Cross-Sector Research

NISS established a Cross-Sector Research in Residence Program in partnership with the National Agricultural Statistics Service (NASS), the survey and estimation arm of the U.S. Department of Agriculture. This new collaborative venture by NISS and the USDA was the first… more

Multivariate Imputation Mechanisms and Valid Mean Squared Error Estimation: Agricultural Resource Management Survey – Phase III

One of the objectives of the Agricultural Resource Management Survey – Phase III was to allow statisticians and economists to conduct multivariate statistical analyses of the farm economy with valid estimates for the potential error in model estimates and forecasts. NASS has been… more

New Design and Estimation Methodologies for Biased Self-Exclusion (Under-coverage): Estimation of Small Farms from Census Mail List

NASS accounts for the incompleteness of its Census Mail List (CML) by adjusting the weights of Census respondents to capture the estimated number of farms identified on the area-frame, but not on the CML. When the 2007 Census was processed, NASS also identified several valid farms that were not found in the area-frame, even though they were located in… more

New Statistical Editing and Imputation Methods That Preserve Data Quality: Quarterly Agricultural Survey

NASS utilizes data cleaning/editing procedures in many of its surveys that are based on an expert opinion/analysis review process and manual intervention to correct identified data values outside of normally expected ranges. This manual editing process is time consuming and is not consistent. It can lead to edit effects that are not reflected in the… more

Statistical Multi-Source Predictive Models and Error Estimates: Major USDA Crop Protection Forecasts and Estimates

The USDA produces multiple forecasts of crop protection throughout the growing season and estimates production at the end-of-season or after harvest. Information is collected from multiple sources (USDA surveys and administrative/auxiliary information, including weather and remotely sensed data) and then synthesized by… more