0.003 0.243 -0.059 -0.016 -0.010 -0.024 -0.010 0.258 -0.065 -0.013 -0.014
Bus -0.069 -0.020 -0.051 0.221 -0.006 -0.005 -0.076 -0.022 -0.059 0.254 -0.014 -0.009
SelfEmpl -0.018 -0.009 -0.011 0.021 0.120 -0.002 -0.027 -0.010 -0.012 0.016 0.151 -0.005
Unempl -0.020 0.002 0.004 0.016 -0.008 0.046 -0.017 -0.002 0.005 0.010 -0.012 0.063

2006

2008

1995

1997

1999

2001

2003

1995 1997
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AcadTNA
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2006

2008

1995

1997

1999

2001

2003

AcadNT AcadTNA Gov Bus SelfEmpl Unempl AcadNT AcadTNA Gov Bus SelfEmpl Unempl
0.258 0.028 -0.051 -0.117 -0.026 -0.026 0.174 0.028 -0.045 -0.104 -0.022 -0.022
0.065 0.319 -0.002 -0.082 -0.016 -0.021 0.075 0.260 0.001 -0.063 -0.020 -0.019

-0.035 -0.027 0.489 -0.104 -0.021 -0.019 -0.023 -0.023 0.414 -0.087 -0.022 -0.014
-0.085 -0.066 -0.112 0.452 0.001 -0.024 -0.057 -0.063 -0.097 0.383 0.007 0.002
-0.018 -0.026 -0.035 -0.004 0.274 0.007 -0.012 -0.016 -0.029 -0.003 0.220 0.002
-0.006 -0.011 -0.029 -0.042 -0.005 0.226 -0.009 -0.006 -0.019 -0.032 0.003 0.149
0.405 0.050 -0.053 -0.136 -0.036 -0.039 0.253 0.053 -0.044 -0.111 -0.032 -0.033
0.049 0.410 -0.035 -0.090 -0.024 -0.034 0.071 0.306 -0.022 -0.072 -0.019 -0.022

-0.052 -0.032 0.557 -0.119 -0.036 -0.034 -0.032 -0.020 0.473 -0.103 -0.028 -0.025
-0.121 -0.095 -0.123 0.527 -0.008 -0.046 -0.082 -0.083 -0.108 0.438 0.001 -0.014
-0.028 -0.025 -0.029 -0.016 0.337 -0.013 -0.018 -0.023 -0.026 -0.010 0.281 -0.016
-0.029 -0.019 -0.041 -0.067 -0.002 0.337 -0.024 -0.008 -0.033 -0.046 -0.011 0.224

1 -0.094 -0.091 -0.235 -0.058 -0.090 0.458 0.057 -0.066 -0.167 -0.036 -0.046
-0.094 1 -0.081 -0.194 -0.057 -0.093 0.080 0.481 -0.035 -0.117 -0.032 -0.041
-0.091 -0.081 1 -0.221 -0.063 -0.094 -0.049 -0.037 0.681 -0.155 -0.040 -0.051
-0.235 -0.194 -0.221 1 -0.142 -0.213 -0.151 -0.120 -0.151 0.652 -0.024 -0.063
-0.058 -0.057 -0.063 -0.142 1 -0.084 -0.036 -0.030 -0.040 -0.020 0.437 -0.027
-0.090 -0.093 -0.094 -0.213 -0.084 1 -0.047 -0.042 -0.052 -0.082 -0.017 0.412
0.458 0.080 -0.049 -0.151 -0.036 -0.047 1 -0.091 -0.092 -0.237 -0.057 -0.093
0.057 0.481 -0.037 -0.120 -0.030 -0.042 -0.091 1 -0.083 -0.196 -0.057 -0.096

-0.066 -0.035 0.681 -0.151 -0.040 -0.052 -0.092 -0.083 1 -0.221 -0.063 -0.096
-0.167 -0.117 -0.155 0.652 -0.020 -0.082 -0.237 -0.196 -0.221 1 -0.141 -0.222
-0.036 -0.032 -0.040 -0.024 0.437 -0.017 -0.057 -0.057 -0.063 -0.141 1 -0.086
-0.046 -0.041 -0.051 -0.063 -0.027 0.412 -0.093 -0.096 -0.096 -0.222 -0.086 1
0.260 0.089 -0.035 -0.090 -0.027 -0.029 0.416 0.097 -0.058 -0.141 -0.034 -0.045
0.045 0.339 -0.033 -0.086 -0.025 -0.018 0.072 0.442 -0.044 -0.118 -0.031 -0.025

-0.058 -0.020 0.551 -0.124 -0.029 -0.041 -0.067 -0.029 0.685 -0.161 -0.043 -0.052
-0.135 -0.084 -0.117 0.512 -0.026 -0.043 -0.172 -0.113 -0.152 0.641 -0.045 -0.080
-0.037 -0.029 -0.034 -0.004 0.362 -0.014 -0.045 -0.033 -0.037 -0.021 0.479 -0.021
-0.036 -0.024 -0.034 -0.013 -0.024 0.254 -0.052 -0.040 -0.049 -0.047 -0.028 0.381
0.190 0.095 -0.030 -0.073 -0.021 -0.010 0.295 0.102 -0.040 -0.104 -0.027 -0.023
0.032 0.241 -0.028 -0.065 -0.019 -0.013 0.049 0.317 -0.038 -0.085 -0.025 -0.024

-0.046 -0.009 0.440 -0.103 -0.022 -0.028 -0.050 -0.009 0.538 -0.133 -0.030 -0.039
-0.119 -0.053 -0.088 0.433 -0.030 -0.037 -0.152 -0.073 -0.112 0.528 -0.035 -0.056
-0.039 -0.023 -0.023 0.014 0.288 -0.008 -0.041 -0.034 -0.025 0.010 0.349 -0.014
-0.025 -0.014 -0.012 -0.014 -0.018 0.189 -0.039 -0.023 -0.024 -0.034 -0.020 0.280
0.143 0.074 -0.016 -0.057 -0.012 -0.008 0.173 0.092 -0.023 -0.067 -0.015 -0.012
0.037 0.168 -0.030 -0.048 -0.012 0.005 0.048 0.234 -0.035 -0.065 -0.019 -0.010

-0.040 -0.007 0.377 -0.093 -0.017 -0.024 -0.044 -0.013 0.460 -0.113 -0.027 -0.028
-0.101 -0.040 -0.082 0.356 -0.016 -0.026 -0.122 -0.051 -0.103 0.432 -0.019 -0.042
-0.030 -0.015 -0.020 0.021 0.206 -0.008 -0.029 -0.022 -0.022 0.013 0.246 -0.013
-0.026 -0.005 -0.005 0.002 -0.018 0.128 -0.031 -0.012 -0.012 -0.013 -0.011 0.190

1999 2001
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2006

2008

1995

1997

1999

2001

2003

AcadNT AcadTNA Gov Bus SelfEmpl Unempl AcadNT AcadTNA Gov Bus SelfEmpl Unempl
0.120 0.027 -0.034 -0.085 -0.025 -0.028 0.094 0.021 -0.029 -0.078 -0.026 -0.017
0.056 0.200 0.004 -0.050 -0.021 -0.008 0.060 0.120 0.002 -0.028 -0.014 -0.001

-0.016 -0.027 0.342 -0.066 -0.013 -0.009 -0.020 -0.013 0.284 -0.060 -0.006 0.002
-0.042 -0.047 -0.081 0.315 0.011 0.018 -0.036 -0.040 -0.070 0.265 0.018 0.018
-0.009 -0.012 -0.023 -0.009 0.179 -0.003 -0.012 -0.007 -0.018 -0.007 0.140 -0.001
-0.002 -0.011 -0.014 -0.014 0.007 0.091 -0.009 -0.001 -0.009 -0.006 0.005 0.060
0.158 0.042 -0.037 -0.094 -0.032 -0.031 0.119 0.042 -0.026 -0.088 -0.032 -0.020
0.068 0.224 -0.014 -0.051 -0.020 -0.012 0.070 0.140 -0.007 -0.031 -0.016 -0.004

-0.024 -0.023 0.383 -0.082 -0.019 -0.012 -0.023 -0.020 0.308 -0.063 -0.011 0.001
-0.055 -0.063 -0.089 0.362 0.009 0.005 -0.044 -0.052 -0.079 0.303 0.016 0.008
-0.016 -0.010 -0.020 -0.021 0.226 -0.008 -0.013 -0.012 -0.015 -0.018 0.192 -0.014
-0.009 -0.006 -0.022 -0.028 0.008 0.135 -0.014 0.008 -0.012 -0.019 -0.005 0.099
0.260 0.045 -0.058 -0.135 -0.037 -0.036 0.190 0.032 -0.046 -0.119 -0.039 -0.025
0.089 0.339 -0.020 -0.084 -0.029 -0.024 0.095 0.241 -0.009 -0.053 -0.023 -0.014

-0.035 -0.033 0.551 -0.117 -0.034 -0.034 -0.030 -0.028 0.440 -0.088 -0.023 -0.012
-0.090 -0.086 -0.124 0.512 -0.004 -0.013 -0.073 -0.065 -0.103 0.433 0.014 -0.014
-0.027 -0.025 -0.029 -0.026 0.362 -0.024 -0.021 -0.019 -0.022 -0.030 0.288 -0.018
-0.029 -0.018 -0.041 -0.043 -0.014 0.254 -0.010 -0.013 -0.028 -0.037 -0.008 0.189
0.416 0.072 -0.067 -0.172 -0.045 -0.052 0.295 0.049 -0.050 -0.152 -0.041 -0.039
0.097 0.442 -0.029 -0.113 -0.033 -0.040 0.102 0.317 -0.009 -0.073 -0.034 -0.023

-0.058 -0.044 0.685 -0.152 -0.037 -0.049 -0.040 -0.038 0.538 -0.112 -0.025 -0.024
-0.141 -0.118 -0.161 0.641 -0.021 -0.047 -0.104 -0.085 -0.133 0.528 0.010 -0.034
-0.034 -0.031 -0.043 -0.045 0.479 -0.028 -0.027 -0.025 -0.030 -0.035 0.349 -0.020
-0.045 -0.025 -0.052 -0.080 -0.021 0.381 -0.023 -0.024 -0.039 -0.056 -0.014 0.280

1 -0.089 -0.092 -0.226 -0.059 -0.101 0.447 0.074 -0.062 -0.171 -0.043 -0.048
-0.089 1 -0.084 -0.196 -0.061 -0.097 0.111 0.410 -0.021 -0.102 -0.036 -0.037
-0.092 -0.084 1 -0.216 -0.066 -0.095 -0.059 -0.048 0.643 -0.126 -0.035 -0.046
-0.226 -0.196 -0.216 1 -0.144 -0.217 -0.157 -0.107 -0.148 0.648 -0.031 -0.063
-0.059 -0.061 -0.066 -0.144 1 -0.089 -0.038 -0.036 -0.042 -0.042 0.468 -0.032
-0.101 -0.097 -0.095 -0.217 -0.089 1 -0.047 -0.032 -0.050 -0.082 -0.012 0.401
0.447 0.111 -0.059 -0.157 -0.038 -0.047 1 -0.090 -0.095 -0.238 -0.062 -0.101
0.074 0.410 -0.048 -0.107 -0.036 -0.032 -0.090 1 -0.080 -0.189 -0.060 -0.101

-0.062 -0.021 0.643 -0.148 -0.042 -0.050 -0.095 -0.080 1 -0.210 -0.063 -0.098
-0.171 -0.102 -0.126 0.648 -0.042 -0.082 -0.238 -0.189 -0.210 1 -0.146 -0.218
-0.043 -0.036 -0.035 -0.031 0.468 -0.012 -0.062 -0.060 -0.063 -0.146 1 -0.098
-0.048 -0.037 -0.046 -0.063 -0.032 0.401 -0.101 -0.101 -0.098 -0.218 -0.098 1
0.254 0.098 -0.032 -0.088 -0.023 -0.024 0.398 0.102 -0.051 -0.137 -0.032 -0.041
0.044 0.316 -0.039 -0.080 -0.026 -0.020 0.085 0.406 -0.048 -0.104 -0.036 -0.035

-0.052 -0.016 0.534 -0.121 -0.035 -0.045 -0.071 -0.043 0.635 -0.126 -0.041 -0.052
-0.134 -0.072 -0.113 0.504 -0.016 -0.055 -0.170 -0.097 -0.130 0.612 -0.032 -0.089
-0.033 -0.019 -0.024 -0.005 0.291 -0.005 -0.035 -0.030 -0.039 -0.032 0.404 -0.020
-0.031 -0.025 -0.030 -0.028 -0.015 0.264 -0.049 -0.036 -0.044 -0.066 -0.031 0.392

2003 2006
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2006

2008

1995

1997

1999

2001

2003

AcadNT AcadTNA Gov Bus SelfEmpl Unempl
0.068 0.015 -0.026 -0.069 -0.018 -0.020
0.047 0.091 -0.003 -0.020 -0.009 0.002

-0.010 -0.017 0.243 -0.051 -0.011 0.004
-0.028 -0.025 -0.059 0.221 0.021 0.016
-0.009 -0.003 -0.016 -0.006 0.120 -0.008
-0.003 0.003 -0.010 -0.005 -0.002 0.046
0.103 0.022 -0.024 -0.076 -0.027 -0.017
0.035 0.118 -0.010 -0.022 -0.010 -0.002

-0.015 -0.021 0.258 -0.059 -0.012 0.005
-0.032 -0.036 -0.065 0.254 0.016 0.010
-0.011 -0.006 -0.013 -0.014 0.151 -0.012
-0.001 0.003 -0.014 -0.009 -0.005 0.063
0.143 0.037 -0.040 -0.101 -0.030 -0.026
0.074 0.168 -0.007 -0.040 -0.015 -0.005

-0.016 -0.030 0.377 -0.082 -0.020 -0.005
-0.057 -0.048 -0.093 0.356 0.021 0.002
-0.012 -0.012 -0.017 -0.016 0.206 -0.018
-0.008 0.005 -0.024 -0.026 -0.008 0.128
0.173 0.048 -0.044 -0.122 -0.029 -0.031
0.092 0.234 -0.013 -0.051 -0.022 -0.012

-0.023 -0.035 0.460 -0.103 -0.022 -0.012
-0.067 -0.065 -0.113 0.432 0.013 -0.013
-0.015 -0.019 -0.027 -0.019 0.246 -0.011
-0.012 -0.010 -0.028 -0.042 -0.013 0.190
0.254 0.044 -0.052 -0.134 -0.033 -0.031
0.098 0.316 -0.016 -0.072 -0.019 -0.025

-0.032 -0.039 0.534 -0.113 -0.024 -0.030
-0.088 -0.080 -0.121 0.504 -0.005 -0.028
-0.023 -0.026 -0.035 -0.016 0.291 -0.015
-0.024 -0.020 -0.045 -0.055 -0.005 0.264
0.398 0.085 -0.071 -0.170 -0.035 -0.049
0.102 0.406 -0.043 -0.097 -0.030 -0.036

-0.051 -0.048 0.635 -0.130 -0.039 -0.044
-0.137 -0.104 -0.126 0.612 -0.032 -0.066
-0.032 -0.036 -0.041 -0.032 0.404 -0.031
-0.041 -0.035 -0.052 -0.089 -0.020 0.392

1 -0.097 -0.092 -0.234 -0.056 -0.097
-0.097 1 -0.082 -0.195 -0.061 -0.096
-0.092 -0.082 1 -0.214 -0.067 -0.098
-0.234 -0.195 -0.214 1 -0.146 -0.222
-0.056 -0.061 -0.067 -0.146 1 -0.103
-0.097 -0.096 -0.098 -0.222 -0.103 1

2008
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